
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 7 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Combustion Science and Technology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713456315

A Numerical Study of Premixed Flames Darrieus-Landau Instability
B. Deneta; P. Haldenwanga

a Laboratoire de Recherche en Combustion, Université de Provence-Centre de Saint Jérome (S 252),
Marseille, Cedex 20, France

To cite this Article Denet, B. and Haldenwang, P.(1995) 'A Numerical Study of Premixed Flames Darrieus-Landau
Instability', Combustion Science and Technology, 104: 1, 143 — 167
To link to this Article: DOI: 10.1080/00102209508907714
URL: http://dx.doi.org/10.1080/00102209508907714

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713456315
http://dx.doi.org/10.1080/00102209508907714
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Combust. Sci. and Tech., 1995, Vol. 104, pp. 143-167 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1995 OPA (Overseas Publishers Association) 
Amsterdam B.V. Published under license by 
Gordon and Breach Science Publishers SA 

Printed in Malaysia 

A Numerical Study of Premixed Flames 
Darrieus-Landau Instability 

B. BENET and P. HALDENWANG Labofiatoire de Recherche en Combustion, 
Universite de Provence-Clentre de Saint' Jerbme (S 252), 
13397 Marseille Cedex 20, France 

(Received January 24,1994; in jnal  form October 26,1994) 

ABSTRACT-The complete equations of premixed flames are solved numerically, in the isobaric approxi- 
mation and with a simplified chemical kinetics. A momentum-pressure formulation is proposed for solving 
non-constant density flows. The growth rates of the IDarrieus-Landau instability are measured and 
compared to the linear theory. Large amplitude curved iflames are obtained, as well as flames submitted to 
a shear flow. 

Key Words: Darrieus-Landau instability, variable density flows, numerical combustion, flame dynamics, 
curved flames 

1 INTRODUCTION 

The instability of plane premixed flames pirspagating in tubes, leading to wrinkled 
flarnes, has been the subject of various works; for reviews see Sivashinsky (1983), 
Willliams (1985) and Clavin (1985). Two major explanations of this phenomenon exist. 
The first one is the thermal-diffusive instability: the main cause of the instability is the 
diffusion of limiting species. The second source of wrinkling is the Darrieus-Landau 
instability: in this case, the cause of instability is the density jump at the flame front, 
leading to a deflection of streamlines. In a jprevious paper (Denet and Haldenwang, 
1992), we focused our interest on the thermal diffusive instability, which is a conse- 
quence of diffusive effects through the thickness of the flame. This instability was 
exhibited in a simplified model neglecting density changes in the flow (see Barenblatt 
et al., 1962). 

In this paper, on the contrary, we are interested in the Darrieus-Landau instability, 
which requires to solve the complete set of Navier Stokes equations. In the first 
hist orical studies of this hydrodynamic instability, only the destabilizing influence of 
density changes across the flame was taken into account (see Darrieus, 1938; Landau, 
1944). Later studies showed the influence of dliEusion and gravity as stabilizing effects 
on this instability (see Pelce and Clavin, 1982). On the contrary, the effect of viscosity 
seemed to be quite negligible, at least in the linear domain. Corroborating results were 
obtained by Matalon and Matkowsky (1982;) and by Frankel and Sivashinsky (1983). 
All these papers are theoretical works, using asymptotic and multi-scale methods to 
reduce the study of reaction and flame zones 10 jump conditions. Experimental results 
were reported in Quinard et al. (1984). The work of Jackson and Kapila (1984) used 
a mixed numerical-theoretical method: jurnp conditions were prescribed on the 
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144 B. DENET AND P. HALDENWANG 

reaction zone, the linearized equations outside this zone being solved numerically. In 
this last paper, only the stability limits'are given, and not values of growth rates. 

Here, we use a complete numerical approach of this type of problems. In this study, 
we are essentially interested in computations of growth rates, and in obtaining curved 
solutions, produced by the Darrieus-Landau instability in the nonlinear regime. The 
problem of obtaining the stability limits will not be addressed here: actually it would 
result in a huge number ofgrowth rates to  bemeasured.The way that we havechosen to 
effectively test the theoretical predictions concerning the Darrieus-Landau instability 
is to numerically measure growth rates, for different physical parameters. The theoreti- 
cal predictions are based on two different limits. The large activation energy limit used 
by activation energy asymptotics makes possible to  isolate a small reaction zone inside 
the flame. Then the low wavenumber limit permits one to consider the whole flame as 
a discontinuity in the hydrodynamical problem. I t  is natural to  expect that when both 
limits are satisfied, the theoretical growth rates will get very close to  the values we will 
numerically measure, and this is in fact what happens, thus validating the numerical 
method. However, we will vary the physical' parameters of the problem in realistic 
ranges, showing that in some cases the theoretical results deteriorate in an important 
way, mainly because of the low wavenumber assumption. Of course, these discrepan- 
cies will not invalidate the theoretical results, but just show some light on the range of 
applicability of the limits used in the asymptotics. In any case, there is a qualitative 
agreement between the theory and our results. 

T o  our knowledge, the first curved flame, resulting from the Darrieus-Landau 
instability, was obtained by Spalding and Wu (1986), using a numerical method 
considering the flame as a discontinuity. The work presented here is an  extension of 
a preliminary work (Denet, 1988), in which all the equations of the physical problem 
were solved, even in the reaction zone, but using simplifying assumptions, particularly 
on the viscosity term. A more complicated approach to  this. type of problems can be 
found in Frohlich and Peyret (1991). 

The set of hydrodynamical equations we have to  solve here, is derived in the low 
Mach number limit (see for instance Majda and Sethian, 1985). In section 2, we recall 
these equations. In section 3, the linear theory results are presented, with the notations 
or Peke and Clavin (1982). Section 4 is concerned with the numerical scheme. Solving 
the isobaric, nonconstant density equations is a relatively difficult task: a classical 
problem arises from the estimate of the pressure field. In our present approach, because 
of the use of Fourier pseudo-spectral methods in the direction perpendicular to the 
flame velocity, we are faced with an  additional specificdifficulty. Section 5 presentsa set 
of numerical results concerning the growth rates of the Darrieus-Landau instability. 
Comparison with theoretical predictions is included in this section. Finally, in section 
6 we show typical steady nonlinear solutions. 

2 BASIC EQUATIONS 

Because the present simulation will lead to a large amount ofcomputation, we choose the 
simplest chemistry: a single one-step chemical reaction is assumed. Non-dimensional 
quantities are obtained using a classical approach: the length scale is the flame 
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DARRIEUS-LANDAU INSTABILITY 145 

thickness obtained from asymptotics, likewise the velocity unit is the asymptotic flame 
speed. The use of normalized quantities allows us (see e.g. Clavin, 1985) to write the 
model, in a frame moving with the flame front, as follows: 

with 

and 

where T and C correspond to the reduced temperature of the gas mixture and 
concentration of a reactant (the other reactant being in excess). The boundary 
conditions on T and C are 

T (x=  -co,y)=O, T(x= + c o , y ) = l  

C ( x = - c o , y ) = l ,  C(x=+co ,y )=O 

all quantities being periodic in the y direction (the direction transverse to the flame 
velocity). 

Le = D,,/D,,,, = ( E / R  T2)(Tb - T,) and y = (T, - T,)/ Tb are respectively the 
Lewis number of the reactant (ratio of thermal to molecular diffusivity), the reduced 
activation energy (or Zeldovich number) and the heat release parameter (T, and T, 
being respectively the temperature of burnt and unburnt gases, R is the constant of 
perfect gases). p, o, P are the density, velocity and pressure; G is an external specific force 
per unit volume (gravity for instance); p and 1 are respectively shear and bulk 
viscosities. Let us define U, the reduced flame speed which is an unknown of the 
problem. U is supposed to be parallel to the x-direction. G will also be parallel to this 
direction, positive and negative G corresponding respectively to downward and 
upward propagating flame (G being the inverse of the Froude number). 

Among the various Equations II.la and II.lb are the reaction-diffusion equations, 
II.3a and II.3b are the hydrodynamical equations; II.3a is the continuity equation, 
II.3b being the momentum Equations. 11.4 is the perfect gas state equation, in the 
isobaric approximation. We will be interested in flames at very low Mach numbers, in 
an .open tube, where this approximation is indeed valid. Reaction-diffusion and 
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146 6. DENET AND P. HALDENWANG 

hydrodynamicequations are coupled through the density. As gas expansion across the 
flame front is important (we will often take as a typical value y = 0.8, case where the 
burnt gas density is five times lower than the unburnt gas density) hydrodynamiceffects 
have a large influence on the flame. 

3 THEORETICAL RESULTS 

Gas expansion generates deflection of streamlines across the curved flame front as 
a consequence of conservation of transverse velocity and of normal mass flux. 
Perturbation of the flow is thus produced by this deflection,on a scaleof theorder of the 
wavelength. 

The linearized Darrieus-Landau analysis did consider only this destabilizing effect: 
the result was that the front was unstable at all wavelengths. Stabilizing effects, such as 
diffusion and gravity for downward propagating flames, were overlooked. A complete 
analytical theory, valid for low k, was obtained by Peke and Clavin (1982). In the 
sequel, we will explain the main points of this paper and give the theoretical formulas 
for growth rates of the Darrieus-Landau instability. 

In this paper, the authors remark that the flame thickness d  is generally smaller than 
the wavelength 1  of the perturbation. They introduce a small parameter E = d l 1  << 1 and 
begin to develop the solution in powers of E around the stationary plane flame. 
A multi-scale method is used to describe the spatial structure of the flow. The problem 
is thus split in two parts: 

-a local study of the curved flame structure, submitted to an inhomogeneous 
upstream flow, considered as given in this first step (see Clavin and Williams, 1982). 
The study combines a multi-scale method ( E  <c I) and an asymptotic method (b>> I). 

-a nonlocal study of hydrodynamics, considering the flame as a discontinuity. The 
boundary conditions on the flame surface Cjump conditions on pressure and 
velocity) are known as  results of the previous local study. 

A complete linearized analysis is thus obtained. Let us denote the growth rate and k the 
wavelength of the perturbation. An important parameter of the problem is the 
Markstein length L, defined in units of flame thickness, by 

The final result is that there is an  instability threshold, above which exists a band of 
unstable wave vectors. centered on 

The dispersion relation reads 
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DARRIEUS-LANDAU INSTABILITY 

with 

where 

Thestability limit is given by C  = d C / d k  = 0, the plane front being unstable for C >  0, 
which correspond to k* < 2k,.  

We will recall the different hypotheses leading to this dispersion relation; first of all, 
we need k c  1 (the flame thickness must be small compared to the wavelength in order 
to use multi-scale analysis). Also, G must be of the order E, which means that for 
non-vanishing G, k  must not be too small compared to G. For vanishing G, the 
dispersion relation is actually valid only to terms of order k2 ,  the first term of this 
development giving exactly the Darrieus-Landau dispersion relation, i.e. 

The second term of this development can also be calculated in a straightforward way 
(it will be used in a forthcoming section): 

There is an additional hypothesis worth mentioning: we need B>> 1 in order to use 
jump conditions across the reaction zone (and for the dispersion relation to be valid). 
Although, in the case of the thermal-diffusive instability, it was difficult to satisfy this 
condition for typical values of B (see Denet and Haldenwang, 1992), we will see in the 
sequel that this restriction is less important in the case of the Darrieus-Landau 
instability. 

Another important point about the Peke-Clavin dispersion relation is that, a t  
leading orders in k, there is no dependency of the growth rates on the viscosities. We 
will see later that our numerical results agree with this prediction. 
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148 B. DENETAND P. HALDENWANG 

4 T H E  NUMERICAL METHOD 

Our program makes use of Fourier series, in the y direction, and of finite differences, in 
the x direction. In the x direction, the mesh can be uniform or self-adaptive. There is 
also the possibility of using change of variables (always in the x direction) to locate 
more points in the reaction zone. 

From the point of view of temporal discretization, the method is first order in time, 
the production term being taken explicitly, which limits the time step to low values, 
because of stability requirements. Convection terms are also explicit, but all diffusion 
terms are taken implicitly. When measuring growth rates of the diffusive-thermal 
instability (Denet and Haldenwang, 1992), we have not seen much differences between 
first and second order in time: the difference was of the order of 5% in the worst cases. 
The second order scheme being approximately twice as expensive as the first order one 
(the time step being further reduced), we have decided here to content ourselves with 
a first order scheme because, of course, computations are more expensive for the 
complete model, including the hydrodynamic equations, than those for only two 
reaction-diffusion equations. 

We have now to give some explanations about the way we solve the Navier-Stokes 
equations, while satisfying the continuity equation. Recall that we adopt the isobaric 
approximation, valid for low Mach number flows. In this approximation, the pressure 
is no more considered as  a thermodynamic quantity, and actually does not occur in the 
state equation, but as a dynamical quantity, chosen to satisfy the continuity equation. 
When density is constant (incompressible hydrodynamics)a common strategy to solve 
such problems is to s o h e  a Poisson equation for pressure (see Roache, 1972). Our  
method is an  extension of this technique for flows with variable density. Contrary to 
a previous version (Denet, 1988), our code is time-dependent and takes into account the 
viscosity term without approximation. 

The second viscosity term, which reads 

can be discarded because it can be incorporated in the pressure gradient (in the isobaric 
approximation) to define a new dynamical pressure. We have verified that discarding 
this term has no influence on thecomputation. Linan (1990) suggested that it might be 
possible to reduce the pressure jump across the flame by considering, instead of the 
second viscosity term 

whichdefines as above a new dynamical pressure. Although it appears that the pressure 
jump is reduced, we have not seen any difference on  the velocity field due to this 
modification. In our calculations we simply discard the second viscosity term. . - 

Let us denote by A t  the value of the time step and by n, a superscript corresponding 
toquantities taken a t  the time n A t .  We begin by solving the thermal-diffusiveequations - .  

on 'T and C divided by p. There is a numerical difficulty because we have "ariable 
diffusivities in space, p;obortional to l/p. T o  take impli&y these variable diffusion 
coefficients with a first order in time scheme while being unconditionally stable on these 
terms, we have to take implicitly at least half bf the maximum of the diffusive term (see 
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DARRIEUS-LANDAU INSTABILITY 

Gottlieb et Orszag, 1977) leading to the following scheme: 

with 

and 

where d = a  max ( Ilp") with a ~ [ 0 . 5 ;  11 for a first order time discretization. The maxi- 
mum is taken in the whole computational domain. 

When T n + '  has been obtained from the previous equations, the value of pn+  is 
deduced using the state equation, and the hydrodynamical equations are solved: 

where P"" must be determined in order to satisfy the continuity equation at time 
n + 1. But before that, we will show that thediscretization is stable on thediffusive term. 
This is not a priori obvious, because we have used the pv variable (it will permit us to 
solve in an easier way the continuity equation) although the diffusive term is expressed 
in the o variable. We have to express the Laplacian of velocity in the pv variable, giving 
the following formula: 

In this formula, only the first term of the right hand sidecould limit seriously the time 
step if it was taken explicitly, because of the second derivative in po. This term is 
actually a diffusive term with variablecoefficient and must be taken implicitly. We have 
seen previously that in order to take implicitly this type of term, at least half of the 
maximum diffusion term must be taken implicitly, which gives pdA(pv), where d has 
been previously defined. The rest of pA(v), i.e. (pA(v)-pdA(pv)), can be taken 
explicitly without any serious stability problem. 

Now we have only to determine Pn+ ' such that the velocity at time n + 1 satisfies the 
continuity equation . It is obtained in taking the divergence of the previous time 
discretized Navier Stokes equation; using furthermore that po satisfies the discretized 
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continuity equation: 

B. DENET AND P. HALDENWANG 

we obtain the following Poisson equation for pressure: 

with 

The same algorithm works also when a change of variable is used, thus modifying the 
spatial differential operators (see next section). 

Let us now talk about the boundary conditions. We make our simulations in 
a bounded domain [- X, ,  X , ]*  [- Yo, Yo]. All quantities are periodic in the y direc- 
tion. In the x  direction, the following boundary condition are used in the numerical 
simulations 

In x =  X,,  the boundary conditions on the velocities are compatible with the 
continuity equation. We have defined previously U, the flame velocity. 

Finally, how d o  we succeed in keeping the flame in the computational domain? We 
define, at each time-step, the front position as  the mean position of some temperature 
line. This flame position changes from one time-step to the next, thus defining a drift 
velocity Su. In order to keep the flame at the same position in the mean, we simply add 
at each time-step thedrift velocity to the flame velocity U (thus modifying the boundary 
condition) and to the longitudinal velocity field v,. We neglect the acceleration terms, 
due to this procedure, which are very small. 

5 COMPUTATION O F  GROWTH RATES O F  T H E  DARRIEUS-LANDAU 
INSTABILITY 

5.1 Numerical aspects 

The techniques described in this section were used in our study of diffusive-thermal 
instability (Denet and Haldenwang, 1992). They can be adapted without any difficulty 
to the Darrieus-Landau instability. 

For computing growth rates, we take as  initial condition a sinusoidal flame of low 
a m p l i t ~ d e ( l O - ~  in units of flame thickness). After some transient, the amplitude begins 
to grow exponentially; we actually measure the growth rate of some norm (in the 
x  direction) of the Fourier components of T (in t h e y  direction) corresponding to the 
sine we have taken as initial condition. The results d o  not depend on the norm selected. 
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DARRIEUS-LANDAU INSTABILITY 151 

We take advantage of the fact that the sinusoidal flame is nearly plane to use a change 
of variables, which increases the precision in the reaction zone. It transforms the 
physical coordinate x in a coordinate x' on the uniform mesh ranging from-n to n 
(y being unchanged) by the formula 

where b = (ai/a)' and a, a,, c are parameters controlling the position of the points in 
physical space. The meaning of these parameters is given in Denet and Haldenwang 
(1992). To sum up, for x small, the change of variable is controlled by a: the smaller the 
a, the more adapted the mesh near 0; for x great, the change of variable is controlled by 
ai, the greater ai, the more distant the points from x = 0. The change from one behavior 
to the other occurs around x = c. 

In our numerical measurement of growth rates, we take, e.g. forb = 10,149 points in 
the x direction, a = 5, ai = 20, c = 8.5. When fi increases, we reduce a in order to 
adequately resolve the reaction zone, which is smaller when b is great, while keeping the 
same value for the other parameters a, and c, and adding a few points. 

5.2 Results 

The theoretical dispersion relation depends on the parameters G, y, and of /I and Le 
through 1 = b(Le - 1). We will vary these parameters, and also the shear viscosity p. 

Variation with Zeldovich number. In Denet and Haldenwang (1992), it was found that 
the numerical dispersion relation in the case of the diffusive-thermal instability 
depended a lot on 8, at constant I .  The first question we ask is whether the situation is 
similar in the Darrieus-Landau case. We will note a,,,, the growth rates values 
obtained numerically, and u,,, the Pelck-Clavin theoretical values, (given in a previous 
section). 

In Table I, we vary for constant 1(1= 0) with the other parameters fixed at y = 0.8, 
G = 0 and p = 0.7 and fork = 0.20944 (corresponding to a wavelength of 30 in units of 
flame thickness). It can be seen that the observed growth rates are practically constant 
for all values of the Zeldovich number, the differences being probably smaller than the 
typical error we make. 

Table I1 is the same as Table I except that we take now I =  - 1, all the other 
parameters having the same value as before. In this case too, the differences are very 
small between different 8. 

TABLE I 

Numerical growth rates vs. Zeldovich number for k =0.20944 
l=OG=Op=0 .7y=0 .8 (a , ,=4 .3~  10-l) 
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B. DENET AND P. HALDENWANG 

TABLE l l  

Numerical growth rates vs. Zeldovich number for k = 0.20944 
I =  - l G=Op=0.7 y =0.8 (a,,= 1 . 1 1  x lo-')  

We conclude that, contrary to the diffusive thermal instability, here the effect of 
Zeldovich number is very small. As a consequence, we will not vary this parameter any 
further. Note that we disagree on this point with Frohlich and Peyret (1991), who 
conclude that the variation with fi is important. We actually agree with their values for 
relatively low values of p (up to p =  lo), the disagreement being limited to higher 
Zeldovich numbers. Explanation for this disagreement seems to be that they use the 
same mesh for all values of 8, instead of adding precision in the reaction zone, when 
fi increases. 

The differences in sensitivity in the Zeldovich number between Darrieus-Landau and 
thermal-diffusive instabilities can be understood in the following way. For the thermal- 
diffusive case, the leading order in k, and all the following terms of the dispersion 
relation contain 8, i.e. depend on the flame structure. O n  the contrary, in the 
Darrieus-Landau case, we have seen that the leading order ink  depends only on y: thus 
the flame structure has absolutely no effect on  this leading term ink. The variation with 
8. at constant 1, of the dispersion relation only occurs as a correction to the next terms of 
the k expansion. Furthermore, contrary to the diffusive thermal case, the k2 terms d o  
not depend only of the Markstein length (i.e. of the flame structure), but also of gas 
expansion. So in the case of the hydrodynamic instability, only the k2 term (the second 
term in this case) is partly dependent on j ;  on the contrary, in the case of the 
thermal-diffusive instability the first term (the k2 term in this case) depends in an  
important way on p. Thus the 8 dependence seems to have no important effect in the 
interesting range of wavenumbers. Note, however, that the numerical measurements 
we have made concerning the fi dependence have been performed for Lewis numbers 
close to one, which is rather realistic, and wave vectors close t o  the maximum growth 
rate. It could be that for lower Lewis numbers and higher wave vectors, the fi depend- 
ence is more important. However, the quantitativeagreement between asymptotics and 
numerics for values of fi not too high shows that the range of applicability of activation 
energy asymptotics is very large in this hydrodynamic problem. 

In the sequel, we will keep the Zeldovich number constant and will always take 
f i =  10. 

Variation with shear viscosity. There is no variation of the theoretical dispersion 
relation with shear viscosity. This dispersion relation being valid up  to terms of order 
k2, it means that the effect of viscosity can be seen only on terms of order k3. 

In Table 111, we compare the numerical values of growth rates for two values of shear 
viscosity, for B = 10, L e  = 1 ,  G = 0, y = 0.8 and k = 0.20944. The difference, although 
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DARRIEUS-LANDAU INSTABILITY 

TABLE Ill 

Numerical growth rates vs. shear viscosity for k = 0.20944 f l =  10 
L e  = I C = 0 y = 0.8 (a,, =4.3 x lo-') 

not negligible, is small, in agreement with theory. Asa consequence, we will takep = 0.7 
for all other computations of growth rates. 

Vuriution with Lewis number. We vary now the Lewis number, at constant 8, which is 
the same as varying I = j ( L e  - 1) at constant 8. We take 0 = 10, G = 0, y = 0.8, p = 0.7. 
Recall that the theory must be valid for sufficiently low k. 

In Figure 1, we plot the numerical, the Peke-Clavin and the Darrieus-Landau 
growth rate, versus the wave vector for Le = 1. There is indeed a very good agreement 
between numerics and the Peke-Clavin results for k <0.1; above this value the 
agreement, although not extremely bad, deteriorates. We give in Table IV the coeffi- 
cients of a fit of the numerical and Peke-Clavin curves by polynomials of the fifth order 
in k. T o  fit these two curves, we use in both cases only a few points. The analytical 
coefficients of a development in powers of k of the Peke-Clavin dispersion relation are 

-numerics 
Peke-Clavin 

. . .. . 

FIGURE 1 Growth rates vs. wave vector for P =  I0 L e  = I G = 0 p =0.7 y =0.8:  numerical dispersion 
relation (continuous line), Darrieus-Landau dispersion relation (dotted line), Peke-Clavin dispersion 
relation (dashed line). 
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B. DENETAND P. HALDENWANG 

TABLE lV 

Coefficients of a least-square fit of the Peke-Clavin and numerical dispersion 
relations by a fifth-order polynomial for 0 = 10 Le = 1 G = 0 y = 0.8 p = 0.7 
s = u, f u, k + u2 k2 + oJkJ + a,k4 + u ,k5  (the theoretical values are a, = 0 

o ,  = 1.17a,= -4.32) 

Numerics Peke-Clavin 

also given. Comparison of these analytical coefficients with the results of the fit or the 
theoretical curve illustrates the typical error in this fit. The coefficients are approxi- 
mately the same UP to the order two. and the Peke-Clavin dispersion relation is 
precisely valid up to terms of order k2, so that the agreement is excellent, specially with 
a very few number of points. This agreement clearly validates the numerical scheme, we 
have-used, and sho& that the difference between-theory and numerics is thus caused 
essentially by terms of order k 3 .  

Figure 2 is the same as Figure 1,except that Le = 0.75 (1 = - 2.5). Diffusive effects are 
less stabilizing in this case, and the numerical curve is closer to the Darrieus-Landau 

FIGURE 2 Growth rates vs. wave vector for 0 = 10 Le = 0.75 C = 0 p = 0.7 y = 0.8: numerical dispersion 
relation (continuous line). Darrieus-Landau dispersion relation (dotted line), Peld-Clavin dispersion 
relation (dashed line). 
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curve. As a consequence, there is good agreement on a wider range than before (up to 
k = 0.3). But the Pelck-Clavin dispersion relation is not much better in this case than the 
Darrieus-Landau one, and the differences between theory and numerics can become 
extremely great for higher unstable wave vectors. Of course, the unstable, interesting 
range being wider, there are more chances for an unstable wave vector to get out of the 
domain of validity of the Pelce-Clavin relation. Thus it is perfectly natural to observe 
that discrepancies increase when the Lewis number is reduced; this tendency could be 
predicted before any actual measurement. The multi-scale method based on the low 
k approximation just happens not to give good quantitative results in the unstable 
range of wavenumbers for too low Lewis numbers; it does not mean of course that this 
multi-scale method is not valid; we have seen previously that it works quite well in the 
Le = 1 case. As before, we present in Table V a fit of these curves by a fifth-order 
polynomial: the agreement is worse than before, especially concerning the terms of 
order k2.  Note that the number of points is still small, and it seemsdifficult to get a good 
fit of the second order terms, which are small in this case. 

In Figure 3, we take Le = 1.25 ( 1  = 2.5); good agreement between theory and 
numerics is limited to k < 0.075, but, the unstable range being smaller, theoretical and 
numerical curves are rather close. In Table VI, we give the comparison betwen fits of 
these two curves: the k2  terms are nearer in relative value than in the Le = 0.75 case, but 
the agreement on these terms is not very good. 

TABLE V 

Coefficients of a least-square fit of the Pel&-Clavin and numerical dispersion 
relations by a fifth-order polynomial for f l =  10 Le = 0.75 G = 0 y = 0.8 p = 0.7 
s = a, + a ,  k  + a2k1 + a 3 k 3  +a,$' + a s k s  (the theoretical values are a,= 0 

a,  = 1.17a2= -0.36) 

Numerics Pel&-Clavin 

TABLE V1 

Coeffinents of s least-square fit of the Pel&-Clav~n and numcncal dlsper~lon 
rclat~ons bv a fifth-order oolvnom~al lor B = 10 Le = 1 25 G = 0 v = 0 R u = 0 7 . ,  
s = a, + a,'k + a2k2 + a,k3 + a,k4 + a,k'(the theoretical values are a, = 0 

a ,  = 1.17 a, = -8.28) 

Numerics Pel&-Clavin 
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B. DENETAND P. HALDENWANG 

FIGURE 3 Growth rates vs. wave vector lor p = 10 Le = 1.25 C = Op = 0.7 y = 0.8 : numerical dispersion 
relation (continuous line), Darrieus-Landau dispersion relation (dotted line). Peke-Clavin dispersion 
reletion (dashed line). 

Variarion rvirh gravity. We will take /1= 10, Le = 1, y = 0.8, p = 0.7 and vary G, the 
inverse of the Froude number. The case G = 0 has been examined in Figure I. G > 0 
corresponds to downward propagating flames and G < 0 to upward propagating flames. 

In Figure 4, we take G = 0.3. This case is chosen in order to be close to the theoretical 
stability limit. Secondary instabilities of downward propagating flames, like this case, 
are studied in Denet (1993), but here we are only interested in linear results. We plot the 
numerical and Peke-Clavin dispersion relations. In this case, there is still a good 
agreement for low k ( < 0.1), but the differences are extremely great, both on the value of 
the maximum of the curve, and on the width of the unstable range of wave vectors. 
These differences just show that the terms neglected in the expansion in powers of 
k slightly shift the threshold of Darrieus-Landau instability, resulting in a high relative 
error (compared to numerics) for values of G close to this threshold. However, the 
differences in absolute value are of the same order as those found for G = 0. 

In Figure 5, we take G = - 0.3. As before, the two curves, theoretical and numerical, 
are very close for sufficiently low k.  

In these two cases of non-vanishing G, the additional theoretical hypothesis 
G = O(E) = O(k) does not seem to diminish the agreement for low k (but we have not 
used very low values of k) .  

Variation with gas expansion. In the previous paragraph, we examined the case 
G =0.3  (Fig. 4), showing that the theoretical predictions are not very good in the 
vicinity of the stability limit. This result seems to contradict the conclusion of 
Jackson and Kapila (1986) (see also Jackson and Kapila, 1984), who concluded to 
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DARRIEUS-LANDAU INSTABILITY 

FIGURE 4 Growth rates vs. wave vector for /l= 10 Le = I G = 0.3 p = 0.7 y = 0.8: numerical dispersion 
relation (continuous line). Peke-Clavin dispersion relation (dashed line). 

FIGURE 5 Growth rates vs. wave vectorforp = 10 Le = 1 G = - 0.3p = 0.7 y = 0.8: numerical dispersion 
relation (continuous line), Peke-Clavin dispersion relation (dashed line). 
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158 B. DENET AND P. HALDENWANG 

a good agreement with theory on the width of the unstable band. These authors were 
using a mixed numerical-theoretical method, as explained in the introduction, and did 
not compute growth rates. It can be noted that the disagreement is more important on 
the growth rate values than on the unstable band width. However, it seems that there is 
some discrepancy remaining between our results and those of Jackson and Kapila. 

The conclusion of theseauthors is based on a figure in which they take y = 0.5 (i.e. the 
temperature grows from 1 to 2 in physical units), a low value compared to our y = 0.8 
(i.e. the temperature grows from 1 to 5 in physical units). The value y = 0.8 is more 
typical of experiments and is often used in numerical simulations (see Peters and 
Warnatz, 1982). 

Frohlich and Peyret (1991) found that for G=O and near the maximum of the 
dispersion relation, the agreement was better for lowery. In Figure 6, we take y = 0.66, 
fi = 10, Le = 1 and G = 0.16 to be, as in Figure 4, close to the stability limit. We 
choose the same scales as in Figure 4; i t  can be seen that the agreement is better in 
Figure 6, both for the position of the maximum and for the width of the unstable band. 
This effect seems to explain the discrepancies between Jacksonand Kapila's and our 
results. Curiously, the agreement is worse for low k in Figure 6 than in Figure 4. 

6 NUMERICAL SIMULATIONS O F  LARGE AMPLITUDE FLAMES 

In this section, we will calculatestationary solutions, with constant parametemp= 10, 
Le = 0.9, y = 0.8. The computations of this section are much more time-consuming 

FIGURE 6 Growth rates vs. wave vector forp = 10 Le = I C = 0 . 1 6 ~  = 0.7 y = 0.66: numericaldispersion 
relation (continuous line). Peke-Clavin dispersion relation (dashed line). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
5
 
7
 
J
a
n
u
a
r
y
 
2
0
1
1
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than simply calculating growth rates, as in section 5, and we will limit ourselves to  a few 
cases. We take as  initial condition a sinusoidal flame. The flame is considered as 
stationary when the residual that we defined by 

is smaller than lo-'. A t  is the time step, n + 1 represents the new time step, n the last 
time step, N ,  and N ,  are the number of points respectively in the x and y directions. 

We have previously mentioned that we could use a self-adaptive mesh in the 
x direction. In fact, we have problems with such techniques, because adapting the mesh 
means losing some information in interpolating the variables, and unfortunately 
curved flames are very sensitive to  noise (see Zeldovich e f  a/ . ,  1980). Variations of the 
flame amplitude are produced by the interpolation, and we need again adapting the 
mesh and interpolating. Similar effects have been observed by Denet and Larrouturou 
(1988). 

T o  overcome theseeffects, we are obliged to  use a uniform mesh, with a high number 
of points in the x direction. We use 120 points in the x direction and 32 modes in the 
y direction. After a stationary solution has been obtained, we can adapt the mesh and 
obtain a stationary solution on the adapted mesh, of the sameamplitude as the solution 
on the uniform mesh, showing that this solution is agood one. But wedid not succeed in 
adapting the mesh in the course of the calculation. 

Curved flame produced by rhe Darrieus-Landau instability. We take a rectangular 
domain: width 20 (in the y direction), length 30 (in the x direction). The gravity 
parameter is G = 0 (pure Darrieus-Landau case) and p = 0.7. 

The temperature lines of the stationary solution are plotted in Figure 7a, the 
streamlines in Figure 7b, and the vorticity lines in Figure 7c. The values of the 

FIGURE 7 Stationary flame for f l =  10 Le = 0.9 G = 0 p = 0.7 y = 0.8: temperature lines (Fig. 7a), stream- 
lines (Fig. 7b), vorticity lines (Fig. 7c), shear amplitude vs. x (Fig. 7d), v, vs. y for .Y = 30 (Fig. 7e). 
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160 0. DENET AND P. HALDENWANG 

FIGURE 7 (Continued.) 

temperaturedrawn are T = 0.1,0.3,0.5,0.7 and 0.9. The same values will also be used in 
the next figures of temperature lines. The solution has only one cell, with a cusp typical 
of hydrodynamic instability pointing towards burnt gases. The deflection of stream- 
lines(due to conservation of normal mass flux and transverse velocity) across the flame 
front is easily seen. Because the flame is unstable with respect to the Darrieus- 
Landau instability, the streamlines converge when going from the fresh gases to the 
cusp. As a consequence of this deflection of streamlines, vorticity, which was very small 
in the fresh gases, is created behind the flame front, i.e. in the burnt gases. This effect is 
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clear in Figure 7c, where lines, corresponding to equidistant values of vorticity, are 
plotted: the variation being essentially located in the burnt gases, and in the flame itself. 

Let us define ampli (x) the amplitude of shear for a fixed value of x as 

where y ,  is the value of y  corresponding to the location of the "cusp" pointing towards 
burnt gases, and y,  corresponds to the location of the "tip" pointing towards fresh 
gases. We have chosen to include the density in this definition, to discard effects due to 
the big variation of the velocity, when crossing the flame front. This definition of 
amplitude of shear will also be used in the next paragraph, concerned with stable flames 
submitted to a shear flow. 

In Figure 7d, this amplitude of shear is plotted vs. x, showing first an increase (to 
reach a maximum approximately at the flame location), and then a violent decrease, the 
amplitude becoming negative at the end of the domain. The increase is caused by the 

' 

convergence of streamlines in the fresh gases. On the contrary, the divergence of 
streamlines, just behind the flame, explains the decrease. 

In Figure 7f, we show the result of all these hydrodynamical effects at the end of the 
d0main:i.e. the longitudinal velocity vs. y  at this the velocity is minimum for 
the value of y corresponding to the cusp. Of course, because of viscosity effects, this shear 
created by the flame will decay far in the burnt gases, but our domain is not very long. 

StableJames submitted to a shearpow. The flame is submitted to a shear flow, i.e. we 
use as boundary conditions for v,. 

In the case of a stable downward propagating flame, this problem has been studied 
theoretically by Searby and Clavin (1986), and experiments are reported in Searby et al. 
(1983). Strictly speaking, the theory is only valid for low amplitude flames. Here, we 
choose to obtain large amplitudes; nevertheless, the theory will be useful to explain 
qualitative aspects of our results. We will use a square domain:width and length are 
equal to 30 (in units of flame thickness). 

In Figure 8, we show the temperature lines and the streamlines in the case of 
a very stable flame a = 0.2, G = 0.75 and p = 0.7. The final solution is a sinusoidal 
flame. Because the flame is stable, the streamlines diverge when going from the 
fresh gases to the cusp, contrary to Figure 7. Unfortunately, a quantitative numerical 
study of this problem would be very expensive. So, we will content ourselves with 
a qualitative description of the flow induced by the flame. The vorticity lines, corre- 
sponding as before to equidistant values, are shown in Figure 8c. Just as in the 
case of the unstable flame reported before (although the maximum and minimum 
values are different), the main variation of vorticity is located in the flame and in the 
burnt gases. 

In Figure 8d, we have the amplitude of shear (defined in the previous paragraph) 
versus x. Here, the shear is not zero in the fresh gases, and, because a = 0.2, we start from 
an amplitude of 0.4. As a consequence of streamlines divergence, this amplitude 
decreases,then becomes negative near the flame. As before, viscosity effects should take 
place far in the burnt gases, reducing slowly the amplitude of shear to zero. 
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FIGURE 8 Stationary flame for 0 = 10 Le = 0.9 G = 0.75 p = 0.7 y = 0.8 a = 0.2: temperature lines 
(Fig. 8a), streamlines (Fig. 8b), vorticity lines (Fig. 8c), shear amplitude vs. x (Fig. 8d), o, vs. y for x = 0 
(Fig. 8e), v, vs. y for x = 30 (Fig. 81). 

This inversion effect is actually predicted by the theory of Searby and Clavin (1986). 
Thiseffect isclearly exhibited in Figures 8e and 8f showing the longitudinal velocity vs. 
y respectively a t  the beginning (x = 0) and the end (x = 30) of the domain. 

In Figure 9, we show the effect of viscosity by taking p = 0.2 instead of p = 0.7 in 
Figure 8, all the other parameters being equal in both cases. It is difficult to see 
differences between Figures 8 and 9 from the point of view of temperature lines: the 
amplitude, as predicted by Searby and Clavin (1986), is independent of viscosity if the 
viscosity does not depend on temperature, which is the case here). 

On thecontraryias shown by thecomparison between Figures 9b and 8b, theflow,at 
least in the flame and in the burnt gases, depends a little on viscosity. Once again, it does 
not contradict the theoretical predictions. Vorticity lines are plotted in Figure9c, 
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(I) 0llim.x 

FIGURE 9 Stationary flame for = 10 Le = 0.9 G = 0.75 p = 0.2 y = 0.8 a = 0.2: temperature lines 
(Fig. 9a), streamlines (Fig. 9b). vorticity lines (Fig. 9c), shear amplitude vs. x (Fig. 9d), v, vs. y for x = 0 
(Fig. 9e), u, vs. y for x = 30 (Fig. 91). 

amplitude of shear on Figure 9d (it does not decrease exactly to  the same value as in 
Fig. 8d). In Figures 9e and 9f, we have the longitudinal velocity vs. y at the beginning 
and the end of the domain. 

7 CONCLUSION 

In this work we were interested in the Darrieus-Landau instability of plane premixed 
flames, a phenomenon of hydrodynamical nature caused by thedensity jump across the 
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166 B. DENET AND P. HALDENWANG 

flame. We have introduced a numerical algorithm based on a momentum pressure 
formulation that was designed to handle the  problem of isobaric hydrodynamics with 
variable density that is characteristic of premixed flames. With this algorithm, it was 
possible to measure numerically the rates of the ~ a r r i e u s - ~ a ~ d a u  instability 
for finite values of the Zeldovich number P (reduced activation energy) and to compare 
them with theoretical predictions valid when: 

(i) the Zeldovich number is large (high activation energy asymptotics), and 
(ii) the wavenumber is small (multi-scale method). 

It was found that the results for the values of growth rates d o  not depend very much 
on the valueof P, a t  constant 1 = p(Le - l), showing that activationenergy asymptotics 
works well in this problem even for values of fi close to 10, i.e. not extremely large, 
unlike a previous study we have made of the thermodiffusive instability (Denet and 
Haldenwang, 1992). O n  the contrary, the second limit of small wavenumber caused 
some discrepancies between theory and numerical measurements when the unstable 
band of wavenumber gets large, i.e. in the case of low Lewis numbers, corresponding to 
small values of Markstein length. However, for a Lewis number unity, a close 
agreement between theory and numerics was found. Variations of the computed 
growth rates with viscosity and gravity were also presented, showing that the growth 
rates depend very slightly on the viscosity, in accordance with theoretical predictions, 
and that the measured threshold of instability of the plane flame is slightly displaced 
compared to the low wavenumber prediction. 

Simulations of finite amplitude flames were presented, showing very clearly the 
deflection of streamlines across the flame which is the main cause of the Darrieus- 
Landau instability. Stable flames excited by a stationary shear flow were also simulated 
a t  the end of the paper; in this case, the retroaction of the flame on the flow field is so 
important that the shear flow gets inverted in the burrit gases compared to its fresh 
gases value. 
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