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Diamond Patterns in the Cellular Front of an Overdriven Detonation
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A nonlinear integral-differential equation describing the cellular front of an overdriven detonation is
obtained by an analysis carried out in the neighborhood of the instability threshold. The analysis reveals
both an unusual mean streaming motion, resulting from the rotational part of the oscillatory flow, and
pressure bursts generated by the crossover of cusps representative of Mach stems propagating on the
detonation front. A numerical study of the nonlinear equation exhibits the “diamond” patterns observed
in experiments. An overall physical understanding is provided.
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Gaseous detonations are supersonic combustion waves
that have been extensively studied since their discovery
120 years ago. Experiments of the late 1950s [1] have
established that the spatiotemporal structures of gaseous
detonations differ notably from the dissipative structures
of other nonequilibrium systems such as flames, crystal
growth, Rayleigh-Benard convection, etc. Molecular
transport may be neglected and detonations are governed
by the Euler reactive equations (hyperbolic problem).
One striking observation is the formation of Mach stems
with triple point configurations traveling transverse to the
front at nearly the sound speed in the burned gas. Their
trajectories, as recorded on soot-coated foils, have a char-
acteristic “diamond” or “fish scale” pattern [2] with cell
sizes much larger than the thickness of the planar wave d̄.
The cell sizes are usually obtained from experimental data
and are used in an empirical way for predicting critical
conditions of detonation initiation with application to
nuclear reactor safety [3]. The role of detonation cellular
structure in astrophysics may also have an impact on the
observed spectra of type Ia supernovae [4]. A challenging
problem is to relate this pattern to the properties of the
reactive mixture. Despite the advances in direct numerical
simulations [5] and in nonlinear studies [6], the problem
is still unresolved. Physical insights are elusive and there
is no convincing explanation of either the size or the shape
of the pattern. In order to provide an overall physical
understanding, our approach in this Letter is to carry out
a nonlinear study in the neighborhood of the instability
threshold. Formation of cusps (representative of triple
points) and pattern selection are addressed by an analysis
of weakly unstable detonations, valid for general chem-
istry. The analysis reveals a new kind of front dynamics
involving a mean streaming motion and time dependent
patterns similar to those observed in experiments.

A one-dimensional detonation consists of an inert shock
followed by a reacting flow which is subsonic (relative to
the shock) with a local Mach number M̄ (M̄ # 1) increas-
ing with the distance from the shock. The flow becomes
sonic at the end of the reaction zone of a self-sustained
detonation (Chapman-Jouguet, C-J wave) while it remains
subsonic when the wave is piston supported (overdriven
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waves), M̄B , M̄BCJ � 1 and M̄u . M̄uCJ where M̄u �
ūu�āu . 1 is the propagation velocity reduced by the
speed of sound in the initial mixture and subscripts u, B,
and CJ identify conditions ahead of the shock (fresh mix-
ture), in the burned gases and in a C-J wave, respectively.
As the speed of the piston increases, M̄u becomes larger
and M̄B gets smaller. The degree of overdrive is defined
as f � �M̄u�M̄uCJ �2, f $ fCJ � 1, where M̄uCJ is char-
acteristic of the initial mixture [2]. In a perfect gas, three
parameters characterize the propagation regimes, the ratio
of specific heats g � Cp�Cy , M̄u (or f ), and the dimen-
sionless heat release q � Q̂�CpT̄N (reduced for conve-
nience by the enthalpy of the compressed gas at the von
Neumann spike, just downstream the inert shock, subscript
N ). Most of the observed detonations are strongly unstable
with a moderate degree of overdrive (f � 1) and a strong
shock (M̄2

u ¿ 1). The large density jump across the strong
shock produces a large deflection of the streamlines which
is essential to the dynamics of real detonations. With the
heat release being small at the instability threshold [7],
q , 1, the shock of a weakly unstable (or stable) C-J wave
is weak, M̄2

uCJ � 1. The dynamics of a weakly unstable
detonation is closer to a real one when the leading shock
is strong. This is the case only when f ¿ 1. A nonlinear
analysis of such weakly unstable and strongly overdriven
regimes is presented in this Letter using the approxima-
tions �g 2 1� ø 1 and M̄2

u ¿ 1. Weak instability occurs
when q is as small as (g 2 1) and 1�M̄2

u. The pertur-
bation analysis is then based on a small parameter ´ �
M̄N , M̄2

N � �g 2 1��2 1 1�M̄2
u, typically g � 1.2 1.3,

M̄2
u � 30 [2].
Defining the position of the wrinkled shock as x̂ �

â�t̂, ŷ� with t̂ denoting the time, x̂ and ŷ the longitudinal
and the transverse coordinates, one introduces the nondi-
mensional coordinates j �

R x̂
âr̂�x0, t�dx0��r̄Nd̄� (the

shocked gases are in the region j . 0), h � ´ŷ�d̄, t �
t̂�t̄N where t̄N � d̄�ūN is the transit time of a fluid par-
ticle. Nondimensional variables are u � û�ūN , n �
´n̂�ūN , p � p̂�p̄N , T � T̂�T̄N , a � â�d̄, with û, n̂, p̂,
r̂, T̂ denoting the longitudinal and transverse velocity, the
pressure, the density, and the temperature (overbars are for
the unperturbed state). The scaling of ŷ is controlled by
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the range of unstable disturbances, l̂ � d̄�´ as explained
later, and the scaling of n̂ results from the large jump of
flow velocity across the wrinkled shock, r̄N�r̄u � 1�´2.
The flow of the gas behind the leading shock satisfies
the ideal gas law, the Euler equations, and the equations
for conservation of mass, energy, and species. The
boundary conditions are the Rankine-Hugoniot conditions
at j � 01 and a boundedness condition at j ! 1` (the
piston is assumed at infinity). The analysis is carried out
at the second order approximation retaining terms like
da, ´2da, �da�2 and neglecting higher order terms. The
mathematical formulation is detailed elsewhere [8].

In the burned gas (where the reaction is complete and
the unperturbed solution is uniform) the linear approxima-
tion of the flow is a superposition of an incompressible
entropy-vorticity wave (superscript i) and an acoustic
wave (superscript a), du � du�i� 1 du�a�, dn � dn�i� 1

dn�a�, dp � dp�a�, dp�i� � 0 where db denote a small
disturbance, b � b̄ 1 db. Near the onset of the instabil-
ity, q � 0�´2�, two main simplifications appear as follows.

(i) The flow differs only weakly from the one encoun-
tered in a strong inert shock (q ø 1, M̄2

u ¿ 1).
(ii) Mach numbers are small everywhere across the deto-

nation structure, M̄N # M̄ ø 1.
Isobaric gas expansion due to heat release and com-

pressibility effects may then be clearly separated. The
leading order solution is that of an inert shock problem [9]
and is controlled by the vorticity wave (oscillatory shear
flow) du�i�

0 � ≠a�t 2 j, h��≠t, dn�i�
0 � =a�t 2 j, h�

with ≠2a�≠t2 2 =2a � 0. Pressure fluctuations at the
shock are small, dp�j � 0� � 22´2 �at , and pressure gra-
dients are even smaller, so that (du�a�,dn�a�) is smaller
than (du�i�,dn�i�) by a factor ´2. By introducing the
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splitting u 2 ū � U 1 du�a�, n � V 1 dn�a�, p 2 p̄ �
P 1 dp�a� and subtracting out the acoustics, mass con-
servation and the entropy equation lead to the isobaric
approximation of a low Mach number flow, the divergence
of (U,V ) is balanced by the rate of gas expansion due to
heat release qw,

d�U 2 V ? =a��dj 1 ū= ? V � qdw . (1)

This equation is valid up to order ´2da and �da�2. P
and the nonlinear terms of qw are of a higher order and
have been neglected in (1). Compressional heating is also
negligible so that the flow of the entropy-vorticity wave
(du�i�

0 , dn�i�
0 ) and the temperature fluctuations at the shock

are the only mechanisms perturbing the distribution of heat
release rate. dw�j, t, h� may then be computed in terms
of da�t,h� from the thermal and species balance, inde-
pendently of P and U and without restriction to a specific
chemical kinetics [10]. In the linear approximation and at
a second order approximation, the transverse component
of the nonacoustic part of the flow is given by the vor-
ticity wave, dV � dn�i�. dU is then obtained from an
integration of (1) with respect to j from the shock j � 0
to any point j . 0. Matching dU with du�i� in the burned
gas requires that the sum of the terms in dU that are not
varying with j when the reaction is complete (j ¿ 1)
must vanish. This leads to a compatibility condition yield-
ing an evolution equation for the perturbed front da. The
final result takes the form of an integral equation (2) in-
volving two kernels w̄�j�,

R
1`

0 w̄�j0�dj0 � 1, and Ā�j�,R1`
0 Ā�j0� dj0 � 0, coming from dw. The function w̄�j�

is the heat release rate distribution of the unperturbed wave
and Ā�j� � ´2ūudw̄�j��dūu characterizes its sensitivity
to the propagation velocity ūu [max jĀ�j�j is of order unity,
Ā�j� � b�g 2 1�w̄0

u�j� in the notations of [10] ].
≠2a

≠t2 2 c2=2a 1 N�a� � 22�´
p
q �

≠

≠t
L�a� 1 q

µ
≠2

≠t2

Z 1`

0
Ā�j�a�t 2 j,h�dj 1 =2

Z 1`

0
B̄�j�a�t 2 j,h�dj

∂
,

(2)
N � 0 in the linear approximation, c2 � 1 1 3�g 2 1��2,
and B̄�j� � w̄�j� 1 ≠�jw̄��≠j. Details are presented
elsewhere [8]. The linear modes of shock waves [9] are
recovered when q � 0. The instability of galloping
detonations [11] is recovered in the planar case when
Ā fi 0, while the instability to transverse disturbances
may well occur when Ā � 0, B̄ fi 0. The transit time of
the acoustic waves in both directions being shorter than
t̄N by a factor ´2, the evolution time scale is governed by
the vorticity wave, t̄N . The delay in the integral terms
is introduced by the propagation of the entropy-vorticity
wave. These integral terms of amplitude q are quasi-
isobaric volume sources produced by the fluctuations of
heat release rate. A resonance with the oscillatory modes
of the leading shock, v̂ � 2pāN�l̂ [9], leads to an
oscillatory instability of the shock-reaction complex with
a frequency v̂ � 1�t̄N and a range of most unstable wave-
lengths l̂ � d̄�´, as it was anticipated in the scaling of
h. The growth rate s of this isobaric instability is smaller
than v̂ by a factor q and is still positive for disturbances
with small wavelengths l̂ # d̄, s decreasing to zero with
l̂. Compressibility effects are stabilizing. The acoustic
waves propagating in the burned gases produce a negative
feedback through a velocity coupling du�a��j � 0� taken
into account by the boundary condition of dU solution of
(1). As indicated by the presence of the Mach number ´,
the first term in the right-hand-side of (2) (of amplitude
´
p
q) describes the stabilizing mechanism of sound waves.

The linear operator L�?� is defined in the Fourier space,
a�t, h� �

P
ã�t, k� exp�ik ? h�, as L̃�ã� � l�k�ã

where l�k� is a fairly complicated function of k satisfying
Re�l�k�� . 0 and limk!` l�k� � k, k � jkj [8]. A
Landau-Hopf (Poincaré-Andronov) bifurcation occurs
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by increasing
p
q�´. In unstable situations, the acoustic

effects may be neglected except at small wavelengths
where the integral terms in (2) vanish, and L�a� is reduced
to a damping rate proportional to k, L̃�ã� � kã. An
example of Re���s�k���� obtained from (2) in an unstable
case is plotted in Fig. 1.

The nonlinear study proceeds in a similar way but re-
quires one to investigate the pressure term P�t, j, h� and
to solve the Euler equations. Anticipating that the nonlin-
ear equation takes the same form as (2) with a quadratic
term N�a� added and recalling q � 0�´2�, the final ampli-
tude of the wrinkles is found to be of order ´2. At a second
order approximation ´4, the Reynolds stresses of the vor-
ticity wave, �du

�i�
0 ≠�≠j 1 dn

�i�
0 ? =� �du

�i�
0 , dn

�i�
0 �, have to

be retained in the Euler equations, as well as dn
�i�
0 ? =da

in (1). Nonlinear contributions involving acoustics or qw
introduce higher order terms. A Poisson equation for
P�t, j, h� is obtained in the burned gas j ¿ 1,

�1�´2�≠2P�≠j2 1 =2P � �=2 2 ≠2�≠j2�g�t 2 j, h� ,
(3)
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FIG. 1. Detonation with Arrhenius kinetics and an activation
energy E�RT̄N � 6, ´ � 0.1, g � 1.2, q � 0.25, 2p�L � 0.5.
Top: Linear growth rate versus n, k � 2pn�L. Bottom: 2D
solutions of (2) and (4) at three different times. The pattern left
by the cusps for one period of a pulsating cell has the same
diamond shape as in Fig. 2.
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with 2g�t, h� � �≠a�≠t�2 2 j=aj2. In two-dimensional
geometry and for simple waves traveling on the shock
fronts, one has at the leading order ≠a�≠t � 6≠a�≠h
and the nonlinear term of pressure source vanishes in the
burned gases, g � 0. The pressure field is then obtained
for any j from the Euler equations by using the expres-
sion of U resulting from an integration with respect to j

of (1). At the leading order, the solution of P written
in Fourier space is P̃�t, j, k� � ´Ẽ�t, k� exp�2´kj��k
where E�t, h� � N �a� 2 ≠��≠a�≠h�2��≠t and where a
boundedness condition at j ! 1` has been used. The
final solution is obtained by requiring that the boundary
conditions at the shock (j � 0) are fulfilled and by notic-
ing that they do not contain terms of order ´j=aj2. This
leads to the compatibility condition E � 0 yielding

N�a� � ≠��≠a�≠h�2��≠t . (4)

The same nonlinear term appears also in [12] for a wave
approximated by a discontinuity unaffected by its internal
structure and in conditions of sound radiation. But
this approximation cannot describe gaseous detonations
whose inner structure is unstable. Formation of cusps is
easily understood from (2) and (4). When the integral
terms in (2) are disregarded, the evolution on a slow
time scale, t � ´2t, is given by an equation of the form
´2≠a�≠t 1 �≠a�≠h�2�2 � 2´

p
q L�a� with the same

nonlinear mechanism of wave breaking as in the Burgers
equation but with a different linear damping term to
overcome the wave breaking at small wavelengths: the
diffusion term 2k2ã is replaced by 2kã. This leads
to formation of cusps (abrupt change of ≠a�≠h) that
are stiffer than in the solution of the Burgers equation.
According to the wave equation (2), these cusps travel
in transverse directions at nearly the sound speed in the
burned gas. They are fed by a nonlinear transfer N �a�
from large wavelengths where the linear instability due to
the integral terms in (2) develops.

Numerical solutions of (2) and (4) in two-dimensional
geometry with boundary conditions periodic in h exhibit
periodic solutions in t. The period of the pulsating cells is
of order unity and the pattern left behind the cusps looks
similar to those observed in experiments [2]; see Figs. 1
and 2. In small boxes the relaxation time is of order unity
(same order as the period of oscillation). In large boxes
with many linearly unstable modes, the final periodic so-
lution is obtained after a much longer transient time and
presents a cell size between the most amplified wavelength
and the largest marginal wavelength; see Fig. 1. The case
presented corresponds to a box width L � 4p with 13
unstable modes; the selected wavelength corresponds to
a wave number n � 6, kn � 2pn�L, while the band of
linearly unstable modes ranges from n � 4 to n � 16. A
nonlinear selection mechanism is identified when starting
the computation using a sinusoidal perturbation of small
amplitude with 10 wavelengths plus a much smaller level
of noise. After a few periods of oscillations, well ordered
044502-3
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FIG. 2. Two-dimensional fronts (solid lines) propagating from
bottom to top with the kinetics of Fig. 1, E�RT̄N � 6, and with
´ � 0.25, g � 1.2, q � 0.2, 2p�L � 3; the gray lines are the
trajectories of the cusps. Left: Solution of (2) and (4) for one
period. Right: ā 1 a0 for one period; ā is shown at the bottom.

and developed pulsating cells with a small size, n � 10,
are first observed followed by a chaotic regime in which
the number of cells decreases down to the final stable state
of 6 pulsating cells. The nondimensional relaxation time of
this process is t � 100; see Fig. 1. This cell number re-
duction is also observed in direct numerical simulations [5].

However, the solutions in Fig. 1 with pulsating cells
and crossover of cusps, are not simple waves as assumed
in the derivation of (4). We next show that the size of the
cells is accurately predicted by (4) but both the shape of
the detonation front and the flow require a more elaborate
treatment. Because of second order effects, neither the
fluctuations of the flow nor the fluctuations of the wrinkled
front average to zero but rather a net steady flow and a
net steady wrinkled front are generated. These steady
solutions must be taken into account at the leading order
of the nonlinear analysis. Mean streaming flows have been
known for many years in acoustics (acoustic streaming)
[13]. The situation is somehow different here; the mean
streaming flow is produced by the oscillatory rotational
flows resulting from the unstable front. The nonlinear
source term g�t, h� is now nonzero and reaches its maxi-
mum during the crossover of two cusps, yielding pressure
bursts of order ´2jdaj2 that propagate in the burned gas
with the rotational part of the flow. For a periodic solu-
tion, the time average ḡ is also different from zero, g �
ḡ�h� 1 g0�t,h�, ḡ�h� fi 0, ḡ0 � 0, generating a mean
flow, ���Ū�j, h�, V̄ �j, h�, P̄�j,h����, U � Ū 1 U 0, V �

V̄ 1 V 0, P � P̄ 1 P0, ˜̄P�j,k� � ˜̄g�k� �1 2 exp�2´kj��.
The shock conditions Ū�j � 0, h� and V̄�j � 0, h� then
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require the existence of a nonzero mean of the wrinkled
front, a�t,h� � at 1 ā�h� 1 a0�t, h� with ˜̄a�k� �
2 ˜̄g�k��´k and ˜̄g�k � 0� � 0; see Fig. 2. The unsteady
pressure term P̃0�t, j, k� is computed in a similar way
as before, yielding P̃0�t, j, k� � ´Ẽ0�t, k� exp�2´kj��k,
and the shock condition implies that E0�t, h� � 0. This
compatibility condition leads to the same equation as (2)

for a0 but now with N�a0� � �1�2�≠� �a0
2
t 1 j=a0j2��≠t 2

=2
Rt g0�t0�dt0 where the time average of the integral

is zero by definition. This term involves the Gaussian
curvature of the front. A more convenient form is ob-
tained by using the leading order of the wave equation,
≠2a0�≠t2 2 =2a0 � 0, to give

N�a0� � ≠� �a0
2
t 1 j=a0j2��≠t 2 =2

Z t

� �a0
2
t 0 2 �a0

2
t 0� dt0,

with a zero time average of the integral. At the sec-
ond order approximation, the quantity z � a0 1Rt��≠a0�≠t0�2 2 �≠a0�≠t0�2� dt0 is a solution of (2) and
(4), N�z� � ≠j=zj2�≠t, and the time dependent wrinkles
of the front a0 are obtained at the leading order from
z�t, h� by using ≠a0�≠t � ≠z�≠t 2 ��≠z�≠t�2 2

�≠z�≠t�2�, valid for j≠z�≠tj ø 1�4. Typical solutions
ā�h� and ā�h� 1 a0�t, h� are shown in Fig. 2 by
comparison with z�t, h�.
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