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We describe experiments and simulations carried out to investigate spinodal decomposition in a

vibrated, dry granular system. The dynamics is found to be similar to that of systems evolving under

curvature-driven diffusion, which suggests the presence of an effective surface tension. By studying quasi-

2D droplets in the steady state, we find behavior consistent with Laplace’s equation, demonstrating the

existence of an actual surface tension. Detailed measurements of the pressure tensor in the interfacial

region show that the surface tension results predominantly from an anisotropy in the kinetic energy part of

the pressure tensor, in contrast to thermodynamic systems where it arises from either the attractive

interaction between particles or entropic considerations.
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Despite many decades of dedicated research, the basic
principles governing the physics of many-body systems far
from equilibrium are still elusive [1]. In particular, such
systems can exhibit emergent collective behavior, which
on the basis of current knowledge cannot be predicted
from the properties of their microscopic components [2,3].
A particularly simple environment for investigating nonequi-
librium physics is that of granular media [4,5]. There are
numerous examples of pattern formation in granular systems
driven far from equilibrium [6–9], where order frequently
results from the appearance of distinct phases separated by
an interface. For systems in thermodynamic equilibrium,
interfaces generally are associated with an excess free en-
ergy per unit area, referred to as the surface tension.
Microscopically, surface tension may arise from attractive
intermolecular forces [10] and entropic contributions [11].
However, in a dry granular media, there are neither appre-
ciable attractive forces nor a well-defined entropy.

Phase separation has been predicted [12–14] and
observed [15] in quasi-1D-driven granular systems and
quasi-2D vibrated, granular monolayers [16]. Recently, it
has been shown that a loosely confined, vertically vibrated,
dry granular gas exhibits a quasi-2D phase separation into
a dense liquidlike phase and a dilute gaslike phase [17],
closely reminiscent of phase separation in a regular liquid.
The phase separation was shown to be linked to a negative
compressibility in the homogeneous system, and a spinodal
was found that arises from an excess in the kinetic energy
of the dilute phase due to resonant motion of the particles.

It is of great conceptional interest whether a surface
tension can be consistently assigned to the phase boundary
in this system. The existence of a surface tension may pave
the way to establishing a quantity analogous to the free
energy for many-body systems far from thermal equilib-
rium. In this Letter, we describe experiments and simula-
tions carried out to investigate the coarsening dynamics
and interfacial properties of a vibrated, dry granular

system. The phase separation is spinodal driven, and the
dynamics of the decomposition is found to be compatible
with a standard scenario with conserved order parameter
[18]. By studying quasi-2D droplets in simulations, we find
behavior consistent with Laplace’s equation, demonstrat-
ing the existence of a surface tension. The surface tension
can also be derived from pressure tensor measurements in
the interfacial region. Simulations allow us to indepen-
dently measure the contributions from the kinetic and
collisional parts of the pressure tensor. Our findings show
that the surface tension predominantly results from an
anisotropy in the kinetic part of the pressure tensor.
Our experimental apparatus consists of a glass cell that

can be vibrated vertically using an electromagnetic shaker.
The cell was constructed using a square glass base, on top
of which we attached a square frame of height h ¼ 3 mm,
creating a square horizontal tray of edge length L ¼
180 mm. Bronze spheres, with diameter d in the range
150 �m< d< 180 �m, were placed in the tray and
enclosed with a top plate identical to the base. We define
the mean volume filling fraction �� as the total volume of the
particles divided by the interior volume of the cell. The
upper and lower glass plates were 6 mm thick to provide
necessary rigidity. Prior to each measurement the glass
plates were cleaned and wiped with an antistatic coating
to reduce charging effects. The cell was clamped to the
electromagnetic shaker and vibrated sinusoidally at a
fixed frequency, f, and amplitude, A, giving a maximum
dimensionless acceleration relative to gravity, g, of � ¼
Að2�fÞ2=g. Care was taken to ensure that the cell was level
and that the structure did not flex under vibration. The
apparatus was observed from above using a digital camera
with resolution 640� 480 pixels with a frame rate of 30 fps.
Simulations were carried out with parameters matching

the experiment as closely as possible with available
computing power. We used soft-sphere molecular dynamic
simulations of identical spherical particles, diameter
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d ¼ 165 �m and density � ¼ 8900 kgm�3. Collisions
were modeled using linear springs and dash-pot damping,
giving rise to a constant coefficient of restitution. Rotation,
friction, and the effects of air were neglected. Particles
were contained in a volume which matched the dimensions
of the experimental cell (1080d� 1080d� 18:2d). The
simulated cell was then subjected to sinusoidal vertical
vibration. Periodic boundary conditions in the horizontal
directions were used to remove the influence of the cell
walls. Simulations to measure the phase diagram and the
interfacial profile were carried out in a cell with reduced
dimensions of 210d� 40d� 18:2d. To match the experi-
mental phase diagram, we chose a coefficient of restitution
"pp ¼ 0:7 for particle-particle collisions [19] and "pg ¼
0:8 for particle-glass collisions. Typical simulations
involved up to 2 million particles and were averaged over
simulated times up to 18 s. The simulations were carried
out using compute unified device architecture on a Tesla
Fermi C2050 GPGPU [20].

Figure 1 shows typical sequences of snapshots taken
from experiment (a) and simulation (b). The driving pa-
rameters were chosen to match the experiment. The system
was prepared with the particles homogeneously distributed
in the horizontal plane. The mean volume filling fraction of
the particles is �� ¼ 0:05. Sinusoidal vertical vibration is
then suddenly applied, such that a spinodal-driven phase
separation occurs. The dense (light) and dilute (dark)
regions form locally, and the pattern evolves until it is
dominated by a single domain of each phase. Varying A
and �� changes the size of the domains in the steady state.
The vibration amplitude was selected so that at late times
approximately equal amounts of the two phases remain, thus
allowing for the longest possible time evolution. Inspection
of Fig. 1 suggests that the experiment and simulation evolve
in a similar way, implying that the simulation captures the

essence of the coarsening dynamics. Further confirmation
that the simulation matches the experiment is presented in
Fig. 2(a), where we show the phase diagram for the experi-
ment and for the simulation.
In order to quantify the time evolution of the patterns,

the structure factor, Sðk; tÞ, is calculated using the local
density data from the simulations and gray scale intensity
from the images taken of the experiment. We extract a
characteristic length scale for the system, lðtÞ, obtained
from lðtÞ ¼ 2�

P
Sðk; tÞ=P jkjSðk; tÞ where the sums

are over values of jkj which satisfy the condition k >
4�=L to minimize finite size effects. Figure 2(b) shows
the time evolution of lðtÞ. The solid circles (black) show the
results from simulations averaged over 10 runs; the crosses
(red) show the experimentally measured lðtÞ also averaged
over 10 runs. Time is expressed in terms of the dimension-
less quantity ft, where ft ¼ 0 is the time at which the
vibration is switched on. At ft � 10, a pattern is visible.
Thereafter, the pattern is observed to coarsen with larger
domains engulfing smaller ones and small droplets evapo-
rating. At late times, ft � 400, the slope rolls off due to the
finite size of the system. Between these two limits, the
length scale lðtÞ grows approximately as a power law of t,

with lðtÞ � t1=3, as indicated by the dot-dashed line (green).
Figure 2(d) shows the scaling collapse for circularly aver-
aged Sðk; tÞ in the late time regime. Good collapse is
obtained for both simulation and experiment if one

assumes that the length scale grows as t1=3.
The scaling behavior shown in Figs. 2(b) and 2(d) is

reminiscent of Cahn-Hilliard theory (often referred to as
model B), which describes a system with a conserved order
parameter in which the dynamics are diffusive and curva-
ture driven [18]. To test the validity of such a continuum
model for our system, we have fitted the form of the steady-
state interfacial profile to a function of the form

(a)

(b)

FIG. 1. Snapshots of granular spinodal decomposition taken from (a) experiment, and (b) simulation (see Supplemental Material
[33]). From left to right, the images show the pattern for ft ¼ 60, 160, 260, and 360. The cell is subjected to vertical vibration at
� � 7:2 and f ¼ 60 Hz, corresponding to A=d ¼ 3:0. The volume filling fraction is �� ¼ 0:05.
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�ðzÞ ¼ �g þ 1
2 ð�l ��gÞ½1� tanhðz=�Þ�, which implies

a quartic form for the bulk potential [14,15,21,22]. Here,
�l and �g are the local filling fractions in the dense and

dilute phases, respectively, and z is the coordinate normal
to the interface. If model B dynamics are appropriate, the
steady-state interfacial width predicts the dominant length
scale after the early time exponential growth, with corre-
sponding wave number kc ¼ 1=� [23,24]. The predicted
wave number is shown in Fig. 2(c) by the vertical red
dashed line, and the corresponding length scale is shown
by the arrow in Fig. 2(b), demonstrating consistency with
model B.

To further corroborate these findings, a deeper investi-
gation of surface tension effects is in order. Given the
qualitative and quantitative agreement between the simu-
lation and the experiment, both in the steady state and in
the coarsening dynamics, the simulation captures the

essential physics of this system even though the simula-
tions ignore friction, particle rotation, and the possible
influence of air. We will henceforth focus on data from
simulations that allow us to measure quantities such as the
local density and the local pressure tensor that are not
readily obtainable from our experiment. For consistency
with the experimental data, simulated quantities are
expressed in SI units where appropriate.
One of the signatures of a surface tension is that the

system evolves to minimize the interfacial area. In quasi-
2D with periodic boundary conditions, the two possible
geometric configurations that do this are a single stripe or a
circular droplet. Examples of droplets can be seen in Fig. 1.
If the simulations presented in Fig. 1 are allowed to con-
tinue until a steady state is reached, a single circular dense
droplet remains, provided that the filling fraction is small
enough, �� & 0:04. An example of such a droplet is shown
in the lower inset of Fig. 3. The circularly averaged local
density is shown in the upper inset, from which we deter-
mine the radius of the droplet, r0.
If there is an effective surface tension holding the cir-

cular droplet together, then from Laplace’s law, there must
be a pressure difference, �P, between the two phases. We
measure �P in simulation using the mean local horizontal
pressure in the dense and dilute phases. The local pressure
is obtained from the virial theorem [25] in terms of the
kinetic and collisional parts. We confirm that for our
droplets the pressure is uniformly higher inside than out-
side. The main panel of Fig. 3 shows �P as a function of
1=r0 for 85d < r0 < 182d. For mechanical stability,

FIG. 2 (color online). (a) Phase diagram obtained from experi-
ment (triangles) and simulation (shaded area). The enclosed
region shows the parameters for which spontaneous phase sepa-
ration occurs (the spinodal region). The conditions for the
quench (A=d ¼ 3:0, �� ¼ 0:05) are marked by the cross (red);
(b) time evolution of the characteristic length scale, lðtÞ, during
spinodal decomposition obtained from experiment (red crosses)
and simulation (solid black circles). The dot-dashed line (green)
has a slope of 1/3 as a guide to the eye; (c) early time evolution
of Sðk; tÞ obtained from simulations for ft linearly spaced in the
range 4 � ft � 20, with the topmost curve being ft ¼ 20 and
ft0 ¼ 2. The vertical red dashed line indicates the fastest grow-
ing wave number predicted by assuming model B dynamics, kc;
(d) collapse of Sðk; tÞ in the scaling regime, assuming a growth
law of t1=3. The experimental (solid) data points have been
shifted vertically relative to the simulation (hollow) for clarity.
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FIG. 3 (color online). The main panel shows the difference in
horizontal pressure, �P, between the inside and the outside of a
circular droplet as a function of the inverse of the droplet radius,
r0. The lower inset shows an image from simulation where the
final configuration is a circular droplet ( �� ¼ 0:025). The upper
inset shows the mean local filling fraction, �, of the droplet as a
function of the radial coordinate r. The dashed line (red) marks
the position of r0 at the mean filling fraction of the two phases.
The width of the interface shown is independent of �� for large
droplets.
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Laplace’s equation in 2D relates �P to the surface tension,
�, by the equation �P ¼ �=r0. Due to the small height
of the cell, there is no phase separation or curvature in
the vertical direction. The measured horizontal pressure
difference is consistent with a curvature-independent
surface tension � ¼ 1:0� 0:1� 10�3 Nm�1. (In com-
parison the surface tension of water at STP is
7� 10�2 Nm�1.)

Alternatively, one may use a mechanical definition of
surface tension to calculate � in terms of the normal and
tangential components of the pressure tensor. For a circular
droplet, � is given by

� ¼ r0
Z 1

0

1

r
½pNðrÞ � pTðrÞ�dr; (1)

where pNðrÞ is the component of the pressure tensor nor-
mal to the interface, pTðrÞ is the component of the pressure
tensor tangential to the interface, and r is the radial dis-
tance from the center of the droplet [10,26].

The main panel of Fig. 4 shows the circular average of
the pressure anisotropy pT � pN as a function of radial
position for a droplet of radius 140d (solid black line). The
pressure difference exhibits a dip in the interfacial region
which, via Eq. (1), is the source of the surface tension.
Evaluating the integral for various droplet sizes gives a
mean surface tension of �� ¼ 0:94� 0:05� 10�3 Nm�1,
in very good agreement with the value obtained above from
Laplace’s equation. This demonstrates an unexpectedly
high degree of analogy between the phase-separating
granular system and an equilibrium thermodynamic

system, concerning the existence of a surface tension as
well as the role of the latter in the coarsening dynamics.
Although coarsening has been observed in other granular
systems [15,27–29], the corresponding dynamics has so far
not been conclusively interpreted [8].
In order to understand the microscopic origin of the

surface tension in our system, we consider the kinetic
and collisional parts of the pressure tensor separately.
The anisotropy in the kinetic energy part of the pressure
tensor is shown by the red line (dashed) in Fig. 4; the
corresponding anisotropy in the collisional part of the
pressure tensor is shown by the green line (dot-dashed).
Since the anisotropy in the kinetic part of the pressure
tensor closely follows the anisotropy in the total pressure
tensor, it is clear that the dominant contribution to the
surface tension arises from the anisotropy in the kinetic
energy tensor alone; the anisotropy in the collisional part of
the pressure tensor is negligible.
Finally, we may inquire about the cause of this anisot-

ropy in our far-from-equilibrium system. The inset to
Fig. 4 shows the difference between the normal, TN , and
tangential, TT , components of the kinetic energy per
particle. Close to the interface in the dilute region, there
is a slight excess in TT relative to TN. In the dense region,
TT is somewhat reduced relative to TN . To explain this
variation we consider a simple mechanistic picture of a
single particle incident on the interface from the dilute
phase. On average, the component of the kinetic energy
normal to the interface is reduced due to inelastic colli-
sions with the dense phase; in contrast, the tangential
component is largely unaffected. Therefore, TN in the
dilute phase is reduced relative to TT , as observed. The
normal component of momentum is transferred into
the dense phase, leading to a slight excess in the local
TN just inside the surface of the droplet. When TN and TT

are weighted by the local density (upper inset in Fig. 3),
the resulting kinetic part of the pressure tensor in the
dense region is strongly enhanced relative to the dilute
region. This gives rise to the asymmetry about the inter-
face shown in the main panel of Fig. 4.
Anisotropies in kinetic energy are known to occur in

driven granular gases [30–32]. In these systems, the an-
isotropy is strongly coupled to the driving mechanism. In
contrast, the anisotropy in our system arises from a sponta-
neous symmetry breaking in the horizontal components of
the kinetic energy caused by the dissipative interaction at
the interface.
Our results demonstrate the existence of a minimization

principle in a phase-separated granular gas, implying an
effective far-from-equilibrium free energy. The coarsening
dynamics are consistent with the steady-state measure-
ments of an emergent surface tension. The simple mecha-
nistic explanation of a kinetic energy tensor anisotropy
provides an understanding of this surface tension in a
noncohesive dissipative gas. The general nature of the
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FIG. 4 (color online). The main panel shows the difference in
the normal and tangential components of (a) the total pressure
tensor (black line), (b) the kinetic part of the pressure tensor (red
line), and (c) the collisional part of the pressure tensor (dot-
dashed green line). The difference in the normal and tangential
components of the total pressure tensor closely follows the
anisotropy in the kinetic part of the pressure tensor. The in-
set shows the difference between the normal and tangential
components of the kinetic energy per particle (Supplemental
Material [33]).
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argument suggests that it may well be applicable to other
granular phenomena in which interfaces exist between
phases [8,9,15,16] and that anisotropy in the kinetic energy
tensor is a possible driving mechanism for emergent col-
lective behavior in many nonequilibrium systems.
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