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A coordinate-free equation modeling the flame front dynamics as propagation of density
discontinuity within the framework of the Darreus-Landau hydrodynamical model is derived
under the assumption of potential flow. The assumption is based on the observation that for
slightly perturbed plane configurations the flow is irrotational if the thermal expansion of the
gas is weak. A relationship with an equation obtained earlier for a slightly perturbed plane
flame front is established in the case of weak thermal expansion. An invariant equation
simultaneously modeling the thermal-diffusional and the hydrodynamical instabilities is
suggested, which also can be reduced to earlier results in appropriate limits.

I. INTRODUCTION

In 1977, Sivashinsky' introduced an equation describ-
ing evolution of a slightly perturbed plane flame front in the
limit of a small thermal expansion of gas:

b, +¢2 /2 +ed., +b.... = WIlg). (1)

Here y = ¢ (x,?) is a small perturbation of the front, y <1 is
the thermal expansion parameter (see the definition below ),
€< 1 is a parameter reflecting chemical-physical character-
istics of the combustible mixture, and

I[¢] = ol e e~ ~ dx' dk
27 ;
1 x

Ik |e = **¢(k,t)dk, (2)

mey
while the overtilde denotes the Fourier transform of ¢. For
simplicity here and following we consider the two-dimen-
sional case, so that the flame front is represented by a curve.
The three-dimensional version of the result is discussed in
SecTive
Equation (1) describes the development of both the
thermal-diffusional instability and the hydrodynamic insta-
bility in the flame front. If € <0 the thermal-diffusional
structure stabilizes the front and the corresponding equation

is!

b, +82/2 +€d,, = (/)1 [4]. (3)

In the long wavelength limit, Eq. (3) can be further
reduced to

. +83/2 = (y/DI[4]. (4)
Therefore the last equation describes the dynamics of a
slightly perturbed plane flame front under the conditions of
instability induced by the thermal expansion. Equation (4)
was also derived directly? using formal asymptotic expan-
sion in powers of ¥ €1 within the framework of a purely
hydrodynamic model of flame propagation.

In 1987, Frankel and Sivashinsky® obtained a strongly
nonlinear coordinate-free equation describing the dynamics
of the flame fronts within the framework of the thermal-
diffusional flame model (¥ = 0). The equation
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Ve o} 4o~ %, (5)

relates the normal velocity of the surface ¥ to its local geo-
metrical characteristics, such as (in two dimensions) the
curvature « and its second derivative with respect to the ar-
clength s. In particular, for small perturbations of the plane
propagating with constant velocity and for near-critical val-
ues of parameters, Eq. (5) can be reduced to Eq. (1) with
zero right-hand side (¥ = 0). Thus the weakly nonlinear
case (1) was traced to its geometrical origin.

In this context it is natural to ask the following question.
What is the coordinate-free version of the integral term in
Egs. (1), (3), and (4)? In other words, what is the invariant
form of these equations that would model the advance of
curved flame fronts as opposed to small perturbations of the
plane ones, including the hydrodynamic instability?

Analyzing computations in Ref. 1, one can observe that
to the principal order with respect to ¥<1 the gas flow is
potential both ahead and behind the flame front. This in turn
allows us to cast away a long held belief that Landau instabil-
ity is necessarily related to the generation of vorticity within
the flame structure. This observation was quite clearly stated
in the review paper.* Moreover, the purely irrotational mod-
el was partly studied in Ref. 2 for weakly perturbed plane
flames represented as a density jump propagating at a con-
stant velocity with respect to the gas.

It then seems quite natural to consider the dynamics of
arbitrarily shaped fronts within the framework of a purely
irrotational flow. Such a study, however, has never been car-
ried out. This is very surprising indeed, since the solution is,
in fact, a straightforward exercise in classical potential theo-
ry (see the following) and yet it yields a very interesting
equation of flame dynamics that, in particular, answers the
questions formulated previously.

Il. THE EQUATION OF FRONT DYNAMICS

Within the framework of the Darreus-Landau hydro-
dynamic approximation the flame is regarded as a surface of
density discontinuity propagating at a constant velocity rela-
tive to the gas.® The flow is assumed to be incompressible
and inviscid. We shall further assume that the flow is irrota-
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tional 1n both the unburned ( — ) and the burned ( + ) gas.
" The latter assumption becomes a correct statement in
the principal (nontrivial) order for small value ¥ <1 of the
thermal expansion constant.” Here we would like to stress
the fact that the analyses conducted in Refs. 1 and 2 with or
without the potential flow assumption are obviously identi-
cal and lead to the same result, i.e., Eq. (4). The derivation
we present below, on the other hand, has nothing to do with
the condition ¥ € I'or asymptotic expansion, once we assume
that the gas flow is potential, and is, of course, absolutely
rigorous.

Thus the gas flow will be described by a potential func-
tion w(x,y,t) such that

wi +ws =0, (6)

subject to the conditions of continuity, conservation of mat-
ter, and, as was mentioned above, a constant (unit) velocity
of the front with respect to the gas.

Therefore
Z = dw™* ) - (o’?w‘ ) 5
=W, == =|—=V ¥
gl ( i e 7 -
(£~V>=1.
on

Here V is the normal velocity of the flame front, n is the
inward normal vector on the boundary directed toward the
burned gas ( + ), and p = are the corresponding densities
(p™ =1). Using the last of the conditions (7), the second
condition can be replaced by

aw‘?‘ _g_uL:y. (8)

dn dn

where y is definedasy = 1 — 1/p".

The solution of the problem defined by Eqs. (6) and (8)
can be found as a single layer potential with constant charge
distribution y/27 along the curve C corresponding to the
instantaneous position of the flame front (Fig. 1):

w(r,2) =LJ e — £ld7. (9)
27 Jc ;

The dynamics of the front C can be found from the last
of the conditions (7) that “overdetermines” the problem.
Let dw/dn, denote the line integral of the formal derivative
of the logarithmic potential in the direction of the normal
vector at the point r on the curve C:

dw y J a
— () =—— | — |, (Injr — §|)dI.. 10)
S e e E (
Then, the following relationships hold at the interface:
dw~ y  dw
e (1), (11)
(r) 5 (r)
dw™ E - ow
e ) 12
(r) 5 e (r) (12)

which is in agreement with the interface condition (8) and,
upon substitution of (12) into the last of the conditions C7r
leads to the following evolution equation for the flame front:

e
Vieg) = — 1 1(1_—f—1 - dL). 13
(r,0) +—2 o S njr — g|d/. (13)
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E burned gas

FIG. 1. Curve C represents an instantaneous position of the expanding
flame front; normal velocity ¥in Eq. (14) is evaluated at the point r; normal
vector natr points toward the burned gas; the integration is performed with
respect to £.

A more convenient form of Eq. (13) is

y 1 (r—§)n )
Wire) = — 1 £ - [l = |-t m s gy 14
v +z( ehpe Y R

or

Virt) = —1 +I—<1 +—1— i

2 T Jc|r—E|

where 6 is the angle between r — § and n, while n is the
normal to the flame front at r.

From Eq. (14b) it is obvious that the integrals are regu-
lar for a sufficiently smooth boundary. In the form of Eq.
(14a), on the other hand, one can easily recognize the nor-
mal component of the (burned) gas velocity represented by
the superposition of uniformly distributed sources along the
boundary C.

Thus we obtain a front dynamics equation that defines
the normal propagation velocity at the points of the bound-
ary, which will remain valid until, possibly, the front devel-
ops acusp. Next we shall establish a relationship between the
invariant equation (14a) and the corresponding equation
(4) for a slightly perturbed plane front.

dzg), (14b)

1. REDUCTION TO EQ. (4)

In this section we assume that ¥ <1 and expand in pow-
ers of ¥ as it was done in Refs. 1 and 2 in order to obtain Egs.
(1)-(4). Let us first consider a *“near-rectangular” closed
contour formed by two vertical lines passing through x — A
and x 4 4, a horizontal line y =d, and the slightly per-
turbed boundary y = O (Fig. 2). Let the perturbed boundary
for the points r = (x,p) and § = (#,£) be given by the equa-

tions
y=9o(xt)—t and ¢=d(yt) —1, (15)

respectively.
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FIG. 2. The contour that is chosen in reduction to Eq. (4) for a weakly
perturbed plane front. The perturbed boundary is given by y = ¢(x,r) — r.
The coordinate frame is translated in such a way thatr = 0 at ¢ = 0.

Following Refs. 1 and 2 again it is known that ¢ ~ ¥ and
8, ~*. Now, we want to compute all the terms in Eq. (14a)
up to order ¥*. Using the above notation we obtain up to
order ¥

M) =[ -6 NNT+E ~[—d.(x),1].  (16)

Then, the integral along the segment y = d is easily evaluat-
ed:

L
Wk s

A

. (x—=5.¢(x) —d ][ —4,(x),1]

dn
[¢(x) —d]*+ (x—7)?
= -2 arctan(——) ; ELT)
d—d(x)

Thus the integral along y = d tendsto — 7as A — wo.

The integrals along the sides x + A4 tend to zero. There-
fore we need only interpret the remaining integral along the
perturbed boundary. For the latter we have |r — |

= (n—x)?,dl, =dn (up to ¥) and the integral can be
expressed as follows:

e L 7/
e
. —JHAQ«,(,,) = dex) —é,j(x)(n—X) i
x— A (n_x)"
= S e RN
o X

The integrand in the above integral is obviously a con-
tinuous function, and we need not be concerned about con-
vergence at y = 0. Then it can be evaluated via its principal
value (p.v.); the integral of the third term vanishes, whereas
the integral of the first term can be reduced in the limit of
A — « as follows:

f Sy +x) — $(x) ¢X(X)l’dX

2

e
= — (iz 2 16% +x)) :
X

— p.v.

(19)

where the colon denotes the action of functionals.
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Here we used the fact that the principal value of the
integral in (19) is the same as the canonical regularization of
the singular function 1/y?, leading to the definition of the
corresponding generalized function.® The action of the func-
tional can be expressed in the Fourier transform (overtilde I

1 T’ NG = e
‘. -—:as<)(+x>)=7 Ik e~ %53 (k)dk.
2 (20)

2

Now, recalling that ¢, ~ 37, for the normal velocity on
the left-hand side of Eq. (14a) we obtain up to order 3

V=(¢, =D/l +d:=—1+6,+62/2. (21)

Finally, substituting (17), (20), and (21) into the evo-
lution equation (14a) we obtain
2

8ok & =J’_J‘ [k |e = *(k)dk, (22)
2 4T o

which is identical to (4).

Several remarks are due concerning the relationship
between Eqgs. (14a) and (4), in general, and the above re-
duction in particular. Equation (4) was derived assuming
the basic solution to be an infinite linear (plane in three di-
mensions) interface. One should remember that this is a
physical idealization similar to an infinite uniformly charged
line (plane), using an analogy from electrostatics, which is
an approximation of the field created by a large but finite
linear segment near (in a certain sense) its center. We should
not be surprised therefore at the necessity of having to
choose a (near) symmetrical contour around the point r in
order to handle the integrals in transition to infinity.

The contour can indeed be chosen to be slightly asym-
metrical (x — A,x + B) with the condition 4 /B—1 as
A,B— . This means that if we consider ( — 4,4), thereisa
slower expanding region near zero where the above reduc-
tion is valid. However, there is obviously no transition from
Eq. (14a) to Eq. (4) for an arbitrarily shaped expanding
contour.

We can also carry out a similar reduction of Eq. (14a) to
Eq. (4) for another special choice of the contour C: a slightly
perturbed circle C; when its radius R becomes very large.
For this purpose we let

r=[R + 4(0),0],
£ ={(R+¢(0))cos 6,[R + ¢(0)]sin 6}

at 1 = 0. Here 6 is the polar angle and ¢(6,z) ~y is a small
perturbation whose support o is obtained within an interval
— 8 <6< and can be assumed to be identical with it. In
order to simplify our calculations, we have chosen the point r
to be located on the x axis.

Then up to order ¥

n=[-14,(00/R], dl.=ds=R db, (24)
where s is the length along the circular ( unperturbed) arc
Cr:

After some algebraic and trigonometric manipulations,
one can reduce (up to the same order) the line integral in Eq
(14a) to the following form:

(23)
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FIG. 3. A Cer=[R +4(0).0],

perturbed circle
E={(R + #(8))cos ,[R + &(8)]sin 6}. Here & is the polar angle and
&(6,1) ~ v is a small perturbation whose support o is contained within an
interval — < 6<é.

slightly

J‘(,L_——g')_}qdlfz ——77+_1_.
=g R

do.
259

< J‘aﬁ — &(0)cos 8 — ¢,(0)sin 6
4 sin*(6/2)

The integral on the right-hand side of (25) can be evalu-
ated by partitioning the domain as follows:

6 — (0 0—ad
[’ : B( 3005 jUdS:f et (26)
JCpr r[451n-(6/2)/9.] CRiT: g
One can easily check that in absolute value
f < o0 M
Cgrro R5
v

for some constant M independent of R. e

Now, we can choose 6§ small enough fdr the equalities
cos @ =1, sin 8/6 = 1, and dy = ds to hold with required
accuracy inside the support o. Then upto order ¥

f_fRsmzs é_é(o) —éy(o)y/dy (27)

5

— Rsiné V-
; a0 .
Thus as R — » we obtain the’same functional (correspond-

ing to x=@) as in (yAﬂer collecting all the terms we

obtain up to order * /£
e

V=_1+L‘f B(K) |k |dk. (28)
dgd- .

Finally, expanding as above the normal velocity at
r={[R —t+¢(6,t)cos 0], [R—1t + &(6,r)sin 6]} and
replacing the derivatives with respect to 6 by those with re-
spect to y for t = 0 and 6 = 0, we obtain that up to order 7,

s +i¢§=LJ“ (k) |k |dk, (29)
2 470 J—
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which represents Eq. (14) at y = 0. If we choose the point r
in the above argument, which is not situated on the x axis,
the calculations become a little more subtle and lengthy but,
as one can check, will inevitably reproduce Eq. (4). The
remarks concerning the transition to infinite limits made
after the previous example are obviously valid in the near
circular case.

IV. CONCLUDING REMARKS

The previous examples of the relationship between Egs.
(4) and (14a) do not serve to justify the invariant equation.
Indeed, it does not need a ‘‘justification” since, on the one
hand, the derivation is absolutely rigorous and quite simple
once the assumption of the potential character of the flow is
made, and since, on the other hand, this assumption is justi-
fied in the case of small ¥ for which Egs. (1)-(4) were de-
rived. That is, the invariant equation is at least *‘as correct”
as these equations. Moreover, it reflects some desirable fea-
tures of the realistic physical problem such as zero velocity
of the gas at infinity and its invariance.

The front dynamics equation (14a) is obviously invar-
iant with respect to translations and rotations of the coordi-
nate frame as it is expressed in terms of the front velocity in
the local normal direction and the distances between the
points on the front. The equation can be immediately trans-
ferred into three dimensions using Newton’s potential in-
stead of the logaritmic one, i.e.,

Vies) = _1'+§(1 - (’—‘-g-)'—“ds§>. (30)

27 Js r— &P

In spite of the rather simple form of Egs. (14) and (30),
it is not easy to find any explicit solutions. In fact, we can
present only a trivial illustration, namely, that of the expand-
ing circle used in the above example where the integral

(r—§)n dl. = — 7 (31)
s kel
can be easily evaluated to yield = — 1, which is obviously

the case since the burned matter is immobilized. The same
result is formally obtained after evaluation of the integral in
another trivial case: the initially ignited plane that generates
two plane fronts running away from each other with

= — 1. However, rigorously speaking, this solution is in-

- correct since Egs. (9)—(14a) are valid only for closed fronts.

At this stage we cannot present any results of numerical
simulation of Eq. (14a), which constitutes our next objec-
tive. In view of the similarity between the weak (4) and the
invariant (14a) forms, we can expect the development of
cusps pointing into the burned matter, as the previous nu-
merical simulation of Eq. (4) has shown.” We should note,
however, that the dynamics equation ( 14a) becomes incon-
sistent from the very moment of the development of the
shock since the normal vector is not defined.

To correct the situation via the introduction of some
selection principle on the propagation of discontinuity seems
to be a subtle matter at this point. Nevertheless, we have an
alternative that may turn out to be more practical from the
computational point of view and is interesting in its own
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_right. Indeed. now we can suggest the invariant form of Eq.
(3) as follows:

P= =1 +ex+l(1 e Lg)—'ﬂdlg). (32)
2 wic g

The curvature in the above evolution equation corresponds

to the dissipative term ¢, in Eq. (3), and the coefficient €

can be chosen sufficiently small in order to simulate the

“near shock” behavior of the flame front.

If the similarity to the weakly perturbed plane fronts
persists we can expect that a closed curve will develop a
number of wrinkles that will gradually merge until only one
or two are left, and as the front continues to expand further,
we will observe an onset of a secondary, finer pattern of
cells.® Equation (32) is not just a lucky guess. Indeed, with
only a most insignificant modification, the redution of Sec.
III can be carried out, and then the expansion of the curva-
ture up to y,

K=0¢./(14+82) =¢,,
along with the assumption that € ~ ¥ will immediately lead
to:Edi (3 ).

Another interesting possibility occurs when the ther-
mal—diffusional instability interacts with the hydrodynamic
instability. This can be achieved by combining Egs. (5) and
(14a):

¥

V=—1+ex—xﬂ+———(1+-l— -
2 TJc |r—E|*

(L__g)'_n.d[_).

s

(33)

In this case one can expect the large wrinkles generated by
the hydrodynamic instability to occur over a cellular struc-
ture corresponding to the thermal-diffusional instability
with a smaller characteristic scale. (In three dimensions «
becomes the mean curvature while «, is replaced by the sur-
face Laplacian Ax.? )
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Once again Eq. (33) can be reduced to its “near plamn”
version (1) for y < 1,6 €1 by using the typical scales for the
perturbation: ¢~e~7>, x~1/\e, t~1/€ in which Eq.
(1) was derived.! On the other hand, in the absence of ther-
mal expansion (y = 0) the purely thermal-diffusional dy-
namics equation (5) is recovered.

Thus the surface dynamics equations, (14), (32), and
(33), while representing, in our view, very interesting math-
ematical objects that should generate a variety of nontrivial
phenomena, can be expected to model different aspects of
the extremely complex dynamics of flame fronts. These
equations are “glued” to the earlier results for slightly per-
turbed plane interfaces and retain additionally the invariant
character of the physical problem. We should emphasize,
however, that for ¥ ~ 1 these equations represent just simpli-
fied models that cannot be expected to correctly reflect all
the physics of realistic gas combustion.
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