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Abstract-A study of finite amplitude instabilities occurring in cellular premixed flames is undertaken, both 
in the case of 2D and 3D flames. We use two different models: the complete equations of isobaric flames 
with one global exothermic reaction and a modified Michelson-Sivashinsky equation (including gravity effecu). 
Different instabilities are found that can be explained in terms of Eckhaus type instabilities of cellular 
patterns. An oscillatory instability also exists, which produces self turbulizing flames. 

Key words: Darrieus-Landau instability, Michelson Sivashinsky equation, cellular patterns, Eckhaus instability, 
oscillatory instability. 

1 INTRODUCTION 

Plane premixed flames are only observed in the case of downwards propagating flames at 
very low flame velocities. With increasing flame speeds, it is well known since the work 
of Markstein (1951) that stable cellular flames, with hexagonal cells, can be obtained 
(see also Quinard et al (1984)). Increasing further the velocity, self turbulizing flames 
appear, on which cells continuously appear and merge. 

The linear instability of plane flames has been theoretically explained in different 
papers (Peke and Clavin (1982), Matalon and Matkowsky (l982), Frankel and Sivashinsky 
(1983)). In these works, the mechanism responsible of this transition is the hydrodynamic 
Darrieus-Landau instability (see Darrieus (1938) and Landau (1944)): because of gas 
expansion, deflection of streamlines through the flame is produced. This has a destabilizing 
influence, giving rise, in the absence of other effects, to a positive growth rate proportional 
to the wave vector. Opposite effects, such as diffusion, which tends to stabilize short 
wavelengths, and gravity, which tends to stabilize large wavelengths in the case of 
downwards propagating flames, are also taken into account in the linear theory. The 
analytical predictions for the values of the growth rates have been roughly confirmed by 
recent numerical simulations of the equations of combustion with a simplified kinetics, in 
the isobaric approximation and without radiative heat losses (Frohlich and Peyret (1991), 
Denet and Haldenwang (1992)). Another possible explanation for the instability exists, 
i.e. the thermal-diffusive instability, caused only by the destabilizing influence of species 
diffusion (Sivashinsky (1977a)). The aforementioned theoretical results (see e.g. Peke 
and Clavin (1982)) show that in the absence of heat losses, the thermal-diffusive instability 
does not seem to be a very plausible mechanism for the instability (i.e. the Markstein 
length remains positive), except perhaps in the case of lean hydrogen oxygen flames. 
However, it is possible to argue that a sufficient amount of radiative heat losses could be 
sufficient to induce a negative Markstein length, and thus produce a thermal-diffusive 
instability. Another argument against the Darrieus-Landau mechanism is the existence 
of cellular Bunsen burner flames both for downward and upward propagating flames, 
whereas flames should be cellular only for downward propagating flame in the Landau 
picture. However the Landau analysis is mainly concerned by (plane on average) flames 
propagating in tubes (the hydrodynamics is different from Bunsen burner flames), and in 
this case cells are observed only for downward propagating flames. Upward propagating 
flames are in this case curved flames, as predicted in the Landau picture. As can be 
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124 BRUNO DENET 

seen from the previous discussion, the situation is not yet completely clear, for a recent 
review see Sivashinsky (1990). 

In the sequel, we shall be concerned with secondary instabilities of flames controlled by 
the Landau mechanism. Our purpose will be to find what is the stability domain of non 
linear cellular solutions and to explain the nature of the instabilities that develop. We 
shall be particularly interested in the spatial structurebf perturbations that grow because 
of these secondary instabilities. It will be found that all the instabilities found do  not 
saturate to a finite amplitude, but that instead the basic cellular structure is completely 
changed because of these instabilities. 

From the point of view of numerical computations, simulations of the complete 
equations of combustion are very expensive, so that it seems difficult to obtain results in 
the non linear domain, particularly in the case of three dimensional flames. Fortunately, 
it has been shown by Sivashinsky (1977b) that is was possible to derive a model equation, 
the Michelson Sivashinsky (MS) equation, from the basic equations of the problem, in the 
case of low gas expansion.. This equation, which contains the effects of gas expansion and 
diffusion, is much simpler and easy to compute numerically than the original equations. 
It has been further shown by Sivashinsky and Clavin (1987) that the MS equation is 
actually valid up to the second order in gas expansion. The MS equation has even been 
extended in a phenomenological manner by Joulin and Cambray (1992) to yield good 
quantitative agreement with for instance amplitudes of flames produced by the Darrieus 
Landau instability. 

Numerical simulations (and analytical solutions in the case of a 1D front) of the MS 
equation have shown (see e.g. Thual er al. (1985)), that the solution was a curved flame 
(i.e. with only one cell in the computational domain). However, the MS equation is easily 
extended to include gravity effects and thus to produce cellular flames. Our purpose 
here will be to study numerically the nonlinear instabilities occurring in these flames, 
and to show that there is a qualitative agreement with experimental results. 

It will be shown here that these non linear instabilities have a close relation to 
instabilities of other cellular patterns. These type of instabilities, often encountered in 
convection (e.g. Rayleigh Benard convection) have attracted a lot of attention: theoretical 
methods have been developed to deal with these problems, particularly in the weakly non 
linear approximation. We will make reference here to the method of amplitude equations 
valid close to threshold of cellular instability. Instabilities of compression dilatation type, 
and also an oscillatory instability will be found to occur in the case of cellular flames. 

The paper is organized as follows. In Section 2 we describe the basic equations (i.e. 
both the MS equation and the complete isobaric equations). In Section 3 we recall briefly 
the basics of amplitude equations and Eckhaus instability. In Section 4 we present the 
numerical studies we have made in the case of 1D fronts. Section 5 is devoted to the 
presentation of a set of numerical results concerning the instabilities of 2D fronts. 

2 BASIC EQUATIONS 

We first recall the complete equations of premixed flames in the isobaric approximation 
and with the simplest chemistry: a single one-step chemical reaction is assumed. Non- 
dimensional quantities are obtained using a classical approach: the length scale is the 
flame thickness obtained from asymptotics, likewise the velocity unit is the asymptotic 
flame speed. The use of the normalized variables allows us to write the model, in a 
frame moving with the flame front, as follows: 
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INSTABILITIES OF CELLULAR FLAMES 125 

with 

and 

where T and C correspond to the reduced temperature of the gas mixture and 
concentration of a reactant (the other reactant being in excess). The boundary conditions 
on T and C are 

T(x = -co,y) = 0, T(x = +co,y) = 1 

C(x = - w , y )  = 1, C(x = + w , y )  = 0 

all quantities being periodic in they  direction (the direction transverse to the flame). 
Le = D,h/D,,, , P = (E/RT;)(T~- T,) and y = (Tb-Tu)/Tb are respectively the 

Lewis number of the reactant (ratio of thermal to molecular difisivity), the reduced 
activation energy (or Zeldovich number) and the heat release parameter (Tb and T. being 
respectively the temperature of burnt and unburnt gases, R is the constant of perfect 
gases). p, v and P are the density, velocity and pressure; F is an external specific force 
per unit volume (gravity for instance). p and X are respectively shear and bulk viscosities. 
Let us define U, the reduced flame speed which is an unknown of the problem. U is 
supposed to be parallel to the x-direction. F will also be parallel to this direction, positive 
and negative F corresponding respectively to downward and upward propagating flame 
( F  being the inverse of the Froude number). 

These equations have been described in Denet and Haldenwang (1992), as well as 
the numerical method we use here. Because of the cost of the numerical computations 
of such equations, we will limit ourselves to 2D simulations, corresponding to a 1D 
front separating fresh and burnt gases. Theoretical predictions for the growth rate of 
perturbations to the plane solution can be found in Pel& and Clavin (1982). This analysis 
relies on an expansion in the wave vector k. Essentially, outside of a boundary layer 
around k=O (corresponding to a growth rate o = O ) ,  the growth rates are approximately 
given by a second order polynomial in k. In order to use an explicit form for the growth 
rates in the Michelson-Sivashinsky equation, we will have to consider that (see Rakib 
and Sivashinsky (1987)) 

u(k) = 0 for k = 0 

where this expression is valid in suitably rescaled variables. G depends on gravity and 
is negative for flames propagating downwards, u depends on diffusive effects, which are 
stabilizing: u is always positive. It is possible to have a transition from stable plane flames 
to cellular flames by increasing G (with the complete equations, it would correspond 
to lowering the parameter F). We emphasize that the band of unstable k will always 
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BRUNO DENET 

FIGURE 1 Sketch of the ID stability domain (possible instabilities are: cell merging (CM), tip splitting 
(TS) oscillatory instability (01)) 

be confined to low values of the wave number. This will be seen to have important 
consequences on the cellular flame's instabilities. 

With the form 11.5 of the dispersion relation, the modified Michelson Sivashinsky 
(MS) equation (with periodic boundary conditions) then reads (see Rakib and Sivashinsky 
(1987) to see an example of the same type of equation but in the case of a thermo-diffusive 
instability with gravity). 

where a represents the flame position, I ( a )  is an operator corresponding to the 
multiplication by a(k) in Fourier space. The MS equation, which can be solved easily 
in both. one and two dimensions by Fourier pseudo spectral methods, describes the 
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INSTABILITIES OF CELLULAR FLAMES 

FIGURE 2 (a b c d) Cell merging for an isobaric flame (the phrical parameters are p=5 Le=l p=0.7 
F=0.3 k=0.22). The flames are represented by their temperature lines for different times with a slight 
dilatation in the direction of the mean flame propagation. It can be seen that the number of cells reduces 
from eight cells (Fig. 2.a) to seven cells (Fig. 2.b) and finally six (Fig. 2.d). 

behaviour of a flame submitted to the above linear instability; this instability saturates 
because of the non linear term, which is the lowest order pertinent term and results 
actually from a geometrical effect associated with the slope of the flame advancing with 
a constant normal velocity (see Sivashinsky (1977b)). 

The difference between the MS equation used here and the usual one is that in the 
form 11.5 of o(k),  we have taken into account the G term, which is due to gravity effects. 
The solution of the usual MS equation consists of only one cell in the computational 
domain; here, by tuning the parameter G, we can also obtain what will interest ourselves 
in the sequel, a cellular flame close to the threshold of instability. 

3 AMPLITUDE EQUATIONS AND ECKHAUS INSTABILITY 

In this section, we will give a short overview of theoretical analysis of cellular structures 
near threshold. All results are fairly classical: the theoly has been developed to deal 
with problems such as Rayleigh Benard convection, Taylor Couette instability.. . See for 
instance Wesfreid and Zaleski (1984) for different examples of applications. 

We are interested in a system undergoing a linear instability, when a control parameter 
(G in the case of the MS equation) is varied. We suppose that just above threshold, the 
band of unstable wave vectors is centered on a particular value qo  corresponding to the 
maximum of the dispersion relation; around qo  the dispersion relation a(k) (real) can 
be approximated by a parabola. For the moment, we restrict ourselves to 1D cellular 
structures. It is possible to express the solution u(x,t) as u(x,t)=A(X,T)exp(iq&)+c.c 
(complex conjugate), where A(X,T) is a complex amplitude function, slowly varying in 
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RLPHA VS Y 

FIGURE 3 (a) Tip splitting instability with the 1D MS equation (physical parameters G=-2 v=0.1 k=3.2). 
Starling from a six cells solution (Fig. 3.a) a twelve cells solution is obtained in a short time (Fig. 3.b) 

time and space. It can be shown that for every control parameter above threshold, in 
suitably rescaled units, A(X,T) satisfies the following amplitude equation: 

If A is taken of the form exp(iQX) (where Q measures actually the difference between 
the wave vector and qo), the linear terms of the amplitude equation will give a growth 
rate a = l - ~ ' ,  i.e. corresponding to the parabolic shape of o(k) near qo. The non linear 
term of the amplitude equation is the lowest order non linear term to be retained. Since 
the original equation is invariant by translation, the equation satisfied by A must be 
invariant under a change in phase. The non linear term satisfies this property. Also, 
without the spatial dependence, A is solution of a Landau type equation: the amplitude 
undergoes essentially a second order phase transition. 
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INSTABILITIES OF CELLULAR FLAMES 

FIGURE 3 (b) Tip splitting instability with the 1D MS equation (physical parameten G=-2 v=0.1 k=3.2). 
Staning from a six cells solution (Fig. 32) a twelve cells solution is obtained in a shon time (Fig. 3.b) 

Let us now talk about the Eckhaus instability of ID  patterns. The control parameter 
will be denoted by E ,  we will suppose that E=O is the threshold. The band of unstable 
wave vector in the plane ( ~ , k )  is limited by a parabola originatin in (O,qo). In the d previous units unstable wave vectors correspond (for every E to Q 5 1 (of course the 
units chosen depend on the control parameter, in order to reduce in each case the 
dispersion relation to u=~-Q'). To each wave vector in this band is associated a non 
linear cellular solution: 

It is possible to study the stability of this solution of the amplitude equation, submitted 
to the perturbation 

To be stable the solution should be stable against all perturbations of this type, it is easily 
demonstrated that this is the case only for Q2 5 113 (this defines a new parabola inside 
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FIGURE 4 (a) Oscillatory instability ( ID MS equation with parameters G=-1.25 u=0.1 k=4.8. A subharmonic 
perturbation of the basic cellular structure can be seen in Fig. 4.a; this perturbation oscillates in time (Fig. 
4.b) grows and produces a self turbulizing flame (Fig. 4.c). 

the linear instability parabola). Outside this new parabola, the basic solution is unstable 
to perturbations with small H: this is the Eckhaus instability. 

Looking at the form of the perturbation, one can see that the Eckhaus instability is a 
compression dilatation instability of the basic cellular pattern. There will be compression 
at some place of the pattern and dilatation elsewhere until a new cell appears in the 
dilatation zone (if the original wave vector was too small) or two cells merge in the 
compression zone (if the wave vector was too great). 

We will have to use these concepts about cellular patterns in the rest of the paper. 

4 NUMERICAL SIMULATIONS OF 1D FRONTS 

We now turn to simulations of 1D fronts. We will consider two models: the MS equation 
in 1D solved by standard Fourier pseudo spectral methods, and the complete equations 
of premixed flames in two dimensions (one dimension perpendicular to the flame). These 
models have been described in Section 2. 
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INSTABILITIES OF CELLULAR FLAMES 

FIGURE 4 (b) Oscillatory instability ( ID MS equation with parameters G=-1.25 " ~ 0 . 1  kz4.8. A subharmonic 
perturbation of the basic cellular structure can be seen in Fig. 4.a; this perturbation oscillates in time (Fig. 
4.b) grows and produces a self turbulizing flame (Fig. 4.c) 

With both models, we will choose the physical parameters in order to get cellular 
flames slightly above threshold. We first obtain a stable cellular flame, then the width of 
the computational domain is suddenly changed and we observe for certain widths (and 
for the associated wavelengths) the development of some instabilities. We then deduce 
from these numerical experiments the qualitative shape of the domain of stability in the 
plane (control parameter, wave vector). This approach is of course reminiscent of the 
work of Busse and coworkers on the Rayleigh-Benard problem (see Busse (1978)). Here 
and in the rest of the paper, we don't pretend to find precisely the limits of stability; 
actually, since all the instabilities we are interested in are secondary instability (very 
slow), it would necessitate a huge CPU time to locate precisely these limits. 

For ID fronts, the limits are qualitatively plotted in Fig. 1. To be concrete we have 
taken here the control parameter to be G (of the MS equation), but close to threshold 
the figure has exactly the same aspect with the complete equations. The instabilities are 
also of the same type, which will give us some confidence about the results we will obtain 
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BRUNO DENET 

FIGURE 4 (c) Oscillatory instability ( ID MS equation with parameters G=-1.25 u=O.l k=4.8. A subharmonic 
perturbation of the basic cellular structure can be seen in Fig. 4.a; this perturbation oscillates in time (Fig. 
4.b) grows and produces a self turbulizing flame (Fig. 4.c). 

when integrating numerically the 2D MS equation. The major difference between both 
cases seems to be that it is a hundred times cheaper in CPU time to work with only the 
MS equation. 

As can be seen in Fig. 1, the stability domain of the basic cellular flame takes the form 
of a parabola inside the linear instability curve. By increasing G, it is however possible 
to get an oscillatory instability. For even higher values of G, we observe a phenomenon 
not plotted on the figure, that we have not studied in detail: an effective reduction of 
the number of cells as G is increased; starting from eight cells in the domain at the 
instability threshold, it is possible to get progressively four, two cells.. . This phenomenon 
allows to recover continuously the behaviour of the pure MS equation without G term: 
i.e. a flame with only one cell in the whole computational domain. A study of this 
phenomenon would necessitate however a high precision, because the flames obtained 
seem very sensible to numerical noise. 
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INSTABILITIES OF CELLULAR FLAMES I33 

FIGURE 5 (a)  Stationary solution of  the 2D MS equation with physical parameters G=-2 v=0.1 k=5. 
Fig. 5.a surface representation, Fig. 5.b lines of  constant flame position. 

Coming back to the behaviour near threshold, the parabolic shape of the stability 
limit reminds us of the Eckhaus parabola (see Section 3). It seems quite normal: a 
one dimensional cellular structure (here a flame) is usually described by an amplitude 
equation and exhibits an Eckhaus instability. But in the case of flames there is an 
important point to keep in mind: the linear (Darrieus-Landau) instability occurs at low 
values of k. Thus, it is possible to be very close to threshold and to have in the unstable 
band of wave vectors two values k l  and kz such as k2=2 kl. This property is rather 
unusual, and it seems that we are here at the limit of validity of the amplitude equation 
approach. Nevertheless, the shape of the stability limit is of the same type as for the 
usual Eckhaus instability. As we will see, the instabilities (we will sometimes talk in 
the sequel of degenerate Eckhaus instabilities) are qualitatively different because of this 
P'oPerty 

We now describe the behaviour on the high k side of this instability, on the basis of a 
simulation with the complete equations. The physical parameters chosen (see Section 2) 
are P=5 (this is a low value of p, chosen in order to be able to use an equidistant mesh), 
Le=l ,  p=0.7, F=0.3, k=0.22. These particular values of the parameters correspond to 
a flame slightly above threshold; we have numerically measured in this case the unstable 
band of wave vectors to be [0.09,0.23] (a method for measuring growth rates is given 
in Denet and Haldenwang (1992)). The band of wave vectors inside the theoretical 
Eckhaus parabola should then be [0.13,0.19] (see Section 3): The value k=0.22 is thus 
very close to the linear stability limit, but still linearly unstable, and is very likely to be 
unstable to an Eckhaus type instability. The results are plotted in Figure 2, where five 
temperature lines are plotted to locate the flame position. We start from a eight cells 
solution (Fig. 2.a). In order to accelerate the instability development, this solution is not 
purely sinusoidal, but actually there is already some compression at some place of the 
structure. In Fig. 2.b, we can see that two cells have merged in this compression zone, 
and we have now only seven cells. The amplitude of these cells then grows, because the 
mean wave vector of the structure corresponds now to a higher growth rate (Fig. 2.c). 
However, the wave vector is still relatively high and we can see in Fig. 2.d that another 
cell has disappeared and we have now only a six cells solution. 

All these phenomena are of course relatively close to a standard Eckhaus instability, but 
here, although there is obviously the same mechanism of cell reduction as in the high k 
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134 BRUNO DENFI 

FIGURE 5 (b) Stationary solution of the ZD MS equation with physical parameters G=-2 v=0.1 k=5. 
Fig. 5.a surface representation. Fig. 5.b lines of constant flame position. 

Eckhaus instability, it is important to note that the cells move only very slightly during the 
computation. In an usual Eckhaus instability, the cells first move to create compression 
at some place in the structure, then begin to merge. Here there is practically no phase of 
cell movements before cell merging. This conclusion is supported by simulations made 
with the MS equation with a more sinusoidal initial condition. 

We now turn to the low k degenerate Eckhaus instability (see Fig. 1). We will use here 
the MS equation but similar phenomena occur with the complete isobaric equations. 
We use the parameters G=-2, u=0.1, k=3.2 (the band of linearly unstable wave vectors 
is [2.76,7.24], the band of wave vectors inside the theoretical Eckhaus parabola being 
[3.70,6.29] (see Section 3)). Here and in the rest of the paper, we will always use v=0.1 
because we had some numerical experience with this value of the "viscosity" for G-0 
and k=l ,  but actually we could have as well chosen the units such as v=l. We start from 
a six cells solution (Fig. 3.a). Because the initial k chosen lies outside the theoretical 
Eckhaus stable band, it is not a surprise that we observe a secondary instability. But 
the type of instability is surprising: a tip splitting mechanism occur; each cell breaks in 
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INSTABILITIES OF CELLULAR FLAMES 

FIGURE 6 Sketch of the 2D stability domain (passible instabilities are cell merging (CM) tip splitting 
(TS) hexagonal Eckhaus (HE) oscillatory instability (01)). 

two parts, from the initial six cells we now get twelve cells (Fig. 3.b)! The twelve cells 
solution has now a value of k that is too high and still outside the Eckhaus stable band, 
but after some cell merging (not plotted) of the type previously described, a stable eight 
cell solution will appear. 

To conclude on compression dilatation instabilities in 1D fronts, degenerate Eckhaus 
instabilities are observed approximately at the location foreseen by theoretical analysis. 
Nevertheless, they take unusual forms because the linear instability appears at very low 
k: cell merging and tip splitting mechanisms'are observed on the high and the low k 
sides respectively. We note that cell destructions, without preliminary displacement, have 
been also observed in directional solidification (see Bechoefer and Libchaber (1986)). 

Let us now describe the oscillatory instability that occurs for sufficiently high G (see 
Fig. 1). For the moment, we have only observed this instability with the MS equation, 
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136 BRUNO DENET 

FIGURE 7 (a) 2D example of cell merging ((physical parameters G=-2 v=0.1 k=6.8). Evolution of the 
solution with time: the amplitudes of some cells decrease (Fig. 7.b); the cells merge (Fig. 7 4 :  the final 
stationary solution is obtained (Fig. 7.e). 

FIGURE 7 (b) 2D example of cell merging ((physical parameters G=-2 v=0.1 k=6.8). Evolution of the 
solution with time: the amplitudes of some cells decrease (Fig. 7.b); the cells merge (Fig. 7.c); the final 
stationary solution is obtained (Fig. 7.e). 

and have not tried to find it with the complete isobaric equations, because this instability 
is relatively slow and much more difficult to locate in parameter space than the previous 
Eckhaus type instabilities. As a result, a numerical simulation of this effect with the 
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INSTABILITIES OF CELLULAR FLAMES 137 

FIGURE 7 (c) 2D example of cell merging ((physical parameters G=-2 ~ 0 . 1  k=6.8). Evolution of the 
solution with time: the amplitudes of some cells decrease (Fig. 7.b); the cells merge (Fig. 7.c); the final 
stationary solution is obtained (Fig. 7.e). 

FIGURE 7 (d) 2D example of cell merging ((physical parameters G=-2 v=0.1 k=6.8). Evolution of the 
solution with time: the amplitudes of some cells decrease (Fig. 7.b); the cells merge (Fig. 7.c); the final 
stationary solution is obtained (Fig. 7.e). 

complete equations would be extremely expensive. We take the parameters G=-1.25, 
v=0.1, k=4.8. 

This instability is actually a subharmonic instability, i.e. a modulation of the cellular 
structure with a wavelength of twice the original one (i.e. a wave vector twice as small) 
develops (Fig. 4.a). This modulation oscillates in time (Fig. 4.b) and grows. After a 
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FIGURE 7 (e) 2D example of cell merging ((physical parameters G=-2 u=0.1 k=6.8). Evolution of the 
solution with time: the amplitudes of some cells decrease (Fig. 7.b); the cells merge (Fig. 7.c); the final 
stationary solution is obtained (Fig. 7.e). 

short time the modulation completely destroys the basic cellular structure and a self 
turbulizing flame is obtained (Fig. 4.c). The integration has been continued for a long 
time: the solution remains always chaotic. We will see in the next section that similar 
phenomenons can be observed in the case of 2D fronts. 

It might in principle be possible to build a theoretical model exhibiting this oscillatory 
(subharmonic) instability. One should truncate the problem by analytically retaining only 
the lowest order Fourier modes, thereby obtaining a model close to the Lorenz model 
(Lorenz (1963)) of convection. But it seems to be difficult to do such a truncation, because 
we have verified that the amplitude of the Fourier modes decreases in an extremely slow 
way. A pertinent model should then contain a high number of modes, and would not 
be very tractable. 

5 NUMERICAL SIMULATIONS O F  2D FRONTS 

To deal with the instabilities of 2D cellular fronts, we have confined ourselves to the 
2D MS equation, because the possibility of an equivalent 3D simulation of the isobaric 
equations seems to be completely unrealistic for the moment. First of all, let us note 
that a numerical simulation of the 2D MS equation is actually rather easy to perform 
in the framework of Fourier spectral methods. The operator [(a) of the modified MS 
equation (see Section 2) continues to correspond to the multiplication by the growth 
rate u(k) in Fourier space, except that now k has to be interpreted as the modulus of a 
two dimensional wave vector. 

We will begin by describing the stable cellular structures occurring in the 2D MS 
equation. As can be seen in Figure 5.a, and as was previously shown by Michelson and 
Sivashinsky (1982), the obtained cellular structures are actually hexagonal (the parameters 
are G=-2, u=0.1, k=5). The MS equation closely resembles the experimental results 
for laminar cellular flames (see Markstein (1951), Quinard et al. (1984)). Note however 
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FIGURE 8 2D example of tip splitting (physical parameters G=-2 v=0.1 k=3). A new cell begins to grow 
inside each old cell. 

that hexagonal structures can also be obtained in the framework of the thermal diffusive 
model (Shtilman and Sivashinsky (1990)). We won't be interested in these stationary 
solutions, only in non linear instabilities of this type of cellular flame. 

In Fig. 5.a, the solution was plotted as a surface in a 3D space. This representation 
looks very like the experimental photographs, but is rather difficult to interpret when 
instabilities develop. We have chosen instead to plot the lines of constant Rame position 
a, and, in order to get easy to read figures, to only plot one line of this type, i.e. the 
line corresponding to the mean of the minimum and the maximum of a. This value 
is of course not constant with time but depends on the form of the front obtained at 
a certain time step. This representation will permit us to give a good qualitative idea 
of the solution; as an example we have plotted in this manner in Figure 5.b the same 
stationary solution as in Fig. 5.a. As can be seen in this figure, the lines plotted look 
essentially circular. 

Limits of stability are plotted in Figure 6. A parametric study was undertaken in order 
to discover whether the basic cellular solution was stable or not. Most of the instabilities 
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FIGURE 9 Hexagonal Eckhaus instability (G=-2.25 u=0.1 k=4.5). A dilated cell begins to break into Wo 
new cells. 

encountered are the same as in the 1D case: we have 2D equivalents of tip splitting on 
the low k side, cell merging on the high k side, and oscillatory (subharmonic) instability 
for sufficiently high G. The only differences are that the oscillatory instability occurs for 
lower values of G, and a new instability exists close to the tip splitting, that we have 
called hexagonal Eckhaus. 

Of course, the qualitative aspects of these different instabilities are not quite the same 
in two dimensions. In each case, we initiate the calculation with a stable hexagonal 
structure and study the instabilities that develop. 

An example of cell merging is shown in Figure 7 (the parameters are G=-2, v=0.1, 
k=6.8). We start from a 18 cell solution (Fig. 7.a); after some time we obtain Fig. 7.b: 
some cells have an amplitude that decreases (the circles have a lower radius). On the 
contrary, it is easily seen in the same figure that the relative amplitude of other cells 
grow (the circles have a greater radius). Then the cells merge, and we obtain in Figure 
7.c a six cell solution. This time the wavelength of the solution is too small to lie in the 
stability domain of Fig. 6, thus the cells break into new smaller cells and the disordered 
solution of Fig. 7.d is obtained. After some time this disordered solution becomes the 
ten cell regular stationary solution of Fig. 7.e. One can conclude from this simulation 
that, as in one dimension, the role of the Eckhaus type instabilities is to select a cellular 
solution, whose wave vector lies in the stable domain of Figure 6, in general completely 
different from the original solution. In the case of tip splitting and of hexagonal Eckhaus 
instabilities, we shall only show how the instability develops and not the subsequent 
evolution toward another cellular solution. What is really important is to determine the 
stable domain of Figure 6, every final solution produced by the Eckhaus instabilities has 
to lie in this domain. 

In Figure 8, we show an example of tip splitting (the parameters are G=-.2, v=0.1, 
k=3). As in ID, a new cell appears in the middle of each initial cell, in the rounded part 
of the front that would be pointing towards fresh gases in a real flame. This mechanism 
is very fast, and one obtains a lot of small cells that are again unstable because the wave 
vector is now too great; after a complicated evolution of the type shown in Figure 7, a 
cellular solution with a wave vector in the stable range of Fig. 6 would be obtained. 
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FIGURE LO (a) Development of the oscillatory instability in 2D (G=-1.6 v=0.1 k=5.3) 

FIGURE 10 (b) Development of the oscillatory instability in 2D (G=-1.6 v=O.l k3.3) 

In Figure 9, a case of hexagonal Eckhaus instability is presented (G=-2.25, u=0.1, 
k=4.5). As in standard Eckhaus instability, the structure gets compressed in some places, 
dilated in others, but above all the structure is twisted. Then a new cell forms at a place 
where dilatation occurred (Fig. 9 is plotted at the moment where an old cell breaks into 
two new cells), and as usual a solution with a wave vector in the stable range would 
appear after a long transient. 

A theoretical description of instabilities of hexagonal structures close to threshold can 
be found in Caroli, Caroli and Roulet (1984). Essentially an hexagonal structure can be 
considered as the superposition of three systems of rolls, with angles 2a/3 between each 
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FIGURE 10 ( c )  Development of the oscillatory instability in 2D (G=-1.6 v=0.1 k=5.3). 

FIGURE I 1  Example of 2D self turbulizing flame obtained for G=-1.5 v=0.1 k=5.3. 

others. Each system of roll has its own amplitude, aad the structure can be properly 
described by using three amplitude equations coupled. The coupling not only involves 
cubic terms, but also quadratic terms. Instabilities of Eckhaus type, as we have observed 
here, can be found, but apparently only in the case where quadratic terms are sufficiently 
low. The observations we have made seem compatible with these results, even though 
we are here in a case of low wavevectors, which, as we have previously seen, modifies 
the qualitative aspects of the different instabilities. 

In Figure 10 (G=-1.6, u=0.1, k=5.3), we show the development of an oscillatory 
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instability. As in the 1D case, the instability produces spatial subharmonics of the basic 
cellular structure (both small and big cells can be seen when moving in the x direction). 
The oscillatory character of the instability becomes evident when an inversion of these 
small and big cells appear. As in the 1D case, these oscillations never saturate to a finite 
amplitude, on the contrary, the basic cellular structure gets destroyed by the oscillations, 
leading to a self turbulizing flame. An example of such a flame is plotted in Fig. 11, which 
corresponds to the slightly different parameters G=-1.5, v=0.1, k=5.3. This type of self 
turbulizing cellular solution was first obtained in the pioneering paper of Michelson and 
Sivashinsky (1982). The model used was the same, with the same periodic boundary 
conditions, however it was considered in connection with the problem of expanding 
spherical flames. Our results confirm the existence of these self turbulizing solutions and 
make clear that the origin of these solutions is the subhannonic instability previously 
described. Also the results are interpreted for the case of a downward propagating flame 
submitted to a hydrodynamic instability. As previously noted, the 2D instability exists 
however for lower values of G than the 1D one. It seems that the domain of parameters 
where the instability grows is modified a little with different boundary conditions (i.e. 
for instance a larger computational domain with a structure of the same wave vector). 
But an oscillatory instability exists in any case. 

6 CONCLUSION 

In this paper we have been interested in secondary instabilities of cellular premixed 
flames propagating downwards. We have been able to show that, even relatively close 
to threshold, a lot of instabilities can be found. Some instabilities have the role of 
changing the number of cells in the domain when the wave vector gets too high or too 
low, they produce cellular stationary solutions completely different from the original 
one. The oscillatory (subharmonic) instability occurs at higher values of the control 
parameter G (i.e. corresponds to faster flames). It has the important property of 
producing self turbulizing flames quite similar to those observed in experiments. These 
results are obtained in a model based on the Landau picture where the basic cellular 
structure is caused by an hydrodynamic instability. Our study is limited to the w e  of 
periodic boundary conditions; however it seems that the hydrodynamic instability could 
be sufficient to explain experimental results on (plane on average) cellular downward 
propagating flames in tubes. 
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