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Abstract5

Recent experiments on spray-flames propagating in Wilson cloud
chamber have established that spray-flames are much more sensitive to
wrinkles or corrugations than single-phase flames. To propose certain
elements of explanation, we numerically study the Darrieus-Landau (or
hydrodynamic) instability developing in premixtures that contain an10

array of fuel droplets. Two approaches are compared: the numerical
simulation starting from the general conservation laws in reactive me-
dia (DNS), and the numerical computation of Sivashinsky-type model-
equations (SME) for DL-instability. Both approaches provide us with
results in deep agreement.15

It is first shown that the presence of droplets in fuel/air premix-
tures induces initial perturbations which are large enough to trigger the
Darrieus-Landau (DL) instability. Second, the droplets are responsible
of additional wrinkles when the DL instability is developed. The latter
wrinkles are of length scales shorter than those of the DL-instability,20

in such a way that the DL-unstable spray-flames have a larger front
surface and therefore propagate faster than the single-phase ones when
subjected to the same instability.
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Nomenclature

δ∗f characteristic thickness of the stoichiometric single-phase flame30

γ expansion parameter

ψ front position in Sivashinsky DL-model equation

ρG density of the fuel vapour

ρL density of the fuel liquid phase

τ∗f characteristic transit time of the stoichiometric single-phase flame35

τprop characteristic time of flame propagation between two droplets

τvap characteristic time of droplet vaporization according to D-2 law

ϕG equivalence ratio of the fuel-saturated premixture

ϕL equivalence ratio of fuel under liquid phase to overall quantity of air

ϕT overall equivalence ratio of the spray40

ϕu local equivalence ratio of unburnt gases upstream of the non-homogeneous
flame

D∗
th,b thermal diffusivity of burnt gases for a stoichiometric mixture

Ld typical droplet interdistance

Lx length of the computational domain, parallel to flame propagation45

Ly height of the computational domain, transverse to flame propagation

LDL computational box height above which DL-instability develops

Pes spray Péclet number

Rd droplet radius

s lattice spacing
(
s = Ld

√
2
)

50
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T ∗
b adiabatic temperature of the stoichiometric single-phase flame

UL single-phase laminar flame velocity

U∗
L adiabatic single-phase laminar flame velocity at stoichiometry

xF mean front position

1 Introduction55

In combustion systems, fuel is often injected under liquid phase as in diesel,
aerospace engines or furnaces. This has long motivated studies dealing with
spray-flame dynamics. The experimental literature reports numerous situa-
tions where the spray-flame is more corrugated, and faster, than the equiva-
lent single-phase flame. We have particularly in mind the recent experiments60

conducted in Wilson chamber [1] and [2], the latter experiments being per-
formed in microgravity. Consequent wrinkles have also been reported in
earlier works about spray-flames [3, 4, 5], or particle cloud combustion [6].
There is hence an important number of observations which indicate that
spray-flame fronts are particularly prone to fold, if the droplet size is large65

enough. The purpose of the present numerical work is to contribute to
understand this phenomenon.

The experiments on combustion in sprays at moderate and high pres-
sures have generally revealed behaviors in large departure from the equiv-
alent single-phase premixed flames. For instance, two-phase flames have70

been found to propagate with a pulsating regime [7, 6] without the resort to
differential diffusive effects [8, 9, 10]. In addition, certain results obtained
in microgravity [11] have shown that spray-flames in lean ethanol-air mix-
tures can propagate faster than the equivalent gaseous flames, and slower in
globally rich mixtures. Recent numerical studies [12, 13] concerning glob-75

ally lean mixtures with a fixed overall equivalence ratio ϕT = 0.85 brings
complementary results concerning the mixture composition effects and the
droplet size influence on spray-flame dynamics. On the other hand, classi-
cal ground experiments [3, 4, 1] have exhibited opposite observations to the
ones made in [11]: spray-flames in rich mixtures of ethanol (or iso-octane)80

and air are faster than the equivalent gaseous premixed flame.
To interpret these complex aspects of the flame propagation in droplet-

vapor-air mixture, Hayashi and Kumagai [3, 4] introduced the concept of
effective fuel-air ratio. This corresponds to an attempt at accounting for the
unvaporized fuel and incompletely mixed fuel, which depends in a complex
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manner on droplet size and fuel-air ratio. Our recent investigations on spray-
flames dynamics [12, 14, 15] have established the various roles played by
the main spray parameters: ϕG, the equivalence ratio of the fuel-saturated
premixture that initially surrounds the droplets, ϕL, the liquid loading or
the equivalence ratio of the fuel under liquid phase to the overall quantity
of air, and Rd, the typical droplet radius. Note that we obviously have
ϕT = ϕG +ϕL and Ld, the typical droplet interdistance, is a function of Rd

and ϕL. In particular, in both recent contributions [14, 15] on rich spray-
flames, we have proposed to consider the ”spray Péclet number” defined as
follows:

Pes ∝
ρL
ρG

2Rd ∗ UL(ϕG)

D∗
th,b

2Rd

Ld
(1)

The ”spray Péclet number” corresponds to the ratio of the droplet vapor-
ization time τvap ∝ (ρL/ρG)(2Rd)2/D∗

th,b to the propagation time τprop ∝
Ld/UL(ϕG), where UL(ϕG) and D∗

th,b are the laminar single-phase flame
speed related to the initial fuel-saturated mixture and the thermal diffu-85

sivity in the burnt gases of the stoichiometric single-phase laminar flame,
respectively. Note that Rd, the 2D droplet radius (or more properly the disk
radius), is a function of both droplet interdistance Ld and liquid loading ϕL.
This obviously takes account of the present 2D planar geometry, so that the
actual 2D radius is about one third of the radius that would give the same90

liquid equivalence ratio in 3D.
When the ”spray Péclet number” is large, the flame propagation be-

tween two droplets is so fast that droplet vaporization does not modify the
initial premixture that surrounds the droplets. In other words, spray-flame
speed is simply the one of the single-phase flame propagating in the initial95

premixture. This result has numerically been established clearly, as long as
the spray-flame remained planar. Now, to simplify the forthcoming discus-
sions on folded flames, we decide to assume that the ”spray Péclet number”
is large, in such a way that the role of the droplets is restricted to create
small regions of rich combustion imposed to a single-phase flame front lo-100

cally propagating with UL(ϕG). Accordingly with the concept of effective
fuel-air ratio introduced by Hayashi and Kumagai [3, 4], the effective fuel-air
ratio is here reduced to ϕG for spray with Pes > O(1).

A situation where the ”spray Péclet number” is large generally corre-
sponds to a rich spray. Even though engines are desirable in lean configu-105

ration, rich spray-flames are known to locally exist close to the system of
liquid injection.

Because in numerous experiments the spray-flame front was found cor-
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rugated with a large number of cells, it is a difficult task to determine the
fundamental laminar velocity of the spray-flames from those experimental110

data. Moreover, the spray-flame speed enhancement observed in the exper-
iments could possibly be explained by instabilities of the front, only. As
a matter of fact, the complex interplay between instabilities and droplets
seems to have a peculiar importance for the spherical flames, a case that
has extensively been studied in the recent years [11, 16, 1], and that follows115

the pioneering work of Hayashi and Kumagai (1975) [3]. The present work,
which adopts the simplified configuration Pes > O(1), allows us to cancel
the part of the interplay in relation with the role of the vaporization in the
premixture establishment. On the theoretical side, the creation of many cells
in spherical premixed flames (without droplets) has been modeled with the120

Sivashinsky equation, particularly in 2D by Karlin and Sivashinsky (2007)
[17]. This DL-model equation contains the main two effects, creation of
many cells and self-acceleration.

2 Two models for DL-unstable spray-flame prop-
agation125

The article is based on the predictions of two different approaches that
are able to study the Darrieus-Landau instability (or the hydrodynamic
instability of premixed flame). The first one uses the 2D numerical simula-
tion (DNS) that starts from the basic equations characterizing any reactive
medium. As for the second approach, we use a much lighter mathemat-130

ical approach (SME) that corresponds to the DL-model equation due to
Sivashinsky.

2.1 Solving the conservation 2-D laws for reactive media
(DNS)

This model of spray-flame propagation resorts to the general approach that135

we have used in our recent contributions [12, 14]. The initial state of the
spray is schematized by a 2D face-centered lattice, at the nodes of which the
droplets are positioned. The lattice spacing is denoted by s, in such a way
that the droplet interdistance is Ld = s/

√
2. The spray-flame propagation

is governed by the usual set of conservation laws for mass, momenta, energy140

and species, with the simplest chemical scheme [14] that allows us to handle
a flame propagating through a medium of heterogeneous composition, where
the equivalence ratio varies from ϕG far from the droplets to a very large
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Figure 1: Alkane/air droplet lattice: initial fuel mass fraction resulting from
the positioning of the droplets at the nodes of a 2D-lattice of spacing s.
On the very right side of the figure, a planar single-phase premixed flame
propagates to the left (in the lattice: ϕG = 1.1 , ϕL = 0.5, s = 12). The
computational domain represented is Ly = 2 × s hight and Lx = 9.7 × s
long.

value close to the droplets. As described in [14], the spray is considered as a
non-homogeneous one-phase medium. Vaporization, Stefan flow and heat-145

mass transfers at the liquid-gas interface are solved from the conservation
laws and do not require particular sub-models.

By contrast with most literature on spray-flames (for a recent review,
see [18]), the current droplets are here fully resolved. This explains why 3-D150

DNS is hardly affordable for a parametric exhaustive study. The droplet
radius, being a function of both lattice spacing and liquid loading, has a
typical value which varies in a range from 0.1 to 1 in flame thickness units.
The droplets belong to the same continuum as the gas; therefore, they can
move, heat, follow the properties of a real gas, and continuously switch from155

(liquid) dense fluid to (vapour) light fluid. The present simulation takes ad-
vantage of the fact that latent heat and surface tension are neglected for the
following reasons: a) latent heat of alkanes corresponds to a small fraction
of the reaction heat (e.g. see Ref.[19]) and can be neglected in the ther-
mal budget of the pre-heat zone; b) liquid fuel containment can simply be160

achieved by the fact that heat and mass transfers are frozen at the spray
initial temperature (the spray being at rest far upstream of the flame). The
latter point is carried out by using the non-linear dependence of the diffusion
coefficients with respect to temperature.

165

The droplets are initially set identical at the nodes of a face-centered
lattice. The vaporization process is hence freed from the possible weakness
related to the vaporization model selected. Note additionally that the ex-
periments in cloud Wilson chambers, carried out in microgravity [2], lead to
nearly monodisperse sprays, with a nearly regular density for the droplets.170
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This is why the current initial conditions are seemingly relevant with regard
to such experiments.

The chemical scheme, based on the classical one-step Arrhenius law,
can be interpreted as resulting from a flamelet theory: the flame front is175

conceived as a series of small planar flames connected to each other, that
individually propagate through a locally homogeneous medium. This con-
sideration requires that the spray-flame thickness remains small in compar-
ison with the typical droplet interdistance. This requirement is generally
fulfilled for sprays at moderate and high pressures. The dynamics of these180

flames depends on the equivalence ratio of the local premixture burnt by
each flamelet. More precisely, the local equivalence ratio, denoted by ϕu, is
assessed [14] at each computational point in such a way that it represents
the ”upstream” equivalence ratio, as seen ahead by each small planar flame.
Furthermore, it is known that the classical one-step Arrhenius law largely185

overestimates the adiabatic flame temperature of the rich mixture.
To overcome the difficulty to correctly assess the laminar flame speed,

hereinafter denoted UL, we considered an easy modification [14] of this sim-
ple scheme: heat release is a linear function of ϕu, the fresh premixture
equivalence ratio. This model has been proven to correctly mimic the pre-190

mixed single-phase flame behaviors (adiabatic flame temperature and flame
speed) [20]. As a matter of fact, such a modification of heat release takes
account of all the species existing at the actual flame temperature. From the
numerical point of view, at each time step, the classical system of reaction-
diffusion equations is solved first. Then, it is coupled with the Navier-Stokes195

equations. The overall scheme that computes the Navier-Stokes equations
within the context of DL-instability has previously been described in Denet
and Haldenwang [21].

The set of equations, as well as the results we shall present, are han-
dled under non-dimensional form. The scales retained for non-dimensioning200

are those of the adiabatic, stoichiometric, premixed flame of the consid-
ered fuel (presently a heavy alkane). More precisely, the units for time,
length, mass and temperature are derived from the theoretical properties
of this ideal flame, in terms of flame thickness δ∗f = D∗

th,b/U
∗
L, transit time

τ∗f = D∗
th,b/U

∗2
L , flame temperature T ∗

b and burnt gas density ρ∗b . Here-205

inafter, the subscript ”b” is associated with the burnt mixture, at the flame
temperature Tb. The superscript ”∗” is associated with the values assessed
for the adiabatic, stoichiometric, single-phase flame.

7



The numerical experiments are conducted as follows. The droplets are210

initially positioned at the nodes of a face-centred lattice of spacing s (in δ∗f
units), as illustrated by Fig.1. The lattice is embedded in a computational
box of length Lx and height Ly. For periodicity reason, we have chosen either
Ly = s or Ly = 2s. The surface tension of the droplets being neglected, a
droplet appear as a dense fuel puff belonging to the same continuum as its215

surrounding premixture. Furthermore, the containment of the fuel within
the droplet results from the freezing of the mass diffusion at the unburnt
temperature. The droplets can move, carried by the flow resulting from gas
expansion. Heat-mass transfers, vaporization and the related gas expansion
start when the medium is heated by the proximity of the flame.220

If s and ϕL are given, Rd, the droplet radius is hence determined. In
addition, if ϕG is given, we can estimate the ”spray Péclet number”. All
the numerical experiments considered in what follows satisfy the condition
Pes > O(1). Therefore, accordingly with our recent studies [14], [15], the
presence of droplets has no impact on the general dynamics of the planar225

spray-flame. We shall show that this is no longer the case when the spray-
flame is DL-unstable. Among the main results, the spray-flame speed is
considered. For its evaluation, we have to define the rate of flame propaga-
tion. As the front is strongly corrugated and changing in space and time, we
choose an averaged definition of the front position by performing the partial230

integration of the temperature field in the transverse (periodic) y-direction.
We hence obtain the one-dimensional quantity < T >y (x). We then define
xF , the front position, as the locus where < T >y (xF ) = 0.5.

2.2 Solving the Sivashinsky DL-model equation (SME)

The results of our DNS that will be shown below suggest that if the premix-
ture between droplets is not lean, the main effect of the droplets is to locally
slow down the premixed flame. We suggest to model this phenomenon by
using a variant of the Sivashinsky equation proposed by Joulin and Cambray
for large gas expansion [22]. Note that, originally, the Sivashinsky DL-model
was derived within the context of small gas expansion. The extension pro-
posed by Joulin-Cambray is known to allow the description of larger gas
expansion (the current gas expansion through the single-phase flames of our
numerical experiments is about 5, a value reputed affordable by the Joulin-
Cambray extension). The idea is to include a position-dependent flame
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velocity in the non-linear term of this model-equation. It reads

ψt + Ueff (x, y)(1 +
a(γ)

2
ψ2
x) +

(1− a(γ))

2
< Ueff (x, y)ψ2

x >

= Ω(γ)Ug(I(ψ) + ψxx/kn) (2)

where ψ is the position of the front γ = (Tb− Tu)/Tb = 0.8 is the expansion235

parameter, Ω(γ) = ((γ+1/(1−γ))1/2−1)/(2−γ) is the exact Darrieus Lan-
dau coefficient, a(γ) is a coefficient controlling the flame amplitude given in
[22]. I(ψ) corresponds to the multiplication by |k| in Fourier space, kn corre-
sponding to the number of unstable modes in a box of width 2π. Ueff is an
effective normal propagation speed, position-dependent, i.e. equal to Ug = 1,240

the laminar flame propagation speed, outside the droplets, and to Ug/5 in a
circle of influence around each droplet. Note that this lowered flame velocity
accounts for different effects: a very rich and slow flame around the droplets
and an hydrodynamic effect of the flow field caused by droplet evaporation.
The Sivashinsky equation will be solved in various cases corresponding to a245

different number of unstable modes of the Darrieus-Landau instability (the
stationary solutions of the equation without droplets being reported in [23]
for different numbers of unstable modes).
The general idea sustaining the SME approach consists in checking whether
a Sivashinsky DL-model, that incorporates some local weak propagation,250

is able to retrieve the overall properties of the spray-flame. After several
attempts for choosing both the size of the droplet influence zone and the
drop in flame velocity, it turned out that varying both depth and size of
the hole did not greatly change the results, provided that the size remains
reasonably small in comparison with the lattice-spacing.255

3 Triggering DL-instability with droplets

The classical theory of DL-instability indicates that the development of DL-
instability within the framework of periodic conditions transverse to the
propagation generally requires a wide enough ”channel”, namely that Ly,
the imposed periodicity, should be of a few tens times as large as the flame260

thickness. However, before working with droplets, single-phase numerical
experiments with strong initial noise have established that the minimal
channel width allowing the DL-instability development, and denoted here
by LDL, presently corresponds to about 14 times the flame thickness (i.e.
LDL ≈ 14). In other words, Ly > LDL is needed for observing the DL-265

instability in single-phase premixture, and the threshold Ly = LDL is the
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so-called cut-off scale of DL instability. Next, we consider two situations of
DNS: a transversally small box (i.e. Ly < LDL) and a transversally large
box (i.e. Ly > LDL).

3.1 DNS results in transversally small computational do-270

main

When Ly < LDL, and whatever the initial perturbations of the flame front,
the single-phase flame front is found to remain flat, indicating that the trans-
verse threshold of the DL instability is not reached. Our studies that concern
sprays with rich overall equivalence ratios observe a propagation regime al-275

ready described by Hayashi and Kumagai [3, 4] when the droplets are large
enough [14, 15], i.e. when the fuel under liquid phase does not contribute
to combustion spreading. For smaller radii Rd, the droplets vaporization
would enrich the surrounding gaseous phase that can become greater than
ϕG, leading to a spray-flame velocity than depends on droplet radius in a280

rather complex manner [14]. As recalled above, to determine the critical
radius for the occurrence of the ”large droplet” regime, we have proposed a
criterion based on the ”spray Peclet number”, namely Pes > O(1).

In the rest of the article, the latter assumption will hold, as well as the
choice Ly > LDL.285

3.2 DNS results in transversally large computational domain

As shown later by Fig.4a, where the DL instability will not develop within
the framework of a periodicity of 24 times the flame thickness, the condition
Ly > LDL is however not sufficient for realistic development of the DL in-
stability. Turbulence or noise are known to trigger the DL-instability. The290

issue treated now is whether the droplets can play the same role.

Let us first describe how flame and droplet interact. As mentioned above,
the initial premixture is supposed to sustain spray combustion without the
recourse to droplet vaporization. Hence, the planar spray-flame speed is295

UL(ϕG). If the initial surrounding mixture is lean (i.e. ϕG < 1), a triple
flame occurs when the combustion burns a droplet. The lean wing is nothing
but the initially premixed flame, the velocity of which is UL(ϕG). The rich
wing surrounds the droplet which is transported towards the burnt gases
by the rapid gas expansion due to vaporization. When the triple flame300

shape disappears, the rich wing transforms into a closed flame, richer and
richer, the velocity of which finally vanishes. This rich flame accompanies
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Figure 2: Four successive snapshots of the reaction rate, when a planar
spray-flame interacts with a droplet in the lean case of initial surrounding
mixture (ϕG = 0.9, ϕL = 0.5, s = 24, Pes > O(1)).

Figure 3: Four successive snapshots of the reaction rate, when a planar
spray-flame interacts with a droplet in the rich case of initial surrounding
mixture (ϕG = 1.1, ϕL = 0.5, s = 24, Pes > O(1))
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Figure 4: Superimposed successive snapshots of the reaction rate for the
single-phase premixed flame (Ly = 24, ϕG = 1.1); (a) stable with respect to
DL-instability, since no perturbations have been applied; (b) subjected to
DL-instability that has been triggered by a y-sinusoidal x-displacement of
0.3 on the initial front

Figure 5: Superimposed successive snapshots of the reaction rate for the
spray-flame subjected to DL-instability that has been triggered by droplets
(ϕG = 1.1, ϕL = 0.5, s = 24 and Ly = 24).

the droplet during its motion and takes the form of an ellipse, when carried
downwards by the flow.

As for the diffusion flame, it delimits the remaining oxygen located be-305

hind the lean wing. Since the overall equivalence ratio is rich, the diffusion
flame burns the rest of oxygen. The figure 2, which presents a sequence of
four snapshot of the reaction rate, illustrates how the lean flame is locally
deformed by the presence of a droplet.

310

On the other side, when the initial surrounding premixture is already
rich, no triple flame exists and the presence of the droplet only modifies
the equivalence ratio of the mixture in its surroundings. In other words,
the flame that essentially burns the initial premixture meets rich puffs of
mixture at the nodes of the lattice, which locally hinders the spray-flame315

propagation. In the forthcoming section, it will nevertheless be shown that
those loci of hindrance induce folds that increase the overall propagation of
the spray-flame. A sequence of four snapshots for the present rich case is
provided in Fig. 3.

320
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Figure 6: Successive front positions provided by the Sivashinsky DL-model
equation triggered by ”combustion holes”

Next, we describe how our 2D numerical experiments by DNS clearly
show that the presence of droplets triggers the Darrieus-Landau instability.
More precisely, we actually focus on three different situations:

- the first one considers a single-phase flame of equivalence ratio 1.1
(i.e. ϕG = 1.1 and ϕL = 0). A planar flame is initiated without initial325

perturbation on the right hand side of a 24δ∗f high computational box. In
absence of noise or perturbations, the flame remains flat, as shown in Fig.
4.a, where we have superimposed 10 successive snapshots of the reaction
rate field.

- the second situation concerns the same single-phase flame, still initiated330

on the right hand side of a 24δ∗f high box, but the front has been perturbed
by a y-sinusoidal x-displacement of 0.3 times the flame thickness. As long
known [21], this perturbation is sufficient to trigger the DL instability on a
relatively short distance as reported in Fig. 4.b, where are superimposed 13
successive snapshots of the reaction rate.335

- the third case treats of a planar spray-flame with the same equivalence
ratio of the initial surrounding mixture. But this initially unperturbed flat
flame meets droplets, the perturbations of which initiate the DL instability of
the spray-flame. The parameters of this numerical experiment are ϕG = 1.1,
ϕL = 0.5, s = 24 and Ly = 24. As indicated in Fig. 5, the presence of340

droplets triggers the folding of the spray-flame which then experiences rather
complex corrugations. One the left-hand side of Fig. 5 (i.e. when leaving
the lattice), a single-phase premixture is retrieved and we can recognize the
typical non-linear DL-shape of the single-phase premixed flame.

3.3 Sivashinsky DL-model equation (SME) results345

As described above, the SME approach mimics the presence of droplets
thanks to holes of partial extinction distributed at the nodes of the lattice.
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The box height is here fixed to Ly = s. The simulations of the Sivashinsky
equation are carried out with the following parameters; density ratio between
burnt and unburnt gases equals to 5; number of unstable Darrieus Landau350

modes: 2.4; the effective flame velocity inside the droplet-affected zone is
fixed to 0.2 times the laminar flame velocity; the droplet-affected zone is
inside a radius of influence around the droplets, which equals 0.1 times the
total width Ly. These values have been chosen in agreement with the 2-
D simulations of the flame propagating in the (rich) close vicinity of the355

droplets.
The front shape at different times is plotted in Fig. 6, showing the effect

of the droplets on the hydrodynamic instability. When the front reaches
a droplet, the associated partial quenching creates wrinkles which triggers
the DL instability, and then sustains the particular pattern of a DL affected360

front.

4 Droplets enhance spreading of DL-unstable spray-
flames

The purpose of the present section concerns the assessment of the velocity of
the spray-flames that are subjected to Darrieus-Landau instability, or equiv-365

alently what occurs when a single-phase flame subjected to DL instability
meets a lattice of droplets.

4.1 SME approach

We first present the results obtained with the Sivashinsky DL-model equa-
tion. The simulations are with and without droplets, for the following num-370

bers of unstable Darrieus-Landau modes: 1.2, 2.4 and 4.8 (1.2 corresponds
to a small width). We here use initial conditions allowing the flame to reach
quickly a shape with one large cell in the domain, and we now show the effect
of the number of unstable modes (or equivalently domain height Ly) on the
observed propagation velocity. The mean position of the front versus time is375

plotted in Fig. 7. It can be noticed in the figure that for a small width (1.2
unstable modes) there is not much difference between the results without
droplets (black, dashed line) and with droplets (black, solid line). With 2.4
unstable modes (magenta -or dark grey-, dashed/dotted without droplets,
magenta - or dark grey-, solid line with droplets), the perturbations caused380

by the droplets lead to larger flame amplitude and flame speed that in the
case without droplets. This effect is even more important in the case of 4.8
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Figure 7: Mean front position vs. time computed with the Sivashinsky
equation: when the number of unstable DL modes increases, the slope en-
hancement due to droplets is more marked.

unstable modes, green -or light grey-, dashed/dotted line without droplets,
green -or light grey-, solid line with droplets.

Evidently, in what follows, the DNS approach provides us with more385

details on the manner that allows a flame to propagate through a lattice of
droplets. However, the SME approach, implies much lighter computational
efforts and allowed us to investigate a larger field of parameters. It also
serves to highlight the most important (and quite paradoxical) point of this
paper: the flame speed of a DL-unstable flame is increased because the390

flame propagates more slowly around the droplets. We will see below that
the same results are obtained in our DNS.

4.2 DNS approach

We carry out the following DNS numerical experiments. Before meeting
droplets, a single-phase flame (characterized by the set of parameters ϕG,395

ϕL = 0, Ly) exhibits folds because it develops the DL instability from an
initial perturbation, and propagates towards the lattice of droplets. The ini-
tial conditions are such that the DL instability reaches its non-linear regime
before the single-phase flame meets the first droplet. On the right hand side
of Fig. 8, the single-phase flame folds as it propagates towards the droplet.400
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Figure 8: Superimposed successive snapshots of the reaction rate for the
spray-flame subjected to subjected to Darrieus-Landau instability (DL) that
has been initially triggered outside the droplets (ϕG = 0.9, ϕL = 0.5, s = 24
and y-periodicity of Ly = 48).

When the first droplet is on the point to be met, the flame adopts the clas-
sical cusped shape of the DL instability. Then, when the flame propagates
within the droplet lattice (i.e. we have now ϕL = 0.5), it is however notice-
able that the front pattern is more corrugated than in the single-phase DL
instability. On the left hand side of the figure, the flame finally leaves the405

droplet lattice and tends to recover the classically cusped pattern.
We have performed a series of such numerical experiments for various

ϕG and s, the liquid loading of the droplet lattice being set to ϕL = 0.5 and
Ly = s or Ly = 2s. In Fig.9, where combustion front x-position is plotted
against time, we observe that the slope of the curve is not constant. It410

increases as the flame propagates within the lattice. It is now clear that the
presence of droplets enhances the propagation of the DL-affected flame. In
the figure, it is also observed that the change in slope occurs whatever ϕG,
the most intense effect corresponding to the nearly stoichiometric conditions
of the surrounding mixture (i.e. ϕG ≈ 1.1).415

The slope of the combustion x-positioning vs. time within the lattice is
hereinafter called spray-flame speed. The magnitude of this quantity incor-
porates two cooperative effects: the velocity increase due to the Darrieus-
Landau instability which cooperates with the additional wrinkling due to
the vicinity of the droplets where combustion is reduced (since too rich).420

Evidently, the spray-flame speed will depend on the height of the compu-
tational domain (Ly), since DL single-phase flame speed depends on Ly.
Furthermore, the spray-flame speed also depends on the droplet size. But,
it turns out that this effect remains weak, the number of the droplets (i.e.
the role of s) for given Ly and ϕL playing a more important role.425

To illustrate the essential part of these results, we have gathered the
spray-flame speeds as a function of ϕT for various values of s and Ly, and
for fixed ϕL = 0.5. This corresponds to Fig. 10, which requires several
comments. First of all, the curves with label s = 0 corresponds to a situ-
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ation where vaporization is immediate, so that the flame is of single-phase430

type. Second, only the region where Pes > O(1) is easy to interpret: for
Ly = 12, the spray-flame is DL-stable; therefore, the curve with s = 12 is
nothing but the curve with s = 0, translated to the right. For higher Ly

(i.e. Ly = 24, Ly = 48), the single-phase flame becomes DL-unstable as
indicated on the left-hand side of Fig. 10 by a velocity higher than 1. As for435

the corresponding spray-flame (i.e. located at ϕT = ϕG + 0.5), the presence
of droplet increases its speed, especially when the droplets are numerous
(i.e. when Ly = 2s). This corresponds to what was already predicted by
the SME approach.

Since a reliable DNS is sufficient to predict all the spray-flame proper-440

ties in terms of DL-instability, it could be argued that the SME approach
is unnecessary. Let us nevertheless stress on the fact that SME provides us
with the following important (supplementary) results:
- SME gives the same qualitative results for a cost 104 times cheaper. - SME
confirms the validity of our interpretation about the DNS results in terms445

of holes of low propagation. In return, this confirmation recalls the interest
in simplified models as tools for analysis, and fast investigation.
- SME gives the same qualitative results, and, by nature, cannot imply the
diffusive-thermal instability. This confirms our interpretation of the DNS
results that only the Darrieus-Landau instability is involved, and not some450

differential diffusive effects.

5 Discussion and conclusion

The numerical experiments of the paper actually concern the propagation of
three successive different flames: (a) a single-phase premixed flame of equiv-455

alence ratio ϕG that meets droplets and becomes unstable versus Darrieus-
Landau instability; (b) a spray-flame -in the Pes > O(1) regime- fully sub-
jected to DL instability, for which the droplets create additional wrinkles;
(c) a single-phase premixed flame of equivalence ratio ϕG that leaves the
domain occupied by droplets and remains unstable versus Darrieus-Landau460

instability.
To sustain the discussion and illustrate the point, in Fig.11 we have si-

multaneously drawn two pictures, namely, a picture that show the various
successive front patterns, using numerous snapshots of the reaction rate
field, and a graph that depicts the mean front position, the slope of the465

latter curve giving the front velocity. Hence, the mean velocity that corre-
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Figure 11: Superimposition of twenty one snapshots of the reaction rate
field, positioned above the plot of the mean flame location, in such a way
that the instant of each snapshot can be read on the time abscissa of the
mean front location curve; four zones of particular flame speed are pointed
out; parameters are Ly = 3s = 72, ϕG = 1.1 and ϕL = 0.5
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sponds to a particular flame pattern can be read on the position curve, as
the slope of the curve vertically below the considered pattern. Fig.11 invites
us to identify four different periods when the front propagates: from the
right to the left of the figure, we notice470

- a first time during which the flame speed remains constant at about
UL(ϕG), the quasi-planar front pattern being perturbed by the droplets,
acting as ”holes of weak combustion”.
- a second period where the previous perturbations trigger an instability of
much larger amplitude and length scale, namely the Darrieus-Landau insta-475

bility, which superimposes on the droplet-induced pattern. It corresponds
to a period of flame speed-up.
- a third time during which the flame propagation attains a quasi-steady
state of high velocity, i.e. Us = 1.53. The front pattern corresponds to the
addition of two kinds of wrinkles, namely, the DL corrugations which are480

now of maximum amplitude, complemented with droplet-induced foldings
which appear as perturbations of length-scale smaller than the DL corruga-
tions.
- the final period corresponds to the propagation of a single-phase flame
subjected to DL-instability. The corresponding (last) part of the position485

curve indicates a constant slope at about UDL = 1.37, which retrieves the
propagation velocity of a DL-unstable premixed flame in a periodic box of
72 times the flame thickness.
The above sequence of events confirms that droplets trigger the DL-instability,
then enhance propagation velocity of the DL-unstable front. In other words,490

DL-unstable spray-flame is faster than DL-unstable single-phase flame.

To sum-up, the Darrieus-Landau instability has been studied in the
framework of spray combustion, where we have focused on the simplest sit-
uation of spray-flames that corresponds to Pes > O(1), i.e. at large ”spray495

Péclet number” the planar spray-flame propagates at the same rate as the
single-phase premixed flame that shares the same initial fuel-saturated mix-
ture as the spray. Two numerical approaches -a DNS and a Sivashinsky
model equation- have brought results in profound agreement. In particular,
it has been shown that the droplet action on the premixed flame triggers500

the Darrieus-Landau instability on a reasonably short distance of propa-
gation. This result is in agreement with the classical results on DL insta-
bility, since DL instability is known to require perturbations or noise to
develop in a satisfactory manner [21]. The same triggering effect has been
obtained when including ”holes of slow combustion” in SME. Furthermore,505

the DL-cells that appear in the experiments by Chauveau et al. [2] or in the
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Bradley-Lawes experiments [1] are of sub-centrimetric length scales. Now,
one centimetre corresponds in the experiments to about 25 times the flame
thickness. Therefore, our computational domain with Ly = 48 can simulate
several practical DL-cells, which is enough to numerical handle the overall510

DL-dynamics.

A more striking result established in the paper, either by DNS or by
SME, concerns the role of the droplets on the flame speed in the context
of the fully-developed Darrieus-Landau instability. The DL instability in515

the nonlinearly saturated regime appears as a folded front with only one
cusp, which corresponds to the DL non-linear pattern with the fastest prop-
agation. Such a front perturbed by ”holes of slow combustion” exhibits
additional wrinkles of shorter wavelengths. Interpreted accordingly with a
linear point of view in DL-theory, those short wavelengths would lead the520

spray-flame to a slower propagation. By contrast, a spread enhancement
is observed. This spray-flame speed promotion has to be interpreted in a
non-linear manner, in the sense that secondary wrinkles are additionally
imposed to the fastest DL-pattern, and still increase the effective flame sur-
face. Such a phenomenon of secondary folds often results from a small scale525

turbulence, that transports the flame in both positive and negative manners
with respect to propagation. Here, the droplets always act in a negative
manner, the droplets locally slowing down the propagation. Nevertheless,
local slowdown allows the spray-flame to accelerate. Furthermore, both
approaches (DNS and SME) agree with each other, claiming that an impor-530

tant mechanism related to the rich spray-flame speed enhancement at high
”spray Péclet number” is due to the simple fact that a droplet produces
a (rich) zone of weak combustion, which induces additional folds; we are
hence faced with the quite paradoxical situation that local quasi-extinction
can accelerate overall propagation.535
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