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Abstract-The 2-D thermal-diffusive model of premixed flames is solved numerically. The growth rates of
the thermal-diffusive instability are compared to the linear theory. It is shown that the discrepancy,
although large (a relative error than can be larger than 100%), behaves like O(lIP) as expected by
asymptotics <p being the reduced activation energy or Zeldovich number). We additionally present results
far in the non-linear domain. They exhibit turbulent behaviour which are qualitatively similar to the
dynamical properties of the Kuramoto-Sivashinsky model-equation.

Key words: thermal-diffusive instability, wrinkled premixed flame, turbulent flame, numerical combustion.

INTRODUCTION

Plane flames rarely exist. The interface between (cold) fresh gases and (hot) combus­
tion products is indeed subject to instabilities leading to well-known patterns of
wrinkled flames-for recent reviews see Sivashinsky (1983), Williams (1985), Clavin
(1985), Two different mechanisms are usually advanced: the Darrieus-Landau insta­
bility and the thermal-diffusive instability. The first one is of hydrodynamic origin and
is caused by density changes across the flame. Estimates (at least at the leading order)
can be provided without requiring the study of internal profile of the premixed flame.
On the contrary, the thermal-diffusive instability is a consequence of the competition
between diffusive phenomena through the premixed flame thickness. Hence, the
predictions require to take into account reaction-diffusion effects inside the flame
thickness.

Furthermore, when finite flame thickness is taken into account in the study of
Darrieus-Landau instability, first order corrections obtained by asymptotic analysis
and by multi-scale analysis (Clavin and Williams 1982 or Peke and Clavin 1982) have
shown that thermal-diffusive effects playa stabilizing role for common values of gas
expansion. This result shows that the thermal-diffusive instability is actually limited
to a restricted range of premixed flames: flames having small gas expansion or very
low Lewis number.

Numerical investigations are usually expected either to provide predictions well
beyond the scope of the theoretical approach or to check the quality of basic assump­
tions underlying the theory. More precisely, the above mentioned theoretical studies
of the Darrieus-Landau instability contain two basic ingredients: asymptotic analysis
founded on the fact that the activation energy is high and multi-scale analysis based
on scale separation between flame thickness and size of cells. Complete checking of
both assumption and providing of non-linear results is the purpose of a forthcoming
paper (Denet and Haldenwang 1991).

Even if the thermal-diffusive instability can only occur at low gas expansion (in
plane geometry), it nevertheless represents an interesting physical framework in which
the asymptotic assumption can be properly checked. The theoretical study of the
threshold of the thermal-diffusive instability is indeed exact in the sense that no scale
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200 B. DENET AND P. HALDENWANG

separation between flame thickness and cell size is required. Checking the quality of
the asymptotic expansion is one of the two purposes of the present paper.

The second purpose concerns physical behaviours far from the threshold. As
observed in experiments (Bregeon et al. (1978), Sabathier et al. (1981), Quinard et al.
(1984», the flames in the unstable regime are wrinkled, exhibiting cell patterns which
become more and more cusped as the non-linearity increases. Far in the non-linear
domain, this interface undergoes turbulent fluctuations: cusped forms continuously
appear or merge in a chaotic way. On the other hand, such effects have been widely
observed in numerical computation of a model-equation describing the thermal­
diffusive instability: the well known Kurarnoto-Sivashinsky equation (see for instance
Hyman and Nicolaenko (1986), Frisch et al. (1986». The qualitative agreement
between experimental observations and the Kuramoto-Sivashinsky model-equation
(proposed as a model of self-turbulizing flame and hereafter referred as KS equation)
asks the following question: does the thermal-diffusive model (from which the KS
equation is derived) already contain such a physics or is the agreement fictitious? To
answer this question is the subject of the second contribution of the present paper.

So, this paper presents two-dimensional numerical simulations of premixed flame
propagation in the framework of the thermal-diffusive model (see Barenblatt et al.
(1962». We will provide quantitative comparisons between numerically measured
growth rates and those furnished by the linear asymptotic theory (Sivashinsky 1977).
Then, we shall simulate turbulent behaviours which will be qualitatively compared to
the results of the KS equation.

Several numerical simulations of the thermal-diffusive model, or related models,
have been recently carried out and can be found in Guillard et al. (1987), Denet &
Haldenwang (1989), Bayliss et al. (1989). It has been suggested in Kailasanath et al.
(1989) that the thermal-diffusive instability was a plausible explanation of cellular
structures in lean hydrogen-oxygen premixed flames. These authors report numerical
simulations of such flames.

A lot of theoretical works have been performed using thermal-diffusive approxima­
tions in various combustion problems. For instance, the case of burner-anchored
flames is studied in MacIntosh and Clarke (1984) and the case of solid propellant
flames in Maroglis and Williams (1989).

The paper is organized as follows. In Section 2 we briefly recall the constant-density
model and some of its theoretical properties concerning the stability of the plane
thermal-diffusive flame. In Section 3 we present the numerical method we use. Section
4 is devoted to the presentation of a set of numerical results concerning the growth
rates of the thermal-diffusive instability. In Section 5 we present non-linear solutions,
including the case of a self-turbulizing flame.

2 PHYSICAL MODEL AND THEORETICAL RESULTS

As mentioned in the introduction, we are presently interested in the thermal-diffusive
instability. In the limit of small gas expansion it has been shown by Sivashinsky (1977)
that such an instability, caused by the destabilizing influence of the diffusion of
limiting species, is driven by the so-called thermal-diffusive model. This model of
premixed flames (Barenblatt et al. (1962» assumes that the gas expansion plays a
negligible role. Strictly speaking, this is only true for flames in which the fresh mixture
(although frozen) has a temperature of the same order as the flame temperature.
However, in most applications, the gas density is generally much lower in the burnt
gases than in the fresh mixture. And, as recalled above, important hydrodynamical
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THERMAL-DIFFUSIVE INSTABILITY 201

effects, as the Darrieus-Landau instability, are thus not included in the thermal­
diffusive model.

Because the present simulations will lead to a large amount of computation, we
choose the simplest chemistry: a single one-step chemical reaction is assumed. Non­
dimensional quantities are obtained using a classical approach: the length scale is the
flame thickness obtained from asymptotics, likewise the velocity unit is the asymptotic
flame speed. The use of the normalized variables allows us (see e.g., Clavin (1985),
Buckmaster and Ludford (1983)) to write the model, in a frame moving with the flame
front. as follows:

with

et UoT
at + ox

ec UoC
at + ox

l1.T + n

I
-l1.C - n
Le

(2.1a)

(2.1b)

p2 (P(T _ I) )
n = 2Le C exp I + y(T _ I) (2.2)

where 11. is the Laplacian, T and C correspond to the reduced temperature of the gas
mixture and concentration ofa reactant (the other reactant being in excess). Le, pand
yare respectively the Lewis number of the reactant (defined as the ratio of the thermal
to the molecular diffusivity), the reduced activation energy (or Zeldovich number) and
the heat release parameter. U is the reduced flame speed which is an unknown of the
problem. U is supposed to be parallel to the x-direction,

Because we are interested in the resolution of unstable flame fronts, we shall assume
that the flat front is unstable with respect to patterns, periodic in y (the direction
perpendicular to the flame speed). Thus the boundary conditions read:

T(x = - 00, y) O. T(x = + 00, y)

C(x = - 00, y) I, C(X = + 00, y) 0

Ttx, y = - Yo) T(x, y = + Yo).

aT aT
oy (x, y = - Yo) oy (x, y = + Yo)

C(X. Y = - Yo) = C(x, y = + Yo).

oC oC
oy (x, y = - Yo) oy (x, Y = + Yo)

(2.3(a-b))

(2.3(c-d))

(2.4(a-b))

(2.4(c--d))

Starting from this model. the theoretical analysis is classically carried out by means
of an asymptotic analysis in powers of p-l (P being supposed to be large) which
assumed that the flame characteristics can satisfy the near equi-diffusion limit:

(2.5)

From a linear point of view, such an analysis leads (see Sivashinsky (1977)) to the
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202 B. DENET AND P. HALDENWANG
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FIGURE I Theoretical growth rates vs. wave vector for I = -4: complete dispersion relation (con­
tinuous line) and expansion in powers of k (dolled line).

following dispersion relation characterizing the growth rate of sinusoidal perturbations
of wave-length k:

(I - qr2 = (- 1/2) (I - r + 2(1) (2.6)

where

where (1 is the growth rate, k is the wave vector, 1is the control parameter defined by
1 = p(Le - I).
For k small, this formular can be expanded in powers of k

(2.7)

The threshold of the diffusive thermal instability is given by

1 = p(Le - I) < - 2 (2.8)

Note that the complete formula of growth rates (Eq. 2.6) and its approximation for
small k (Eq. 2.7) are rather different, as shown in Figure I, where these two dispersion
relations are plotted for 1 = - 4. We can see on this plot that the agreement between
the two formulas is limited to k below 0.1, the maximum being very different in both
cases. They however contain qualitatively the same physics because they have the
same unstable band. Nevertheless, because a quantitative point of view is here taken,
we will never use the simplified dispersion relation in this paper. In the following,
numerical growth rates will be compared to the exact dispersion relation (Eq. 2.6).
Recall that this relation is the leading term of an expansion in the powers of pool: there
should be an agreement between theory and numerical experiments only for sufficiently
high p. At this point, it can be noted that the dispersion relation does not contain the
parameter y: this parameter has no influence on the leading term of the expansion in
powers of p-l . The numerical results will show that this parameter has important
effects on the following terms.

When 1is near its critical value --- 2, it has been shown that a non-linear equation,
the KS equation, characterizing the front position can bederived from asymptotics.
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THERMAL-DIFFUSIVE INSTABILITY 203

The linear part is directly connected to the simplified dispersion relation. As for the
non-linear term, it corresponds to a geometrical effect, expressed at the lowest order
in term of IX, the amplitude of the front perturbation. The equation can read:

(2.9)

This 1-0 equation corresponds to the position ofa 2-D flame front. The present form
of the equation has been obtained after some rescaling. The control parameter now
appears as the size of the integration domain. We note that the thermal-diffusive
instability occurs as a local effect: only derivatives of the local front position are
present in the KS equation. Numerical experiments on this equation have shown that
the plane flame evolves into cellular patterns, the characteristic wave-number of which
is somewhat smaller that the wave vector corresponding to the maximum growth rate.
The resulting cell pattern is essentially unsteady with a rich set of time-dependent
behaviour (see e.g, Hyman e.g. (1986». In fact, we will obtain here comparable results
showing that, at least in a qualitative sense, the actual validity domain of the KS
equation is larger than the one supposed by the asymptotic derivation.

3 THE NUMERICAL ALGORITHM

Incontrast to the above mentioned asymptotic analyses, we now consider a numerical
description analysing the flame up to its smallest length scales. Generally this type of
simulation requires (see e.g., Benkhaldoun and Larrouturou (1990), Srnooke and
Koszykowski (1986» special ingredients such as self-adaptive gridding. This is due to
the fact that three different length scales are present in the computational domain. The
smallest one is related to the reaction zone, the second being the length scale of the
pre-heating region. The largest one is scaled by the typical wave-length of the wrinkles.
The first two length scales are in the direction perpendicular to the flame surface while
the third one is parallel to the front. But, because large cusps are expected in the
non-linear range, the last typical length also scales the amplitude of the interface
fluctuations. Clearly, this is a third length scale in the direction perpendicular to the
flame front, indicating the minimum size of the domain in which the numerical study
have to track the flame. In conclusion, large wrinkles require a real 20 self adaptive
gridding, moving in phase with the corrugated flame. In fact, this is a huge numerical
task and so expensive in CPU time that practical running seems to be limited.

To overcome these problems, we here use a different approach. We first state that
scale representation of three orders of magnitude stays within the scope of Fourier
spectral methods (Canuto et al. 1988). Using these type of methods, we can renounce
to implement a scheme that adapts the gridding according to the successive flame
positions. However, making use of efficient Fourier spectral methods requires one to
transform a non-periodic problem into a periodic one in all directions. We now
summarize the main points of the method (see Denet and Haldenwang (1989) for
more details).

From the point of view of temporal discretisation, we have used either a first order
or second order scheme. The production term being taken explicitely, stability require­
ments imposes in any case small time steps. That is the reason why we have not seen
much differences between first and second order in the time when measuring growth
rates: the difference can be of the order of 5% in the worst cases, the second order
value being generally a little higher. The second order scheme being approximately
twice as expensive as the first order one (the time step being further reduced), in most
results presented here, the first order scheme is used.
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204 B. DENET AND P. HALDENWANG

We are interested in the computation on the (- Xo, Xo)*( - Yo, Yo) rectangle with
periodic boundary conditions in the y-direction. In the x-direction the boundary
conditions are:

T(x = -Xo, y) = 0, T(x = Xo, y) I',

C(x = -Xo, y) I, C(x = Xo,y) = 0 (3.1(a-d»

Strictly speaking such boundary conditions should be imposed at infinity. Neverthe­
less, if Xois large enough, these boundary conditions can be satisfied at finite distances
without loss of accuracy (except at vanishing wavenumbers as discussed in the next
paragraph).

Taking into account these non-periodic boundary conditions, let us define (J and I/t
as the following intermediate unknowns:

T(x, y) = So(x) + (J(x, y)

C(x, y) = ) - So(x) + I/t(x, y)

(3.2a)

(3.2b)

where So(x) is a smooth "step" function going from 0 to ) with zero slopes at both
ends. Among the functions satisfying these conditions we have chosen the following
one:

So (x) = HI + tanh (r tan (z ; n))J (3.3)

where z = (x + Xo)nlXoand r is a parameter that determines the slope of So at the
centre of the integration domain.

If we suppose Xo large enough we can then assume all the x-derivatives of T(x, y)
and C(x, y) to be negligible at x = ± Xo. Hence it is straightforward to show that
(J(x,y) and I/t(x, y) are periodic in all directions, likewise their derivatives. Because the
physics of the flame considers that n, the production term, has a small support of
order lIP, then n and its further derivatives vanish at x = ± Xo. The thermal­
diffusive model is thus posed in terms of a periodic problem having excellent proper­
ties of convergence in the framework of Fourier spectral methods: exponential
convergence to the exact solution can be achieved because all quantities (and their
further derivatives) are periodic in all directions. Nevertheless, as mentioned before
the present method is not an adaptive one so that we generally need several hundred
collocation points at least in the x-direction.

4 COMPUTATION OF LINEAR GROWTH RATES OF THE THERMO­
DIFFUSIVE INSTABILITY

4.1 Additional Numerical aspects

In order to compute growth rates, we take as initial condition a sinusoidal flame of
low amplitude (10- 5 in units of flame thickness). After some transient the amplitude
begins to grow exponentially: we have actually measured the growth rate of several
norms (in the x direction) of the Fourier components (partially obtained in the y
direction) corresponding to the sine wave we have introduced as initial condition. The
results do not depend on the selected norm.
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THERMAL-DIFFUSIVE INSTABILITY 205

By contrast, Xo the size of the integration domain is a very sensitive quantity,
especially at low wavenumbers. As a result, if Xo is not large enough, the linear growth
rate does not vanish as k tends to zero. In order to limit the number of collocation
points required when Xo is large, we took advantage of the fact that the sinusoidal
flame, in the linear growth stage, is nearly plane. Then, we can use, for this linear
study, a mapping which increases the precision in the reaction zone. It transforms x,
the physical coordinate, to x', the new coordinate defined from -n to n (y being
unchanged) by the formula.

x/a
x' = n -.j"""F:l= +=(7b=_= I:=) =ta=n:=h=:'«:=x'"'/C"")2:=)=+=(x""/a~)2

where b = (ada)2; a, a; and c are parameters controlling the position of the points
in physical space. The meaning of the parameters is the following: for x small (x ~ c),
we have essentially

xla
x' :::::: n :::::: n(x/a)

.jl + (x/a)'

On the contrary, for x ~ c, the relation between x' and x becomes

xla,
x' :::::: n -;==="=7==';

.jl + (x/a;)2

these two relations are equally valid for x < O. To sum up, for x small, the change
of variable is controlled by a; the smaller a is, the more adapted near x = 0 the mesh
is. For x large, the change of variable is controlled by a.; the greater a; is, the more
distant from x = 0 the points are. The transition region occurs around x = c.

In our numerical measurement ofgrowth rates we take, e.g., for f3 = 10,256 modes
in the x direction, a = 7, a; = 15 and c = 8.5. When f3 increases, we reduce a and
a., keeping the same value for the other parameter c, in order to adequately resolve
the reaction zone, which is smaller when f3 is great.

4.2 A Secondary Effect Due to the Gas Expansion

The thermal-diffusive theory is derived in the limit y ~ 1; i.e., vanishing gas expan­
sion. As mentioned in Section 2, this hypothesis allows one to separate the equations
for temperature and concentration from the hydrodynamical ones.

Now suppose this separation holds and we want to check the quality of asymptotics
applied to real flames. The gas expansion parameter still appears in the production
term (Eq. 2.2) and can modify the internal heat release profile. According to asymp­
toties, this "side" effect is feeble (see Joulin and Clavin (\979)). Equation 2.6 is indeed
independent of y and this parameter is expected to appear in the correction of the
leading order.

As it will be shown in the next paragraph, this correction for real flames is however
very large. Hence, we have to try to estimate its dependency on y. In Table I, we
actually show that the influence of the parameter y on the growth rates is very
important. In the unstable case I = - 2.5, f3 = 10, and for different values of k, this
table provides the values of numerical growth rates for y = 0.8 and y = 0.4. For the
value y = 0.8, characteristic of real flames, the discrepancy between theory and
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206 B. DENET AND P. HALDENWANG

TABLE I
G",(y = 0.08), G",(Y = 0.4), G" vs. k, for I = - 2.5 and p = 10

k G",(y = 0.8) G",(y = 0.4) G"

0.1 6.50 x 10- 3 4.67 X 10- 3 1.91 X 10-3

0.2 1.40 x 10- 2 9.64 X 10- 3 2.60 X 10- 3

0.3 1.07 x 10- 2 5.15 X 10-3 -5.50 X 10- 3

numerics is larger than for y = 0.4. As we want to test the validity of asymptotics for
real flame, we will essentially study the value y = 0.8 in what follows; y = 0.8 is a
typical value in the experiments and the most often used in numerical simulations (see
Peters and Warnatz (1982». Note that a small value for y makes the problem steeper
and then closer to asymptotics, so that the value y = 0 induces numerical difficulties.

4.3 Numerical Results

We have numerically measured the growth rates in the several cases I = -4 (very
unstable case), I = 2.5 (unstable case), I = - 1.5 (stable case) and for different values
of fl, from fl = 10 (a realistic value and considered usually to be sufficiently high for
the theory to apply), up to the very high, unrealistic value fl = 30. Our measurements
concern y = 0.8 and point out that the variations of the results with respect of fl (for
fixed I) is important.

In Figure 2, the case I = - 4 is considered. The theoretical dispersion relation, and
the numerical dispersion relations obtained for fl = 10 and fl = 20, are plotted. It
can be observed that a close agreement between theory and numerics is recovered only
for sufficiently high values of the wave vector k (these values do not lead to instabilities).
This comparison is still meaningful at large wavenumber because the theory to which
we compare our results is a complete theory, non-perturbative in k.

Nevertheless, the interesting range for the comparison is the one where growth rates
are positive. Figure 3 is an enlargement of Figure 2 in the domain of wave vectors
where the growth rate remains positive. The difference between theory and numerical
experiment is actually large. For real flames ({3 = 10), the maximum discrepancy
exceeds 100%. The limit of the unstable band (k = 0.6) is relatively near the theoretical

0.2
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FIGURE 2 Growth rates vs. wave vector for I = -4 Y = 0.8: theory (squares); p = 10 (crosses);
p = 20 (diamonds).
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FIGURE 3 Enlargement of Figure 2 in the domain of unstable wave vectors.

value (k = 0.5), but the maximum is twice as large as the predicted value. In the case
of p = 20 the dispersion relation gets nearer the theoretical curve and allows more
confidence in the asymptotic results.

It could be argued that the value I = - 4 is too far from the threshold and poorly
satisfies the hypothesis I = 0(1). So that, the discrepancy observed could be easily
explained. In Figure 4, we now take I = - 2.5; the lack of agreement is even worse:
both on the size of the unstable domain and on the position of the maximum. Actually
the observed differences in the value of the growth rate are less than that for I = - 4
in absolute value, but greater in terms of relative difference: for instance the maximum
for p = lOis five times as large as the predicted one. It can be explained in the
following way: for finite p, the stability limit is not located exactly at I = - 2, so that
the relative error becomes amplified near the theoretical threshold. For larger k,
agreement between theory and numerical experiment is recovered, but it occurs only
at negative growth rates and is not plotted on Figure 4.

In Figure 5, the case I = 1.5 is considered; although this is a stable case, differences

0.03

0.0075

-0.015

-0.037

-0.06

0 0.1 0.2 0.3
K

0.4 0.5

FIGURE 4 Growth rates vs. wave vector for / = - 2.5 y = 0.8: theory (triangles); f3 = 10 (squares);
f3 = 20 (crosses).
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FIGURE 5 Growth rates vs. wave vector for / = -1.5 y = 0.8: theory (squares); P = 10 (crosses).

are still important. In Figure 6, the difference between theory and numerical exper­
iment is plotted vs. k (fJ = 10 fixed) and for the three values 1 = - 4, 1 = - 2.5,
1 = 1.5.

We will now examine quantitatively the dependence of the growth rate on fJ, the
Zeldovich number. Recalling that the theoretical dispersion relation is the leading
term of an expansion in powers of (fJ)-' , we can expect our experimental value of the
growth rates "oxp (y, fJ, k, I) to be related to the theoretical value "'h(k, I) by the
relation

Where a and "l are unknown functions, which could in principle be determined by
a theoretical analysis developed up to the next orders. Hence, in the spirit of asymp­
toties, the difference between our measures and the theoretical values has to behave
like (fJ)" in first approximation. We emphasize that although in the theoretical
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FIGURE 6 (11", - 11,,) vs. wave vector for p = 10 Y = 0.8: / = - 1.5 (squares); I = - 2.5 (crosses);
I = - 4 (diamonds).
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TABLE II
O'uP'O'exp - O'tl" P«(Je~p - ath) VS. p, for 1= -4, k = 0.3 and y = 0.8

(a'h = 2.82 x 10')

P Gu p O'up - alh (J(aellp -U1h)

10 5.79 x 10- 2 2.98 X 10- 2 2.98 X 10- 1

15 4.70 x 10-2 1.89 X 10- 2 2.83 X 10-'
20 4.21 x 10-' 1.40 X 10- 2 2.80 X 10- 1

30 3.68 X 10- 2 0.87 X 10- 2 2.60 X 10- 1

209

analysis expansions are performed up to O(fJ)-1 , the dispersion relation obtained at
the end of the calculation is only valid to 0(1), as explained in Joulin and Clavin
(1979).

In Table II, the numerical values of u<xp, u<xp - Ulh' fJ(u",p - U'h) are reported for
1 = -4, y = 0.8, k = 0.3 (near the maximum growth rate) and different values of
fJ. In Table III, the same quantities are presented for 1 = - 2.5, y = 0.8 and k = 0.2.
As expected by asymptotics, the discrepancy between theory and numerical exper­
iment scales approximately like (fJ)-I. More precisely, for 1 = 4, y = 0.8 and
k = 0.3, we have approximately u",p = U'h(l + 101fJ) while for 1 = 2.5, y = 0.8 and
k = 0.2, the behaviour is u",p = U'h(l + 441fJ) showing the increase of relative error
near the theoretical limit 1 = - 2.

The study presented above is carried out at k fixed close to the maximum growth
rate. Let us now go on with the whole range of unstable wavenumbers. Figure 7 shows
a plot of fJ (u",p - U'h) vs. k for 1 = - 4, y = 0.8, and two different values of the
Zeldovich number (fJ = 10 and fJ = 20) while Figure 8 shows the same plot for
1 = 2.5. On both figures, the curves corresponding to the different values of fJ
superpose on each other for a wide range of wavenumber, corresponding to those
having a high growth rate. The disagreement appearing at very low k or at high k can
have two different explanations: either a numerical reason because the numerical
precision is very sensitive when computing a correction (especially at low k) or a
reason due to the asymptotic expansion itself because terms in (fJ)2 can of course play
an important role in this first order correction, especially at high k.

On Figure 9, we tentatively plot fJ(uexp - u'h)/( -I - 0.4) with respect to k for
different values of the control parameter (I = - 4,1 = - 2.5 and 1 = - 1.5) and for
different values of the reduced activation energy (fJ = 10 and fJ = 20). These plots
show that all different curves approximately superpose on each others for the most
significant range: k < 0.5.

This indicates that the function u, (y, k, I) admits a possible separation of variables,
valid on k < 0.5 and behaving roughly like (-I - 0.4) for y = 0.8. This last expression

TABLE III
O'exP'O"up - O'lh' P(oe1,p - alh) VS. p, for / = -2.5, k = 0.2 and

y = 0.8 (a'h = 0.26 x 10')

P (Jexp O"ellp - alh p(a", -a'h)

10 1.40 x 10- 2 1.14 X 10-2 1.14 x 10- 1

15 1.00 x 10- 2 0.74 X 10- 2 1.1\ X 10- 1

20 8.20 X 10-) 5.60 X 10-) 1.12 x 10- 1

30 6.50 X 10-) 3.90 X 10-] 1.17 x 10- 1
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FIGURE 7 (u". - u,,).p VS. wave vector for I = - 4 y = 0.8: p = 10 (triangles); p = 20 (squares).

was found as a result of a fit among other simple possible forms of variation of 0",

with f.
At this point, we still have to check whether all those results are not specific of the

chosen gas expansion parameter. In Table IV, we report results obtained for y = 0.4,
f = - 2.5 and k = 0.2. They show that, in this case too, the difference O".,p - O"'h

scales like I/fJ. Ofcourse, as mentioned in Section 4.2, the function 0")(y, k, /) depends
on y. As a result, the coefficient appearing in Table IV is different from the one of
Table III.

5 NUMERICAL SIMULATIONS OF UNSTABLE THERMAL-DIFFUSIVE
FLAMES

All the results, that we present in this part, are obtained with fJ = 10 and y = 0.8;
We recall that the threshold of the thermal-diffusive instability is attained at f = - 2,
corresponding to Le = 0.8 for real flames (fJ = 10). The following simulations will
be made for l = - 4, which corresponds here to Le = 0.6. The measured numerical
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FIGURE 8 (u". - u,,)'P VS. wave vector for I = - 2.S y = 0.8: p = 10 (triangles): p = 20 (squares).
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FIGURE 9 (a", - a,,)*p/(- ( -0.4) VS. wave vector for y = 0.8: { = -1.5 P = 10 (triangles);
1= -2.5 P = 10 (squares); { = -2.5 P = 20 (crosses); { = -4 P = 10 (diamonds); ( = -4 P = 20
(circles).

growth rates are plotted on Figure 3. The typical wavelength is thus more that 15
times as large as the flame thickness which is given by the size of the pre-heating zone.
The value I = - 4 can be considered as being at the limit of the basic assumption of
near equi-diffusion I = 0(1). Nevertheless we shall obtain an interesting comparison
with the KS equation. Although our simulations are carried out in cartesian coordi­
nates, a confinement applied to the y-direction can be interpreted as a laterally finite
domain in which the flame propagates. For example, we can have in mind a pipe
whose radius has the same typical size. So we will refer to a tube diameter which is
the same as the computational width in the y direction.

5.1 Simulation in Small Pipe

Let us define L, as: L, = 2 Yo. This quantity corresponds to the diameter of the tube
in which the premixed flame propagates. This image of a pipe is to be interpreted
loosely because periodic boundary conditions in the y-direction are not consistent
with the presence of duct walls. We intend simply that the picture of propagation in
a pipe fixes a lower bound to the wave-numbers allowed to be unstable. This is
additionally a source of quantification: i.e., all unstable wave-numbers are integer
multiples of the basic quantity given by k, = 2'1t/Ly = 'It/Yo' A small tube is then
characterized by a diameter allowing a limited number of unstable modes. In this
paragraph we choose L, = 35.5 so that only three unstable modes are allowed, as
shown in Fig. 10 by the vertical dashed lines. Only k, k2 = 2k, and k, = 3k, have
a positive growth rate according to our measurements, k2 being more strongly
amplified. The numerical experiment we are describing in this paragraph is initiated

TABLE IV
a",. a", - a'h' p(a", - O"h) VS. p, for { = - 2.5, k = 0.2 and

y = 0.4 (O"h = 2.60 x 10')

p

10
15
20

a", O'np - Gth p(a", -S'h)

9.64 x 10-' 7.04 X 10-' 7.04 X 10- 2

7.15 X 10-' 4.55 X 10-' 6.83 x 10- 2

6.03 X 10-' 3.43 X 10-' 6.86 X 10- 2
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FIGURE 10 Dispersion relation corresponding to the thermo-diffusiveinstability (measured numerically).
The growth rate is plotted I'S. the wave-number of the perturbation. the parameters are (3 = 10. Le = 0.6.
y = 0.8. The dashed lines represent the unstable wave-numbers in a periodic small box of size L; = 35.5.
The dotted lines show the allowed modes in a large box of size Ly = J20.

with a flat flame front perturbed by a sine function of small amplitude. The wave­
number of the perturbation is k,.

The size of the integration domain has been chosen to be large enough compared
to the expected flame corrugation: Xo = Yo = 0.5 Ly- 256 Fourier modes have been
selected in the x-direction and 48 in the y-direction. The contour levels of the
temperature, drawn on Figures II (a) to II (f), show the transient behaviour from the
initiation to the steady state obtained after about a hundred time units.

Figure ll(a) illustrates the first stage dominated by the linear behaviour: the initital
perturbation has grown accordingly to the linear growth rate. A rather pure sine
function is preserved in the first stage of the integration. When the wrinkles have
reached a finite amplitude, non-linear saturation occurs in the form of a cusped
pattern, as shown in Figure II(b), composed of a very flat "tip" pointing towards the
fresh mixture and ofa "cusp" (region with large gradients in the j-direction), pointing
towards the burnt gases. Because the tip is a nearly plane region that occupies roughly
half of the box, and because diffusive thermal instability is a local phenomenon (as
explained in Section 2), the tip becomes unstable with respect to perturbations of
wave-number k 2 •

Figure ll(c) and Figure ll(d) illustrate the creation ofa new "tip". This mechanism
can be related to the mechanism of "tip-splitting" occuring in experiments on curved
fronts (see Tabeling et al. (1987)). The new pattern develops into a steady solution
exhibiting a cusped pattern analogous to the first one, as shown in Figure I I(e) and
Figure II (f).

To conclude this part, we have shown that non-linear effects have provoked the
initially developed pattern to evolve towards a more stable solution. Thus, it has been
found that the k, solution is non-linearly unstable or has, at least, a very narrow
attractive basin. The two cell solution is the only one to be physically observed. This
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e :\= II 0
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fA b : \:32

d : \=90

f :\= 190

FIGURE 11 Steady solution in a periodic small box: The basic one wave-length disturbance gives way
to a two wave-length steady solution. the isotherms are plotted for 6 values of time; (a): t = 8, (b): t = 32,
(e): t = 70, (d): t = 90, (e): t = 110, (f): t = 190. The parameters are p = 10, Le = 0.6, y = 0.8 and
L, = 35.5.
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214 B. DENET AND P. HALDENWANG

result is qualitatively close to what occurs in the numerical simulations (see Hyman
and Nicolaenko (1986» of the KS equation: steady patterns are obtained in small
boxes and are composed of rather small cells whose wave-number of course lies in the
unstable range given by the linear analysis.

When the pipe is too small, the dynamics is limited to a competition between only
a few modes. If we increase the integration domain in the y-direction we can expect
a more interesting behaviour.

5.2 Simulation in Large Pipe

Increasing the integration domain amounts to considering that the flame propagates
in a larger pipe, in the sense described above. In this paragraph we choose L, = 120
so that II unstable modes are allowed, as shown on Figure 10 by the vertical dotted
lines. Because we expect an increase in the computational effort, we slightly shorten
L, to L, = 20. Furthermore, 128 Fourier modes are retained in both directions. The
numerical experiment we are describing in this paragraph has been initiated with two
different types of perturbation of a flat flame front:

5.2.1 Pure sine Junction If the initiation is carried out with eight cells, the wave­
number of the perturbation is kg and of course lies in the unstable range of Figure 10.
However, this perturbation does not have the largest amplification rate.

The time integration shows that such a "clean" initiation can grow by preserving
the starting number of cells. This finally leads to a steady state solution exhibiting a
regular cusped pattern whose basic wave-number is kg. The contour levels of the
temperature, iso-concentration of the limiting reactant and iso-production lines are
drawn on Figure 12(a) to Figure 12(c) showing steady pattern similar to Figure I I(f).

This result is consistent with the integration (see Aimar (1982), Frisch et al. (1986»
of the KS equation in a large box, provided that the initalization pattern contains a
large number of regular cells. If the number of cells fits with the box size, the
non-linear saturation leads to regular flat "tips", small enough to remain stable with
respect to the basic linear instability. Hence, steady solutions have non-zero attractive
basins.

Conversely, if several wave-numbers are initially excited, one can expect a more
complex dynamic because the "tip-splitting" mechanism produces new cells that grow
in some parts and decay (or merge) elsewhere.

5.2.2 Random initial conditions A way to excite several different modes in our large
box, is to initiate the integration with a randomly distributed perturbation of feeble
amplitude, imposed to the flat front. After a short while, say t = 8, the perturbation
is smoothed because high wave-number modes are rapidly damped. Then the wave­
numbers within the unstable range of Figure 10 are amplified. Non-linear saturation
occurs at about t = 48 and leads to the pattern shown on Figure 13(d). This picture
shows the temperature field and presents about eight cells of non-equal size. The
largest ones have a wave-length close to that of the most strongly amplified mode,
while the others are of small size, lying at the limit of the unstable modes.

Instead ofevolving to a steady state solution, the pattern then develops in a chaotic
way during the time-integration that we have performed. This evolution consists of
some continuous process of cell creation and cell annihilation as shown on Figures
13(a) to 13(k). The cell creation appears through what we have already called a
"tip-splitting" mechanism: at the tip (the rounded part pointing towards the fresh
gases) the curvature is low and locally we are close to a flat front situation. A new cell
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concentration production

215

FIGURE 12 Steady solution in a periodic large box: eight wave-length initiation. The problem admits
a steady solution provided an acceptable number of regular cells are initiated. Isotherm, iso-concentration
and iso-production lines are plotted at the steady state. The parameters are P= 10,Le = 0.6, y = 0.8 and
t., = 120.
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a: t = 48

B. DENET AND P. HALDENWANG

b: t = 56 c:t=64

FIGURE 13 Chaotic solution in a periodic large box: random initiation. If a large number of different
wave-lengths are initiated, the solution develops into space-time chaos. The isotherms are plotted for 11
values of time: (a): I = 48, (b): I = 56, (c): I = 64, (d): I = 72, (e): I = 80, (f): I = 88, (g): I = 96, (h):
I =104, (i): I = 112, (j): I = 120, (k): I = 128. The parameters are p = 10, Le = 0.6, y = 0.8 and
L; = 120.
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e: t =80

FIGURE 13 continued.

f: t =88
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h: 1=104

FIGURE 13 continued.

i: t = 112
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j: t = 120

FIGURE 13 continued.

k : t=128
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220 B. DENET AND P. HALDENWANG

can grow owing to the sensitivity of this portion to the thermal-diffusive instability.
The cell annihilation occurs when two cusps merge into a cusp of larger amplitude
that afterwards decreases towards the common amplitude. This cusp collision seems
to result from two apparently different mechanisms: either two cusps of equal
amplitudes are pushed one towards another by the global pattern and merge
symmetrically-see e.g., the cusps notes S, and S2 on Figure 13(a) to Figure 13(h); or
a cusp of small amplitude seems to be attracted by a larger one and then absorbed in
a non-symmetrical way-for instance, the cusp noted NS 1 is quickly "swallowed" by
the large amplitude cusp noted NSo on Figure 13(e) to Figure 13(g). The latter
mechanism could recall the development of the perturbations described by Zel'dovich
et al. (1980) in the case of curved fronts.

Although this computation (I = -4) lies at the margins of the range which is
assumed for the derivation of the KS equation, it is striking to observe that the results
in a large box exhibit a dynamic qualitatively close to that of the KS equation
computed in a large domain with random initial values. For instance, creation and
annihilation ofcells with the KS equation can be seen clearly in Figure I of Shraiman
(1986). Computations for even lower Lewis numbers, leading to local extinction
phenomenons, can be found in Denet and Haldenwang (1989).

6 CONCLUSION

The present 2-D numerical approach has been able to confirm the dispersion relation
obtained from diffusional thermal theory in the high plimit. For finite P, however, the
numerically measured growth rates can be rather different from the theoretical ones.
Nevertheless, we have shown that the correction, although large, scales like (P)-l .
This result of course remains in accordance with asymptotic analysis.

We also provide a set of original results that allows us to conclude that the
qualitative agreement between the experimental observations and the behaviour of
the Kuramoto-Sivashinsky equation is not fictitious for flame front dynamics.
Furthermore, our results have been obtained in a parameter range for which standard
criteria of any weakly non-linear derivation are near their limits. This indicates that
the domain of validity-in a qualitative sense-is larger than the one that is usually
recognized.
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