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Abstract 

We solve the 2-D thermo-diffusive model of premixed flames in the 
f ramework  of Fourier  Spectral Methods.  Al though the temperature and 
concentration fields are not periodic in the direction perpendicular to the flame, we 
suggest a particular treatment, simple to implement, that is applied to these quantities 
in order to transform them into the sum of a known profile and a periodic unknown. 
This process also takes advantage of the fact that the physics of flames allows us to 
consider as periodic the higher derivatives. "Infinite" order convergence of Spectral 
Methods is thus recovered. This algorithm being very efficient, we can perform 
numerical  simulation concerning the diffusive-thermal instability, far in the 
non-linear domain. Thus, at low Lewis number, we numerically observed, for the 
first time to our knowledge, a phenomenon of local extinction. This brings a 
plausible explanation to the presence of unburnt combustible in the lean hydrogen 
flame. 

I./ Inl~rodllction 

The numerical simulation of flame propagation is usually supposed to involve 
very sophisticated algorithms because two reasons prevail : the first one considers 
the fact that we have to track a free surface corresponding to the very thin region of 
space where the chemical reaction takes place. The second reason is that this 
discontinuity is very corrugated and its profile rapidely develops in time. The latter 
point stems from the fact that plane flames rarely exist. The interface between (cold) 
fresh gases and (hot) combustion products is indeed subject to instabilities leading to 
well-known patterns of wrinkled flames - for recent reviews see Ref.[1] to [3]. 

Two different  types of  mechanism are usual ly considered : the 
thermo-diffusive instability and the Darrieus-Landau instability. The latter one is of 
hydrodynamic origin and is the most often put forward because it appears as soon as 
the density changes across the flame. The first one is a consequence of diffusive 
effects through the finite thickness of the real flame, while the second one considers 
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the flame as an infinitely steep interface. As observed in experiments [4-6], the 
flames in the unstable regime are wrinkled, exhibiting cell patterns which become 
more and more cusped as the non-linearity increases. Further in  the non-linear 
domain, this interface is subjected to turbulent fluctuations. Cusped forms 
continuously appear or merge in a chaotic way, exhibiting the so-called 
self-turbulization. 

The numerical approach that we shall describe in this paper, has been 
previously employed for studying this self-turbulization [7]. This study allowed us to 
confirm that the competition between the diffusive effects is the source of this 
time-dependant behaviour. Moreover, we qualitatively compared the results of our 
simulation with those corresponding to the Kuramoto-Sivashinsky equation which 
was considered as a model equation of flame dynamics [8]. It has been concluded [7] 
that the Kuramoto-Sivashinsky equation is not fictitious for flame front dynamics - it 
has a finite (and non-vanishing) domain of validity. Furthermore, those results have 
been obtained in a parameter range for which standard criteria of any weakly 
non-linear derivation are near their limits. This indicates that the domain of validity 
-in a qualitative sense- is larger than the one that is usually recognized [1]. 

The aim of the present numerical work, in solving the "field equations" for 
large non-linearities, is to propose an efficient way to bring theoretical approaches 
nearer to experiment. Up to now, most of the numerical studies in combustion 
consider the flame as an infinitely steep interface propagating with the normal 
velocity usually derived from asymptotics. In very important cases such as the 
combustion of hydrogen, this simplified model can neglect essential phenomena. The 
study we present in this contribution shows a new effect which requires an internal 
treatment of the flame to be pointed out. Obviously this effect of local quenching 
due to the intrinsic dynamic of the flame introduces a new flamability limit. As for 
the model to solve, our approach is restricted to the thermo-diffusive model. 
Nevertheless, we are fully aware of the fact that we neglect some leading 
contribution to the flame wrinkling. From an experimental point of view, it seems 
[9] that diffusive effects play a leading role when the non-linear regime of the 
thermo-diffusive instability is reached. The present numerical approach can be 
viewed as a first step towards a complete study of hydrogen-oxygen combustion. 

Except for very recent contributions [10-13], the direct simulation of flame 
propagation with finite thickness was limited to 1-D computations of the 
reaction-diffusion equations (see e.g. [14]). The 2-D field equations are rarely solved 
because the tracking of 2-D largely curved fronts requires a multi-dimensional fully 
adaptive method [15,16]. The more the front is wrinkled, the more the computational 
effort in adaptation increases. In the present contribution we avoid paying the cost of 
self-adaptation, expecting that the efficiency of Fourier Spectral Methods will allow 
us to adequately represent the small scales wherever they are located. 

Part II briefly recalls the constant-density model. In the third paragraph we 
present the numerical scheme, the originality of which lies in the periodification 
process. This feature is believed to be extensible to more complex flames. Part IV is 
devoted to the presentation of the numerical results. For a large control parameter 
an extinction phenomenon is locally observed. This brings a plausible explanation to 
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the presence of unburnt combustible in the lean hydrogen flame which corresponds 
to very non-linear conditions. 

II./ The physical  model 

The simplest 2-D system of premixed flame dynamics is the thermo-diffusive 
model. It assumes that the gas expansion plays a negligible role. Moreover, to clearly 
put forward the phenomenum of local extinction, we choose the simplest chemistry : 
a single one-step chemical reaction is assumed. Non-dimensional quantities are 
obtained using a classical approach : the length scale is the flame thickness obtained 
from asymptotics, likewise the velocity unit is the asymptotic flame speed. The use of 
the normalized variables allows us (see e.g. [3], [17] ) to write the model, in a frame 
moving with the flame front, as follows : 

~T ~ T  
+ U ~" - A T +  Y2 II.l.a 

~t Ox 
3C 3C 1 + U - A C-  ~ II.l.b 
0t 0x Le 

with 

~2 C e x p ( 1 3 ( % 1 )  ) 
f2 - 2 Le l+7(T-1) 

II.2 

where T and C correspond to the reduced temperature of the gas mixture and 
concentration of a reactant, (the other reactant being in excess), L e, ~ and 7 are 

respectively the Lewis number of the reactant, the reduced activation energy (or 
Zeldovich number) and the heat release parameter. U is the reduced flame speed 
which is an unknown of the problem. U is supposed to be parallel to the x-direction. 

Because we are interested in the resolution of unstable flame fronts, we shall 
assume that the flat front is unstable with respect to patterns, periodic in y the 
direction perpendicular to the flame speed. The linear stability analysis leads [18] to 
the following threshold of the diffusive thermal instability : 

~(Le-1 ) < - 2  I1.3 

The maximum growth rate (Ymax 

£2,z/ 
IJrnax = ' /~r at 

/ l o  

is obtained for the wave-number kma x 

kmax = ~2 II.4.(a-b) 

where l; = -1 - 2~-(Le - 1) is the control parameter of the instability 
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1II/ The numerical algorithm 

The numerical description of a largely wrinkled front in its smallest length 
scales, as it is here the purpose, generally requires [15,16] special ingredients such as 
a fully 2D self-adaptive gridding. This is due to the fact that three different length 
scales are present in the computational domain. The smallest one is related to the 
reaction zone, the second being the length scale of the pre-heating region. The 
largest one is scaled by the typical amplitude of the wrinkles which are, in the 
present problem, of one order of magnitude larger than the pre-heating zone. 

The 2-D tracking of a zone of large gradients requires a large computational 
effort in order to adapt the grid to the position of small length scales. For the 
present problem, we suggest a different approach, easily implemented and certainly 
competitive in term of CPU cost. Since the contribution by Babuska [19], it is well 
known that two different options can be chosen in order to increase the accuracy : 
the "h" version consists of increasing the number of grid points where needed, as it 
is generally done in self-adapting processes. On the other hand, the "p" version 
locally extends the order of the scheme when a lack of precision is observed. By 
using Spectral Methods we have chosen to globally extend the order of the scheme. 
Numerical calculations of flames using Chebyshev expansion have already been 
performed [12], but because the expansion in finite Fourier series is known to be the 
fastest Spectral Method [20-21], we have attempted to transform a non-periodic 
problem into a periodic one in all directions. As it will be recalled later, this method 
is very efficient if periodicity at all order can be attained. 

It is well known [20], that the direct application of Fourier Spectral Methods to a 
problem with non-periodic boundary conditions leads to the well-known Gibbs 
phenomenon. The method therefore loses its interest. A classical way to increase the 
convergence properties is to substract [20] a simple form (generally a polynomial) 
from the unknowns, the first non-periodicity being reported to higher derivatives. 
Here, we take advantage of specific properties of flames in order to extend this 
principle and to recover the feature of exponential convergence. 

We are interested in the computation on the (-X 0 , X 0 )*(-Y0 ,Y0 ) rectangle 
with periodic boundary conditions in the y-direction. In the x-direction the boundary 
conditions are : 

T(-X o , y ) = O  , T (X o , y ) = l  ; C(-X 0 , y ) = l  , C(X o , y ) = O  III.l.(a-d) 

Strictly speaking such boundary conditions should be imposed at infinity. 
Nevertheless, if X 0 is large enough, these boundary conditions can be satisfied at 

finite distances without loss of accuracy [7]. 
Taking into account these non-periodic boundary conditions, let us define 0 and 

as the following intermediate unknowns : 

T(x,y) = S0(x) + 0(x,y) 
C(x,y) = 1 - S 0(x) + ~(x,y) 

III.2.(a-b) 
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where S0(x) is a smooth "step" function satisfying the following boundary 

conditions: 
11 

S0(-X 0) = 0 3 S0(-X0) = 0 , n = 1, 2, • . . . . .  

Ox n 

So(Xo)=  1 a"S°(Xo) 0 , n 1,2, ~ • ~ . . . . . .  

Ox n 

III.3 

Among the functions satisfying these conditions we have chosen the following 
one : 

So(x) = -~ 1 + tanh F t a n ( ~ )  III.4 

where z=(x+X0)rt/X 0 and F is a parameter that determines the slope of S O at the 

centre of the integration domain. 

If we suppose X 0 large enough we can then assume all the x-derivatives of 

T(x,y) and C(x,y) to be negligible at x=_+X 0 . Hence it is straightforward to show 

that 0(x,y) and ~g(x,y) are periodic in all directions, likewise their derivatives at 
every order. The equations governing 0(x,y) and ~g(x,y) become: 

a0 + U b 0  ~2S0 uaSo 
a-i- U x x -  A0  = f0  = t a  + - - -  

8x 2 ax 
III.5.(a-b) 

0~t +Uo_~ x -  __1 A~ = f v  = _f~ 1 02S0 ~uOS0 
0t L e L e ~x 2 Ox 

Because the physics of the flame considers that £2, the production term, has a 
small support of order 1/8, then f~ and its further derivatives vanish at x=+_X 0 . 

Moreover it is easy to verify that f0 and f~g (and their further derivatives) are 

periodic in all directions. The thermo-diffusive model is thus posed in terms of a 
periodic problem having excellent properties of convergence in the framework of 
Fourier Spectral Methods : exponential convergence to the exact solution can be 
achieved because all quantities and their successive derivatives are periodic in all 
directions. 

As usually in Spectral Methods, the time discretization is furthermore achieved 
using finite differences. Several two or three points schemes can be easily 
implemented. The results presented here have been carried out with a simple first 
order scheme, treating implicitly the diffusion terms. The time step is actually 
limited by the reaction term. A more detailed description of the algorithm is given in 
reference [7]. Because standard flames have a high activation energy ([3N10) the three 
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length scales mentioned in the introduction are separated by an order of magnitude. 
So that, if the front is strongly wrinkled, at least a hundred Fourier modes are 
required in the x-direction while the discretization in the y-direction depends on the 
YO value. Thanks to FFT algorithms the computational cost of our approach 

increases about linearly with the number of degrees of freedom. Moreover the 
vectorization of each elementary step of the algorithm is easy to implement on a 
vectorized computer. 

IV/ Local extinction of the thermo-diffusive oremixed flame 

The result we present in this part is obtained with 13=10, y=0.8 ; for this value 
of b the threshold of the thermo-diffusive instability is attained at Le=0.8 . For a 

lower value, for instance Le=0.6, the growth rate has a non-vanishing value : 

Crnax=l/16 obtained for kmax=0.25{2 . The typical wave-length is thus more than 
15 times the flame thickness. 

Let us define Ly as : Ly = 2 Y0 • This quantity corresponds to the diameter 
of the tube in which the pre-mixed flame propagates. This image of a pipe is to be 
interpreted loosely because periodic boundary conditions in the y-direction are not 
consistent with the presence of duct walls. We intend simply that the picture of 
propagation in a pipe fixes a lower bound to the wave-numbers allowed to be 
unstable. This is additionally a source of quantification : i.e. all unstable 
wave-numbers are integer multiples of the basic quantity given by kl= 2rC/Ly = r~/Y 0 

A small tube is then characterized by a diameter allowing a limited number of 
unstable modes. 

We want now to study the flame dynamics with a large control parameter. 
Considering Eq.(II.5) we have to choose a large value for 13 and a small Lewis 
number. By decreasing the Lewis number we increase the fuel mobility compared to 
the thermal diffusivity. Unbumt fuel thus tends to flee the cusped regions where the 
production term consequently decays. Local quenching, accompanied by unburnt 
fuel, is thus expected at low Lewis numbers and has actually been studied in 
experiments related to lean hydrogen flames [9]. 

To simulate this phenomenon we have chosen Le=0.2 (e=3, 1-Le=8/l] ) which is 

close to the Lewis number of hydrogen in the lean hydrogen-oxygen flame. The 
chosen parameters are Ly =24 with 32 y-modes, and Lx=36 with 256 x-modes. The 

integration domain being small in the y-direction, we initiate the computation with a 
two wave-length solution. The evolution of isotherms is given in Fig.(1) and Fig.(2). 
The temperature profile clearly develops towards a solution which is locally smooth 
at tile cusps and, the more time goes on, the more the temperature locally decreases 
in large pockets. We then had to stop the computation because these pockets rapidly 
reached the boundary of the integration domain. The final profiles are shown on 
Fig.(3) to Fig.(5a) where thermal, fuel, and production profiles are drawn. We can 
conclude that the flame is strongly wrinkled with points where local extinction 
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occurs. This development of the flame pattern is accompanied by an important 
increase of the flame velocity, the time evolution of which is plotted on Fig.(6). We 
have stopped the time integration because the cold zone of the temperature field was 
getting ready to leave the computational domain. 

However, there is an important issue that we have not yet answered : does this 
process lead to a steady solution ? (i.e. a flame front profile propagating with a 
stable velocity). It is not clear that patterns, such as the present iso-production lines 
on Fig.(5b) in the form of moon crescents, correspond to a steady solution. For 
instance, one can imagine an oscillating asymptotic behaviour. Obviously, more 
investigation is needed to conclude on the existence of a dynamical extinction in the 
cusps. 

V/ Conclusion 

We have presented a numerical algorithm that allowed us to adopt a new 
approach to flame front dynamics. At first glance, it was not obvious that a problem 
of front tracking could be efficiently treated with an elementary Fourier 
Pseudo-Spectral algorithm. This has been made possible thanks to a periodification 
process which takes into account the physics of flames. We believe that the present 
method can be easily implemented for studying more complex situations such as 
hydrodynamic flames or non-adiabatic flames. The efficiency of the present Fourier 
expansion allows us to treat rather complicated non-linear behaviours. This indeed 
represents real progress in the study of wrinkled flame dynamics. For low Lewis 
number we have indeed noticed an effect of local extinction that has already been 
observed in experiments with lean hydrogen flames. Although the role of the high 
diffusivity of hydrogen has been suspected by theoretical arguments [9], that is the 
first time that local quenching has been clearly exhibited. This phenomenon is 
accompanied by a strong increase of the flame speed. Nevertheless we have to 
moderate this point because we are not sure of the existence of such a steady curved 
state. More computational effort is needed to make this issue clear. 

We wish to thank Professor Paul Clavin who, through extremely helpful advice 
and encouragements, stood at the origin of the present study. 
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Fig.1 Beginning of the non-linear behaviour. 
The thermodiffusive instabil i ty is rapidly growing thanks  to a large control parameter .  The 
temperature profiles are plotted at t=l. The parameters are ~=10, Le=0.2, Ly=24, e=3. 

Fig.2 Creation of fresh mixture pockets. 
At low Lewis number, unburnt  fuel rapidly diffuses towards hot regions leading to the creation of cold 
gas pocket. Temperature profiles are plotted at t---4. The parameters are ~=10, Le:0.2 , Ly=24, e=3. 

Fig.3 Local quenching of the flame. 
At low Lewis number, unburnt  fuel rapidly diffuses towards hot regions leading to the creation of a 
local extinction. Temperature profiles are plotted at  t=9. (No steady solution is yet attained). The 
parameters are [~=10, Le=0.2, Ly=24, e=3. 
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Fig.4 Local quenching of the flame (continued). 
Concentrat ion profiles of dilute fuel are plotted a t  t=9. 
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Fig.5 Local quenching of the flame (continued). 
Production profiles (a) and  an iso-production line (b) are plotted a t  t=9. 
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Fig.6 Time evolution of the flame speed. 
Flame velocity versus time is plotted from t=l to t=9. The parameters are ~=10, Le=0.2, Ly=24, £=3. 


