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On the nonlinear theory of hydrodynamic instability in flames
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Résumé. 2014 Une équation d’évolution décrivant la dynamique d’un front de flamme de prémélange soumis à
l’instabilité de Darrieus-Landau est obtenue dans l’approximation d’une faible dilatation du gaz. L’équation obtenue
au deuxième ordre ne diffère de celle obtenue au premier ordre que par une modification des coefficients. Dans la
deuxième partie du papier on présente un modèle de flamme dans lequel les effets de la vorticité de l’écoulement des
gaz brûlés sont négligés.

Abstract. 2014 In the context of the weak thermal-expansion approximation, we derive an equation describing flame
front dynamics under conditions of Darrieus-Landau instability. We show that the second-order theory leads to an
evolution equation that differs from that of the first-order theory only in its coefficients. We also discuss a

hydrodynamic flame model based on the equations for purely irrotational flow of the gas.
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1. Introduction.

The dynamics of a perturbed plane flame front
x = cp (y, t ) under conditions of thermal-expansion-
induced instability is described by a nonlinear equation

where

corresponding to the principal term of the asymptotic
expansion in terms of the thermal-expansion parameter
y, with the latter assumed to be small [1]

Here p + =1, p-= (1 - y ) -1 are the densities of the
burnt and cold gases, respectively. The flame propaga-
tion velocity relative to the burnt gas is assumed to be
constant and equal to unity. In this approximation, the
dynamics of the perturbed front is not sensitive to the
vertical (y) component of the gas velocity vector. The

perturbed flow of gas is seen as if it were unidirectional

(1). 
However, as recently noted by Clavin [2], allowance

for refraction of the gas streamlines (Fig. 1) may result
in the addition of a new term quadratic in cp to the
equation for the dynamics of the front.

Indeed, the condition that the flame propagation
velocity relative to the burnt gas be constant is ex-

pressed by

where

(1) However, the tangential component of the gas velocity
relative to the front may differ from zero. Thus the fact that
the flow is unidirectional does not mean that a curved flame
cannot exhibit a stretching effect.
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Fig. 1. - Diagram illustrating gas flow in a curved flame.

Written explicitly, this condition becomes

Retaining only quadratic nonlinearities, we deduce that
for small (p

Hence, using the continuity equation, we obtain
1

If y  1, it is known [1] that

Thus, the nonlinear convective term
- 1 

is small in comparison with the other terms of (1.6),
and exerts no influence on flame front dynamics in the
first approximation. However, in a more accurate

description the nonlinear term (1.8) may lead to

modification of the flame front equation (1.1). In this
paper we attempt to construct an evolution equation
incorporating the nonlinear term (1.8). As in the
derivation of equation (1.1), y is chosen as the expan-
sion parameter.

2. Fundamental equations.

Within the limits of the Darrieus-Landau hydrodynamic
theory, a flame is regarded as a surface of density
discontinuity, propagating at constant velocity relative
to the gas ; the gas itself is assumed to be incompress-
ible an non-viscous. Thus, the gas flow in the regions of
unbumt (-) and burnt (+) gas is described by the
following system of Euler equations :

On the flame front ( x = (p ( y, t ) ) we have condition
(1.3) and also conditions representing the continuity of
both

i) mass flow :

and ii) momentum flow :

Using (1.3), we can rewrite the two conditions as

follows :

The basic solution of problem (1.3), (2.1), (2.2),
(2.3) corresponding to an unperturbed plane flame
( cp = 0 ) is

Since the model we are using does not include a typical
length, the coordinates x, y may be assumed of the
order of unity. We thus obtain the following estimates
for the perturbed flame, on the assumption that

y  1 [1]
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Accordingly, we introduce scaled variables:

For the sequel, it is convenient to transform to cur-
vilinear coordinates , q attached to the perturbed
flame front:

In terms of the new variables and parameters, equations
(2.1) become

Conditions (2.4), (2.5), (2.6) and (1.3) become

To solve problem (2.11)-(2.17), we assume the solution
expressed as an asymptotic expansion:

3. First approximation.

In the first approximation, the equations and conditions
of (2.11)-(2.17) are

The solution of system (3.1)-(3.3) can be expressed as

where the potential n(O) is a solution of the Laplace
equation

Hence

The function R,( 0 ) is related to the flow vorticity :

The flow ahead of the flame front is assumed to be
irrotational :

Inserting (3.8), (3.12) into equations (3.4)-(3.6), we
obtain

Thus,
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Inserting (3.14) into condition (3.7), we finally have

Returning to the original variables, we obtain equation
(1.1).
We reiterate that, in the first approximation, the

dynamic condition (2.17) is not sensitive to the vertical
(y) velocity component V +(0) (see (3.7)).

4. Second approximation.

The equations and conditions for the second approxi-
mation are :

1,1 ,.I

The solution of system (4.1)-(4.3) can be expressed as

where the potential II"!;. ( 1) satisfies the equation

Hence

By assumption, ahead of the flame front we have

Inserting (4.8), (4.9), (4.10) and (4.13) into conditions.
(4.4), (4.5) and (4.6), we obtain after some manipula-
tion

We now consider the dynamic condition (4.7). From
(4.12) and (4.15) we have

Thus,

Here we have also used equation (3.17). By (3.15),

Inserting (4.17), (4.18) into condition (4.7), we arrive

at a closed equation for ø (1) :
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Synthesizing equations (4.19) and (3.17), we obtain

Hence, in terms of the original variables,

Thus, it turns out that the nonlinear convective term

(1.8) is partially neutralized by the nonlinear correction
induced by the component u+. As a result, equation
(4.21) differs from equation (1.1) only in its coefficients.
In other words, despite the more accurate description
we have adopted, the qualitative picture of flame front
dynamics remains unchanged. The flame front equation
undergoes qualitative change only in the third order
theory, where new quadratic terms stemming from the
( u. V) u term of the Euler equations should appear.
In the second order theory the contribution of these
terms is not taken into account.

Equation (4.21) yields the following dispersion rela-
tion corresponding to the linear stability problem:

This result is in agreement with the known dispersion
relation, obtained for arbitrary y (Landau, 1944):

5. Irrotational model for hydrodynamic flame in-

stability.

In the first approximation with respect to y, if the flow
is irrotational ahead of the flame front (R (0) = 0 ) , it
will also be irrotational behind the front (R(o) = 0).
Consequently, the production of vorticity, which is

generally peculiar to a curved flame front [3], is not a
decisive factor in hydrodynamic flame instability. Thus,
for small y, flame instability can be described correctly
within the limits of a model based on the equations of
purely irrotational flow:

with the three conditions (1.3), (2.4) and (2.5) satisfied
on the flame front.

In the first approximation (with respect to y), such a
model is asymptotically identical to that based on the

Euler equations (2.1). The condition (2.6) for the

pressure jump is then automatically satisfied. This is no
longer the case in the second approximation.
Being less accurate, though easier to handle from the

mathematical point of view, the « irrotational » model
may prove extremely instructive for an understanding
of many nonlinear phenomena in flame instabilities.
For example, the model reveals interesting prospects
for the description of finite-amplitude wrinkled flames
using methods of complex analysis.

If condition (1.3) is replaced by Markstein’s condition
[4] relating the flame velocity to its curvature, the
irrotational model can also describe the self-turbulence
effect in flames [5].

In this paper we shall confine ourselves to deriving a
dynamic equation for the flame front incorporating
effects of second order in y.

In terms of a potential w+ , problem (5.1), (2.4),
(2.5), (1.3) may be written as follows:

The basic solution, corresponding to an unperturbed
plane flame, is

Proceeding as previously (Sect. 2), we introduce scaled
variables W+ , 4J, T :

and transform to curvilinear coordinates 6, q as in

(2.10). In terms of the new variables and parameters,
problem (5.2)-(5.5) becomes
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Again, we expand the desired solution of problem
(5.8)-(5.11) in asymptotic series:

In the first approximation, equations (5.8)-(5.11) give

Hence (see Sect. 2),

In the second approximation, the equations are 

From (5.19)-(5.21) there follows

Inserting these relations in (5.22), we obtain

Combining (5.25) with equation (5.18), we obtain

or

Thus, in comparison with the exact model (4.21),
neglect of vorticity generation increases the perturba-
tion growth rate. However, the nonlinear terms in the
two equations are completely identical.
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