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Numerical simulations of a model for cellular tip growth are performed, using a Green’s function for-
malism. In this model, cellular growth is coupled to a morphogen concentration outside the cell. Typi-
cal shapes are obtained, and compare satisfactorily to experimental results.
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I. INTRODUCTION

Growth at the unicellular level can occur in two basic
manners [1]: diffuse growth and tip growth. The first
mechanism corresponds essentially to uniform expansion
of the cell wall, while in the second expansion is limited
to a particular zone of the membrane. As a result of this
kind of cellular growth, cells often become cylindrical,
that is, a rhizoid shape, expansion being confiaed to an
apical dome at the end of the cell. A variety of different
cells grow in this manner; for example, root hairs, hyphal
cells observed in fungi, and pollen tubes [2]. Another
well-known example is the neuron. In this case, the neur-
al axon exhibits the cylindrical shape previously de-
scribed. Each dendrite tip is also growing because of the
same type of phenomenon and takes the form of a growth
cone, although in this last case there is also continuous
secondary branching. Related effects are also observed in
unicellular algae, for instance, Micrasterias rotata [3]. In
this case, several lobes are formed in the ceil wall, and
during the growth each lobe enlarges: this is called lobe
broadening. When the lobe is sufficiently large, it breaks
in two and this is called lobe branching.

All these observations closely resemble other propaga-
ting front experiments, such as solidification fronts,
Saffman-Taylor fingers, or flames (see, for instance, [4] for
a review). There is thus the hope to use this analogy in
order to obtain theoretical models of tip growth, taking
into account, of course, the specificities of biological phe-
nomena. A first step in this direction has been the use of
geometrical models of morphogenesis [5]. These models
are similar to the geometrical model in dendrite growth
[6], and describe normal growth velocity at a given point
of the front only in terms of local quantities such as the
curvature and its derivatives. Shapes similar to the ex-
perimental results have been obtained by numerical simu-
lations of this model [7].

However, as in the solidification case, it is now neces-
sary to obtain more realistic and nonlocal descriptions of
the growth. The model of Hentschel and Fine [8] is
promising: the normal velocity at a point of the interface
is considered to be a function of a morphogen concentra-
tion which satisfies a diffusion equation, the concentra-
tion flux at the interface being also concentration depen-
dent.

In this paper, we will solve numerically a modified ver-
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sion of the Hentschel-Fine model, in which the morpho-
gen is located outside the cell. The model will be de-
scribed in Sec. II. We will suppose that the concentration
field can be supposed quasistationary in the reference
frame moving with the tip, and the equations will be de-
scribed in this approximation in terms of Green’s func-
tions in Sec. III, with also a description of the numerical
method used in the simulation. The results concerning
the possible shapes of the tip will be described in Sec. IV.

II. MODEL

The original Hentschel-Fine equations [8] correspond
to a morphogen located inside the cell, which satisfies a
diffusion equation and whose flux at the membrane is a
function of the local concentration. The normal velocity
at the current point on the interface is also assumed to be
a function of the local concentration. In some papers, it
has been attempted to describe the growth only in terms
of elongation of the cell surface and not in terms of nor-
mal velocity; see, for instance, [9], where a model of algal
growth considering the coupling between an interface
and a reaction diffusion prepattern was considered.
However, it has been emphasized in [5] that the elonga-
tion rate does not determine cell growth in a unique way,
contrary to normal velocity, and that there is a relation
between elongation rate and normal velocity that depends
on the tangential velocity of the particles incorporated in
the membrane. So in the geometrical models of [S] and
[7], two laws were assumed, one on the elongation rate,
and the other on the tangential velocity. On the con-
trary, in [8], there is only one law on the normal velocity,
and it has the same effect of completely describing cellu-
lar surface growth.

In this paper, the authors have in mind the growth of
dendritic arbors in neurons and the calcium ion as a mor-
phogen, which can act as a catalyst of polymerization
(and depolymerization) reactions involved in cytoskeletal
formation. The essential reactions of this type concern
tubulin and actin, and depend on the value of the inner
concentration of calcium. Assuming that the normal ve-
locity depends in a bell shaped manner on the submem-
brane calcium concentration, a stability analysis of the
circular shape has been performed and it has been shown
that two types of instabilities are possible: a spontaneous
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ionic current instability at constant shape can occur; then
leading to a shape modification of the ionic current is car-
ried by a morphogen. There is also the second possibility
of a coupled instability of both the form and the ionic
current pattern.

The calcium flux at the membrane is carried by voltage
dependent calcium specific ion channels, and can be an
important part of the total ionic currents observed in
some systems [10], such as the zygotes of the brown algae
Fucus or Pelvetia during tip growth [11]. These algae
have been a common system for morphogenesis studies.
However, the calcium ion channels have the very specific
property that the calcium influx increases when the mem-
brane depolarizes, and this voltage dependence could be
sufficient to create a spontaneous instability of the ionic
current pattern at constant shape (see [12] and [13] for a
theoretical and a numerical study of this effect). Another
possible explanation of the ionic current pattern observed
in the Fucus zygote prior to any growth is based on the
mobility of calcium channels and pumps on the mem-
brane [14].

On the other hand, diffusive morphogens different from
the calcium ion exist, for instance in the case of growth of
hyphae in fungi, amino acids such as methionine in the
water mold Achlya bisexualis [15], or acetylcholine in the
neuron case. However, these morphogens are often locat-
ed outside the cell, and their concentration can control
the growth. These morphogens are called chemoattrac-
tants because a modification of their concentration can
curve the-tip (this is called chemotropism) or induce side
branching [16,17]. The flux of these chemoattractants is
associated with the ionic current pattern: for instance,
the amino acids are carried by a symport together with
the H ion. So we consider a model where the morpho-
gen is located out of the cell; let us denote its concentra-
tion by C and its concentration at infinity by C . We
will use in the following the normalized concentration

u=(C—C,)/C,

which varies from O at infinity to — 1 if there is no mor-
phogen concentration at all (we have found in the simula-
tions that u is always negative): it satisfies a diffusion
equation with diffusion coefficient D:
ou
—=DAu . 1
ot (1)
In all the simulations, we have kept the diffusion
coefficient equal to 1. Furthermore, as in the Hentschel-
Fine model, the normal influx at the membrane is given
as a function of the local concentration:
ou
D—=j(u). 2
FYaALY) )
The local normal velocity of the interface is also a func-
tion of the local morphogen concentration:

v,=v(u). (3)

This model contains two unknown functions j(u) and
v (u), but it should be possible to measure these functions
experimentally. We have now to specify the two func-

tions we will use in the following. We will take the sim-
plest possible form for j(u), namely, a linear dependence
on u,

ju)=u—u,, 4)

where u, will take the constant value —0.15 in all the
simulations. The flux j(u) has here a positive slope
versus the normalized concentration u: the higher the
outer concentration, the higher the morphogen flux
entering the cell. This positive slope corresponds to the
most common situation; let us note, however, that in the
case of calcium the slope can be negative for sufficiently
high external calcium concentrations [11].

Let us now discuss the interface normal velocity v (u).
First of all, contrary to the Hentschel-Fine model where
the submembrane calcium concentration acts as a cata-
lyst of chemical reactions related to cytoskeletal forma-
tion, here the relation between the outer morphogen con-
centration and the normal velocity is less direct. There is
much experimental evidence of outer morphogens con-
trolling tip growth, but we do not have in all cases a pre-
cise idea of the actual mechanism involved. It is likely
that this mechanism depends on the important morpho-
gen in a particular biological system. But anyway there
will be coupling, for instance, through control of inside
calcium concentration in the acetylcholine case, between
the morphogen concentration and formation of actin fila-
ments, microtubules, or other microfibrils inside the cyto-
plasm.

In the example previously quoted of the water mold
Achlya bisexualis, the morphogen is an amino acid which
is a nutrient for the cell, providing nitrogen, sulfur, and
perhaps energy [18]. It is thus not very surprising that
this type of morphogen has an effect on cell growth, but
in this case the effect is local. The amino acid enters the
cell by symport with the H" ion, and probably controls
the concentration of apical vesicles which fuse with the
apical membrane and provide new material necessary for
cell wall formation. It is generally believed that the vesi-
cles are produced far from the tip and have to travel to-
ward the apex, for instance, by a vectorial transport
mechanism, but this point has not been demonstrated,
and it is possible that the vesicles are produced apically,
in a coherent structure called Spitzenkorper [10].

So here, as in Hentschel and Fine’s work, we make the
simplifying assumption that the normal velocity is simply
a function of the concentration. This is of course a phe-
nomenological description of a phenomenon which de-
pends on different factors: turgor pressure, cell wall syn-
thesis, and cytoskeletal formation. However, as we do
not have at this stage quantitative indications on these
different effects, a global description of the growth at a
macroscopic level is mandatory, which leads to the exper-
imentally well-established notion of growth controlled by
morphogen concentration.

Furthermore, we are only interested here in tip growth,
and we have to choose the function v (%) in order to ob-
tain this type of effect. Of course, if the normal velocity
was only slightly dependent on the concentration, then
we would obtain a more or less uniform expansion of the
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cell, and it would result in diffuse growth. In tip growth,
on the contrary, we have different zones on the cell: the
active zone where the growth phenomena are localized
and a frozen zone where practically nothing happens.
Often there is a change in the chemical structure of the
membrane (and the cell wall in the case of plant cells) be-
tween these two regions (see [19] in the case of hyphal
growth in fungi).

This form of the dependence of the normal velocity on
concentration will be the one suggested by experiments.
For instance, in experiments on side branching [16], for a
low concentration of morphogen the normal velocity is
exactly zero on the (plane) tip side: this corresponds to
the frozen zone. If the concentration is increased locally
above a certain threshold, then the local normal velocity
increases with concentration; this is the active zone. The
rigidity of the membrane has also to be taken into ac-
count, in order to prevent small-scale disturbances from
becoming linearly unstable. We -will take a function of
the form

3% . .
au+b+7F ifu>u*=—b/a
v(u)= 22 s (5)
——'; if u <u*,
ds

where « is the curvature, s the curvilinear coordinate on
the interface, and aq, b, and y are positive numbers. In
Eq. (5), a is positive: the normal velocity increases with
outer morphogen concentration in the active zone. The
term in y is of the form taken previously in [8] and [7].
In the terminology of [8], we will call in the following the
coefficient ¥ the “effective rigidity,” but one should
remember that it is not the rigidity coefficient occurring
in equilibrium elasticity. So, below the value u *, we have
a frozen zone where only “rigidity”’ effects are present.

We would like to emphasize that, although we have
here expressed the normal velocity as a function of the
rescaled variable u, it is actually a function of the physi-
cal concentration C. In this variable, the frozen zone
corresponds to C <C*. If we take a small value of
C,.(<C*), the concentration C will be smaller every-
where in the domain, and thus smaller than C*: the in-
terface will be completely frozen. So with no morphogen
or with only a small amount of morphogen there is no
growth at all in this model. This effect can be observed in
experiments [16]; however, in a lot of experimental cases
there are several morphogens present in the extracellular
medium, and not only one, as in the Hentschel-Fine type
of models.

The problem now is to solve the previous set of equa-
tions, particularly the diffusion equation in a domain lim-
ited by a moving boundary. This is not a simple task, but
we can observe the analogy of these equations with the
one-sided model of crystal growth. In the next section,
we will describe a Green’s function formulation of this
model valid in a quasistationary approximation.

III. GREEN’S FUNCTION FORMULATION

In this paper, we are not interested in the linear stabili-
ty of any basic solution such as the circular one, but only
in solutions where a well-defined tip will form and ad-
vance. The situation is then relatively similar to the ad-
vance of a solidification front in a supercooled melt,
where the solution is close to an Ivantsov parabola. In
this case, the normal front velocity is also coupled to
diffusion fields that satisfy boundary conditions at the in-
terface. Green’s functions formulations, together' with
boundary element methods, have been used successfully
to obtain numerical solutions of the dendritic shape in
the solidification problem, in stationary [20] as well as
nonstationary cases [21]. Of particular interest to us is
the one-sided model of crystal growth, where the
diffusion is assumed to take place only in the liquid,
which is not very different from the model with a mor-
phogen outside the growing cell that we have described in
the previous section. We will perform here nonstationary
numerical simulations of this morphogenesis model, and
it will be relatively similar to the same type of simulations
for the one-sided solidification model (see [21]).

Let us define x to be the transverse coordinate and z
the longitudinal coordinate, corresponding to the direc-
tion of propagation of the tip. If V is the tip velocity,
then we can consider the frame of reference advancing at
this speed and introduce the new coordinate

E=z—Vt. (6)

In this frame of reference, we will consider that the
diffusion field evolves in a quasisteady manner, so that
the following equation is satisfied:

- 20u _
Lu—Au+I o¢ 0, (7

where [ =2D/V is a diffusion length. Normally, Lu
should be equal to the time derivative of u, but we can
neglect this term in the quasisteady approximation. If we
introduce the adjoint operator L * of L, and the Green’s
function g (r,r’) of the adjoint operator, defined as

Ltg(r,r)y=—8(r—r"), (8)

then this Green’s function can be written as
glr—r)y=— e OVIK (Ir—r'| /D), )
21

where K, is the modified Bessel function of zeroth order.
It can be shown by use of Green’s theorem [21] that the
morphogen concentration u and its normal derivative on
the interface can be related as

nou '
fdsg(r,r )a(r)—fds h(r,r' u(r), (10)

where s is as before the curvilinear coordinate, the in-
tegration being taken on the whole interface, and 4 is the
following function:
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h (r,r’)=—1—e(§*§,m —n,Ky(|r—r'| /1)

2l
—ﬂ(r—_',‘lK,(lr—-r’Vl)
lr—r'l
—c(r)8(r—r'), (11)

where K, is the modified Bessel function of the first or-
der, n is the normal vector on the interface, and n, the
longitudinal component of the normal. It can also be
shown that A satisfies the important formula

fdsh(r,r'):—l, (12)

the integration being again taken on the whole interface.

At a given time step, the interface will be discretized as
a finite number of points (x;,§;) where j varies from 1 to
the number of points N. There is a unique circle which
goes through three successive points of the mesh, thus
defining the local normal vector and curvature. Between
two points of the mesh, the interface is approximated by
a straight line. Then we can calculate the functions
g(r,r') and A (r,r’') by formulas (9) and (11), the velocity
V corresponding to the velocity of the tip at the previous
time step, for any values r and r’ of the interface, not only
exactly on the mesh, but also in between. We calculate
the morphogen concentration on the interface u; by solv-
ing the integral equation (10). This equation can be
discretized into a matrix equation linking the concentra-
tion on the mesh u; and the normal derivatives of the
concentration on the mesh:

du

N
o | = 3 Hyu; (13)

it

N
2 Gij

=1

where the matrix coefficients G;; and H;; are integrals of
g and h performed on segments between mesh points (see
[21] for more details). These integrals are performed us-
ing standard Gauss quadrature methods, except in the
cases where j=i,i +1,i —1, where the modified Bessel
functions have a logarithmic divergence which must be
taken into account with specific Gaussian integration for-
mulas for integrands with a logarithmic singularity [22].
Furthermore, Eq. (12) makes it possible to calculate the
diagonal coefficients H;; by the formula

Hiiz*zHij—l . (14)
i
Thus we have to solve Eq. (13), the normal derivatives of
the concentration on the interface being a function of the
concentration through Egs. (2) and (4). We solve this
equation by an iterative process that converges toward
the concentration on the mesh ;.

Once the concentration has been calculated on the in-
terface shape at a given time, we obtain the interface at
the next time step by advancing each mesh point with the
normal velocity given by Eqgs. (3) and (5), the normal vec-
tor and curvature being calculated as explained above.
Actually we suppose that the tip is symmetric and only
calculate the positions of half of the interface points.
Then we obtain the new value V of the tip velocity (we

define it here as the normal velocity of the most advanced
point of the interface); this new value of V defines a new
diffusion length / =2D /V: it is thus possible to calculate
the functions g and % corresponding to the new shape and
diffusion length at the next time step.

The interface we solve numerically is not infinite and
must be truncated at some point. However, the active
zone of the tip is in practice not affected by the tail region
if the integration domain is sufficiently extended, so this
is a minor problem. Because of the propagation, the
mesh points have a tendency to concentrate in some
zones or to move apart in other regions, so that it is
necessary to modify the mesh in the course of the calcula-
tion. Points are added where precision is not sufficient or
suppressed where they are too close and could cause nu-
merical instabilities.

IV. RESULTS

We will here obtain numerical solutions of the model
described in the previous sections which have the form of
an expanding tip, and show that these solutions are quite
similar to experimental results. Furthermore, our calcu-
lations are limited to solutions growing in a quasistation-
ary manner, and we will have to select initial conditions
leading to such an evolution. Some initial solutions seem
to lead to rapid transients that we cannot solve in the
framework described in the previous section.

Apart from this condition of slow temporal evolution,
the initial conditions will be relatively arbitrary, and we
expect that a growing tip can emerge from this initial
condition. After a sufficient period of growth, the tail
will not influence the growth any more, so the initial con-
ditions will not be important.

We first consider a case with high “effective rigidity.”
The normal velocity defined by Eq. (5) corresponds here
to the parameters a =33.33, b =2.66, and ¥ =10. The
time step in this calculation is limited to very low values
because of numerical stability considerations. We show
in Fig. 1 how the tip forms from the initial conditions.
On this figure the initial solution and the solution at a
later time are shown. At the initial time, there is a large
zone of the interface which gets immediately frozen, i.e.,
it corresponds to a value of u below u *, here —0.08 [see
Eq. (5)]: the two solutions are practically superposed in
this zone because the frozen region extends when the tip

advances. From this initial solution, an advancing
TTTTTT—
:D
-

FIG. 1. Cell shape for two different times at the beginning of
growth (parameters @ =33.33, b =2.66, and y =10): the lower
curve corresponds to the initial condition; in the upper curve a
rhizoid is beginning to form.
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FIG. 2. Continuation of the evolution of Fig. 1: cell shape
for nine different times showing the propagation of a stationary
rhizoid.

rhizoid begins to form, as seen on the upper curve of Fig.
1, and this rhizoid becomes narrower as time increases.

Then the tail region becomes completely unimportant,
and it is possible to cut the far tail, which is only a resi-
due of the initial conditions, without changing anything
in the rhizoid growth. We have proceeded in this
manner, and the result of the subsequent evolution of the
rhizoid is shown in Fig. 2, where several shapes corre-
sponding to different times are plotted. It can be seen
that after the transient just described the tip grows with a
nearly constant shape and velocity. This propagating sta-
tionary solution of the equations closely resembles the
growing rhizoid observed in various biological systems,
such as the neuron axon or the fungal hyphal cells [19].
Solutions of this type were also produced by the geome-
trical model of [7] in the case of high rigidity. In our
simulation, sufficiently far away from the tip the growth
is simply frozen; the region of the active zone close to the
frozen zone is completely dominated by the rigidity term:
the shape must be close to a straight line because other-
wise the normal velocity would be extremely great. At a
later time this zone will also become frozen, and this ex-
plains the rhizoid shape we obtain. It is important to
note that for any functions v (#) and j(u) increasing the
effective rigidity always favors the growth of rhizoids,
even though high values of this parameter seem necessary
to obtain a pure cylindrical shape.

In Fig. 3, we show the morphogen concentration on

-0.02 T T T
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the interface versus the curvilinear coordinate, for the
shape corresponding to the first plot of Fig. 2. This figure
is symmetric relative to the maximum of concentration
located at the tip. Moving away from the tip, the concen-
tration decreases a lot, except in the far tail region, where
it increases a little. This region corresponds to the zone
where the stationary rhizoid is not completely formed. If
we examine the effects of this concentration on the mor-
phogen influx, then the concentration maximum corre-
sponds to a maximum influx, but it is important to note
that, u being greater than u, on the whole domain [see
Eq. (4)], the morphogen flux enters the cell in the whole
interface. Concerning the concentration effects on the
normal velocity [see Eq. (5)], the velocity caused by con-
centration (there is also a part of the velocity caused by
curvature effects) is maximum at the tip and then de-
creases quickly. Finally a large part of the tail has a con-
centration below u * and is frozen.

We consider now a typical case corresponding to an
advantage tip at low rigidity: the normal velocity defined
by Eq. (5) corresponds to the parameters a =66.66,
b =5.66, and y=0.1 [the slope of the function v(u) is
here higher than in the previous case, and this will cause
the tip to enlarge during the growth]. We show in Fig. 4,
as before, the shapes of the front at different times (the
different shapes are not plotted at equal time intervals).
The lower curve corresponds to the initial conditions. It
represents a relatively flat sort of tip, which is observed
experimentally at the beginning of tip formation in the
desmid (a sort of unicellular alga) Micrasterias rotata [3].
Although almost flat, the tip is actually slightly curved
towards the cell interior. In the second plot on the same
figure, the tip has advanced and has been enlarged. This
effect has been called lobe broadening in the experiments
[3]. Furthermore, the curvature has begun to change
sign, although this is a very small effect and cannot be
seen yet on the plot. In the third plot of the same figure,
it is now possible to see that the tip is curved towards the
cell exterior. This effect is amplified in the fourth plot,

-0.04

-0.14 1 1 1 I ) 1 i 1

FIG. 3. Morphogen concentration versus
~ curvilinear coordinate on the membrane for
the first solution of Fig. 2: there is a maximum
of concentration at the tip.

30 40 50 60 70 80 90 100

110 120



33 NUMERICAL SIMULATION OF CELLULAR TIP GROWTH 991

FIG. 4. Cell shape for five different times (parameters
a=66.66, b =5.66, and ¥y =0.1). The lower curve corresponds
to the initial conditions. The formation of a stiff hollow zone at
the tip can be observed.

where the hollow in the tip becomes more localized. Fi-
nally, in the fifth plot, the hollow becomes suddenly
much deeper and thinner. It can be observed that the
morphogen concentration has very rapidly dropped be-
cause of screening effects and that at the moment where
the plot is taken the concentration in the hollow is so low
that the growth is completely frozen in this zone. This
explains why the hollow is becoming deeper so quickly.

In Fig. 5, an enlargement of the three last plots of Fig.
4 is shown. The first plot corresponds to a low curvature
at the tip, and no other perturbations can be seen. On
the second plot, the curvature at the tip has been
amplified and at the same time perturbations around this
hollow region are now visible. Finally, in the last plot,
the hollow has become much stiffer. It has been quite
difficult to obtain this solution numerically because it is
practically mandatory to adapt the mesh in the course of
the calculation to prevent too many mesh points from
concentrating in the hollow zone, thus leaving other re-
gions with a very low precision.

FIG. 5. Enlargement of the three last curves of Fig. 4.

10 ym
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FIG. 6. Experimental cell shape for different times of a semi-
cell of the alga Micrasterias rotata (courtesy of T. C. Lacalli: re-
printed from [3] with the permission of the Company of Biolo-
gists Ltd.).

It may seem that this hollow formation is a strange
effect; however, it has been observed in Micrasterias rota-
ta [3] and is called lobe branching. In Fig. 6, a picture
taken from [3] is shown: on this figure it is possible to see
on different lobes the two effects of lobe broadening and
of lobe branching obtained in the simulation. This last
effect was also seen in the geometrical model [7], and is of
course related to the tip splitting observed, for instance,
in crystal growth [21]. However, in our simulations and
in the experiments, the hollow zone is much stiffer than
the lobe branching produced in the geometrical model.
We have not continued our simulation after the last plot
of Figs. 4 and 5, but in the experiments the new lobes
produced after the lobe branching break in two again
some time later (see Fig. 6).

V. CONCLUSION

A model for cellular tip growth has been simulated nu-
merically. In this model, growth is coupled to a diffusive
morphogen located outside the cell. The influx of mor-
phogen at the membrane and the normal velocity of the
interface are supposed to be functions of the concentra-
tion. It has been possible to solve the equations of this
model in a quasistationary approximation by using a
Green’s function formalism previously developed in crys-
tal growth. Simulations have shown that two typical
effects encountered in tip growth are contained in this
model: the pure rhizoid growth leading to cylindrical
tubes observed in a variety of cells, such as fungal hyphae
or neurons, but also lobe broadening and a sort of tip
splitting called lobe branching, which are observed in un-
icellular algae. It seems that in order to obtain rhizoids
an important effective rigidity of the interface is neces-
sary.
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