
, 20130667, published 28 August 201310 2013 J. R. Soc. Interface
 
Sophie Ramananarivo, Ramiro Godoy-Diana and Benjamin Thiria
 
anguilliform swimming
Passive elastic mechanism to mimic fish-muscle action in
 
 

Supplementary data

l 
http://rsif.royalsocietypublishing.org/content/suppl/2013/08/30/rsif.2013.0667.DC1.htm

 "Data Supplement"

References
http://rsif.royalsocietypublishing.org/content/10/88/20130667.full.html#ref-list-1

 This article cites 40 articles, 11 of which can be accessed free

Subject collections

 (84 articles)biomimetics   �
 (148 articles)bioengineering   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to 

 on September 2, 2013rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/content/suppl/2013/08/30/rsif.2013.0667.DC1.html 
http://rsif.royalsocietypublishing.org/content/10/88/20130667.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/cgi/collection/bioengineering
http://rsif.royalsocietypublishing.org/cgi/collection/biomimetics
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;10/88/20130667&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/10/88/20130667.full.pdf
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/


 on September 2, 2013rsif.royalsocietypublishing.orgDownloaded from 
rsif.royalsocietypublishing.org
Research
Cite this article: Ramananarivo S,

Godoy-Diana R, Thiria B. 2013 Passive elastic

mechanism to mimic fish-muscle action

in anguilliform swimming. J R Soc Interface

10: 20130667.

http://dx.doi.org/10.1098/rsif.2013.0667
Received: 23 July 2013

Accepted: 2 August 2013
Subject Areas:
bioengineering, biomechanics, biomimetics

Keywords:
fluid – structure interaction, anguilliform

swimming, slender body
Author for correspondence:
Sophie Ramananarivo

e-mail: sophie.ramananarivo@espci.fr
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2013.0667 or

via http://rsif.royalsocietypublishing.org.
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
Passive elastic mechanism to mimic fish-
muscle action in anguilliform swimming

Sophie Ramananarivo, Ramiro Godoy-Diana and Benjamin Thiria

Physique et Mécanique des Milieux Hetérogènes (PMMH), CNRS UMR 7636, ESPCI ParisTech, UPMC (Paris 6),
Université Paris Diderot (Paris 7), 10 rue Vauquelin, 75231 Paris, Cedex 5, France

Swimmers in nature use body undulations to generate propulsive and man-

oeuvring forces. The anguilliform kinematics is driven by muscular actions

all along the body, involving a complex temporal and spatial coordination

of all the local actuations. Such swimming kinematics can be reproduced arti-

ficially, in a simpler way, by using the elasticity of the body passively. Here, we

present experiments on self-propelled elastic swimmers at a free surface in the

inertial regime. By addressing the fluid–structure interaction problem of angu-

illiform swimming, we show that our artificial swimmers are well described by

coupling a beam theory with the potential flow model of Lighthill. In particu-

lar, we show that the propagative nature of the elastic wave producing the

propulsive force is strongly dependent on the dissipation of energy along

the body of the swimmer.
1. Introduction
Undulatory propulsion is a means of locomotion shared by living organisms over

a wide range of scales and in many different media [1]. From snakes [2] to sandfish

[3], from eels [4] to spermatozoa or motile bacteria [5], net forward motion is

achieved by propagating waves along a deformable body. In fluids, the anguilli-

form swimming dynamics was first addressed in pioneering studies during the

1950s and 1960s by Taylor [6], Gray & Hancock [7], Machin [8] and Lighthill [9].

They established that the propulsive force originates from either viscous friction

(the so-called resistive theory) or inertial momentum transfer (Lighthill’s reactive
model), depending on the regime of Reynolds number, which measures the

importance of inertial to viscous actions in a given flow. In both cases,

the characteristics of the propagating wave (phase velocity, wavelength and

amplitude) are crucial in determining the swimming performance [9,10].

A vast amount of theoretical and numerical works has followed [10–14],

from Stokes or viscoelastic flows related to microorganism propulsion [5] to

inertial regimes [15,16] or three-dimensional geometries [17]. This research

shed light on various undulatory swimming modes, and not only provided

the basis for a broad spectrum of applications in robotics and engineering at

the macroscale, but also in the public health domain where, for instance,

sperm swimming speed is significantly related to fertilization success [18].

In the inertial regime, the most relevant analytical model of fish swimming

is Lighthill’s reactive theory. Based on a potential flow approximation, Lighthill

showed that the estimation of the thrust force requires only the knowledge of

the local kinematics at the tail of the deformable body [10]. Thus, calling y,

the local deflection of the slender body with respect to the axis of swimming

(x-axis), and U the swimming velocity, the average total thrust force, kTl,
reduces, in the limit of small lateral displacement, to

kTl ¼ 1

2
rS½kð@tyÞ2l�U2kð@xyÞ2l�r; ð1:1Þ

where rS is the added mass of fluid (with r the fluid density and S the swim-

mer cross section). The subscript r refers to the location of the tail where @xy and

@ty are estimated. This expression of the force is obtained writing that the swim-

ming power kTlU (i.e. the product of the thrust force times the swimming

velocity) corresponds to the rate of working done by the fish, kWl, minus the
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Figure 1. Experimental set-up: (a) Top-view snapshots of the swimmer pro-
pelling itself forward after the opening of the gates (that are visible at the
bottom of the images). (See the electronic supplementary materials, movie
S1, seeding particles have been added on the surface to visualize the
flow.) (b) Swimmer at the free surface of a water tank consisting of a flexible
cylindrical tail made of acrylic polymer. A magnet embedded in the head of
the filament is forced to oscillate using the time-varying magnetic field pro-
duced by a Helmholtz pair. (c) Successive pictures of a filament over a period
of undulation showing the forward swimming velocity, U, and the speed of
the travelling wave, yw.
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rate of shedding of the kinetic energy associated with lateral

fluid motion, say kTlU ¼ kWl� 1=2rSkð@tyþU@xyÞ2r lU. The

part corresponding to the energy transferred to the fluid

can be seen as a source of dissipation for the mechanics of

the swimming fish, as this energy is lost into the flow. In

the case of passive swimmers that rely on elasticity to propa-

gate the undulating motion, this dissipated energy will not be

available to sustain the body deformation (see [19] in the con-

text of energy harvesting). The value of the thrust force

depends thus on the nature of the near- body flow field,

which is extensively discussed in this work.

For living animals, the kinematics of the propagating

wave is obtained by local contractions of the muscles all

along the body. The phase velocity, wavelength and wave

amplitude are therefore set separately in order to select a

specific regime. However, in the case of artificial mimics of

real swimmers, a mechanical model of fish-muscle action

would require a continuous distribution of actuators [20].

Such a design is not only complicated, but also difficult to

scale down in size. Another approach is to consider a local

actuation and use the elasticity of the body to propagate the

wave [16,21–23]. The implementation of the forcing that will

provide the necessary energy to create the anguilliform kin-

ematics is therefore much simplified.

Here, we present a full description of the mechanics of such

self-propelled swimmers using a careful experimental set-up

and solving the complete fluid–structure problem of a forced

beam in a fluid in the inertial regime. The challenge in the

latter is to obtain an estimation of the tail kinematics as a func-

tion of the forcing, using a coupled fluid–elasticity approach.

The average swimming velocity, along with an estimation of

the swimming efficiency, is predicted afterwards by balancing

the thrust from Lighthill’s prediction and the drag force.

We also address the more general problem of wave propaga-

tion in bounded media, using a local energy injection. The

dynamics of the propagating wave that drives the anguilliform

locomotion is shown, in particular, to have a crucial depen-

dence on energy dissipation along the body of the swimmer.

Furthermore, we show that in the inertial regime, self-propelled

swimmers using passive elastic deformation verify Lighthill’s

reactive theory even at a free surface. From this work,

we confirm the potential of the present experiment to be of

importance in the future design of artificial swimmers.
2. Results
2.1. Swimming kinematics
The slender swimmer in the present experiment is actuated

on one extremity using magnetic interactions. The induced

motion of the head is a combination of heaving and pitching,

and the resulting body undulations propel the filament on

the surface of a water tank (see figure 1 and Material and

methods for details).

The present system differs from Lighthill’s configuration

in that the swimmer is not fully immersed in the fluid (it is

placed at the air–water interface to confine its displacements

into a two-dimensional plane). In particular, surface waves

generated by the moving cylinder radiate energy away

from it and may represent an extra source of drag [24–26].

However, this so-called wave drag can be neglected here as

the ratio of the wave drag to form drag, proportional to the

square of the Weber number [27], remains small (1026 to 0.1).
We vary the length of the swimmer, L, and the frequency of

the sinusoidal forcing, f, while the other parameters are kept

constant for simplicity (among them, the amplitude of the pre-

scribed displacement at the head, Af, and the flexural rigidity of

the body, B). The full kinematics of the swimmer as a function

of the experimental parameters is recovered from high-speed

camera recordings. From this, we extract the time evolution

of the local deflection y(s, t) (where s is the local curvilinear

abscissa along the centreline of the body), the wave speed yw,

and the cruising velocity U (figure 1).

The results are plotted in figure 2. Figure 2a shows the

evolution of the cruising velocity as a function of the beat fre-

quency for different lengths of the swimmer. U is found to be

an increasing function of the forcing frequency for all the

swimmers tested. It can also be seen that ‘short’ swimmers

are faster than ‘long’ swimmers in the range of parameters

tested. This can be understood by considering the results dis-

played in figure 2b: for a given forcing amplitude and forcing

frequency (Af, f ), the tail amplitude, Ar, is decreasing with L.

As thrust is based on the kinematics at the tail, and conse-

quently on Ar, short swimmers will therefore swim faster.

More generally, as illustrated in figure 2f, the overall shape of

the swimmers tends to decrease in amplitude along the

length. This characteristic shape is of course highly dependent

on the forcing parameters and the length of the swimmer and is

owing to the fact that the energy is not conserved along the

body. A further crucial information for the swimming effi-

ciency [9] that can be extracted from the kinematics of the

undulating filament is the phase velocity, yw, which is dis-

played in the inset in figure 2d. A first observation is that, as

http://rsif.royalsocietypublishing.org/
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Figure 2. (a) Swimming velocity, (b) amplitude of the oscillations at the tail and (inset in d ) phase velocity, as a function of the forcing frequency. Experimental
data plotted in a non-dimensionalized form, as a function of the non-dimensionalized angular frequency �vf ¼ vf=v0, with v0 ¼ ð2p=L2ÞðB=ðmþ rSÞÞ1=2:
(c) ratio of the cruising velocity and the characteristic actuation speed �U ¼ U=fAf , (d ) non-dimensionalized phase velocity �yw ¼ yw=v0L, (e) amplitude of the
oscillation at the tail normalized by that of the head �A ¼ Ar=Af . The solid lines correspond to the theoretical predictions of the model presented in the ‘Fluid –
structure model’ section. ( f ) Typical undamped (3 cm long filament forced at 10 Hz) and damped (4 cm long filament forced at 20 Hz) amplitude envelopes (see
the electronic supplementary material, movieS2 and S3).
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expected, the global behaviour is independent of the length of

the filament.

All the experimental observations can be collapsed

by plotting the data in a compact form using the characte-

ristic lengths and velocities of our system. We define v0 as

the natural relaxation frequency of the elastic filament:

v0 ¼ ð2p=L2ÞðB=ðmþ rSÞÞ1=2, with m its mass per unit length.

Figure 2c–e displays, respectively, the non-dimensionalized

swimming velocity �U ¼ U=fAf, phase velocity �yw ¼ yw=v0L
and amplitude �A ¼ Ar=Af, as a function of �vf ¼ vf=v0,

where �vf ¼ 2pf denotes the angular frequency. Note that �U
has the same form as the inverse of the Strouhal number, as

defined in the context of self-propelled swimmers (e.g.

[20,28]). �U, which compares the characteristic speed of the

imposed head oscillations to the cruising speed, decreases

and converges to an asymptotic value. Its decay has to be com-

pared and correlated with the decrease of �A with �vf, that is a

consequence of passive elastic propagation.
2.2. Fluid – structure model
In the following section, we aim to understand the mechanisms

involved in the motion of the filament, to be able to predict

what would be the output from a given forcing, and conversely

what would be the required forcing to achieve a given kin-

ematics. The filament is modelled as a forced slender beam

[29] of length L with circular cross section S ¼ pd2/4 (with d
its diameter), mass per unit length m and stiffness B. It is

immersed in a uniform fluid of density r, moving at velocity

U. We neglect, in the present model, any effect of the interface

by considering a filament moving in the bulk. The beam obeys

the Euler–Bernouilli equation

m@2
t rþ B@4

s r� @sðT@srÞ þ f n̂ ¼ 0; ð2:1Þ

with s the curvilinear coordinate, r(s, t) ¼ (x,y) the beam

position, f the fluid forces acting on the beam, T, a tension

in the plate that enforces the inextensibility condition

http://rsif.royalsocietypublishing.org/
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k@srk ¼ 1 and n̂ the unit vector normal to the beam (figure 3a).

The extremity of the beam in s ¼ L is free, that is

@3
s yðL; tÞ ¼ @2

s yðL; tÞ ¼ 0. The head of the filament (s ¼ 0)

is actuated with a prescribed periodic displacement and

rotation: y(0, t) ¼ Afcos(vft), @xy(0, t) ¼ ufcos(vft þ f), with

vf the angular frequency, uf the maximal rotation angle of the

head and f the phase shift between pitching and heaving

(see also [30]).

In the limit of slender structures (d=L� 1), and for

purely potential flow, Lighthill provided a leading order

expression of the fluid force acting on the beam [31]. This

so-called reactive force results from the reaction of the fluid

accelerated by the body movements and can be expressed

as [32,33]

fr ¼ �Mð@tun � @sðunutÞ þ
1

2
u2

nkÞ; ð2:2Þ

where M ¼ rS is the added mass per unit length owing to

the fluid, k is the beam curvature, ut and un are the longi-

tudinal and normal components of the beam velocity,

respectively, relative to the uniform water flow (so that

@tr�U ¼ ut t̂þ un n̂, with t̂ ¼ @r=@s the unit vector tangent

to the filament). Another contribution for the fluid force is

added to account for the loss of energy along the swimmer.

Considering that the transverse Reynolds numbers encountered
in the present experiment are Ret ¼ Af vf d/n � 10–140, this

term is given the classic quadratic form (e.g. [6,34,35])

fd ¼ �
1

2
rdCdjunjun; ð2:3Þ

with Cd the drag coefficient associated to transverse motions.

Inserting f ¼ fr þ fd into equation (2.1) and projecting

the equation on the x- and y-axes gives two coupled dynami-

cal equations for x(s, t) and y(s, t). Following Eloy et al. [33],

the equations are decoupled by first using the x-projection to

evaluate the tension T, and then eliminating x(s, t) and its

derivatives using the inextensibility condition (see also [36]).

We assume that the lateral deflections are small (y� L and

@sy� 1) and discard the terms of order larger than y2. The cur-

vilinear coordinate s is approximated by its abscissa x, the first

corrections coming up through this substitution being of order

y3. This yields the weakly nonlinear dynamical equation

m@2
t yþ B@4

xy� fr � fd þOðy3Þ ¼ 0; ð2:4Þ

with

fr ¼ �Mð@2
t yþ 2U@t@xyþU2@2

xyÞ þOðy3Þ ð2:5Þ

and

fd ¼ �
1

2
rdCdj@tyþU@xyjð@tyþU@xyÞ: ð2:6Þ

Equation (2.4) is non-dimensionalized using L and L2
ffiffiffiffiffiffiffiffiffi
m=B

p
as characteristic length and time. It reads

ð1þ ~mÞ@2
~t ~yþ @4

~x~yþ ~m½2 ~U@~t@~x~yþ ~U
2
@2

~x~y�

þ~aj@~t~yþ ~U@~x~yjð@~t~yþ ~U@~x~yÞ ¼ 0:
ð2:7Þ

The dimensionless quantities are noted with tildes;
~U ¼ UL

ffiffiffiffiffiffiffiffiffi
m=B

p
is the reduced velocity, ~m ¼M=m the mass

ratio and ~a ¼ 1
2rdCdL=m the non-dimensionalized damping

coefficient. Note that ~a depends on L, which reflects the

increasing effect of damping when the filament is longer.

Equation (2.7) is solved numerically (see Material and

methods) using the experimental parameters. Here, the only

unknown parameter is the transverse drag coefficient Cd.

It is determined using a minimization approach (see Material

and methods). Figure 4 shows the experimental and

http://rsif.royalsocietypublishing.org/
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computed time dynamics of a 4.5 cm long filament, using the

obtained value of Cd.

The first two terms of equation (2.7) are the classic ingre-

dients of the beam equation: the inertia of the beam (with an

added mass effect owing to the surrounding fluid), balanced

by an elastic restoring force. The action of the fluid brings two

additional effects: a quadratic dissipation term (last term) and

a ‘flag’ term (in square braquets) which depends on the

swimming velocity U. The flag term is known to cause the

beam to flutter above a critical flow velocity (this is called

the flapping-flag instability, e.g. [29,37–39]). In the range of

parameters of the experiments ( ~m � 0:96, ~U [ ½0:2� 4� and

~a [ ½50� 150�), the dissipative part has an order of magni-

tude 10–30 times greater than the other dimensionless fluid

term, which makes it the main fluid contribution in the

dynamical balance.

Interestingly, in our system, this term is also responsible

for the wave propagation along the beam, a specific feature

of anguilliform swimming; this is a non-trivial question as

such bounded elastic systems usually produce, by definit-

ion, standing waves. Indeed, the implementation of the first

two terms describing the elastic beam (i.e. without any

losses in transmission) yields a stationary wave (figure 3b).

When adding the ‘flag’ term, the obtained kinematics slightly

departs from a standing wave, but the velocities reached by

the swimmers are not sufficient to trigger propagation

(figure 3c). The flag forces related to the upstream velocity

U have thus a minor effect on the mechanism of propagation,

because our range of parameters lies below the onset of the

flapping [40]. This assertion is supported by the fact that,

experimentally, the kinematics of the filament is similar

when swimming behind the gates (U ¼ 0) and when moving

freely at its cruising velocity along the water tank (see the

electronic supplementary materials, movie S1). However,

including the quadratic fluid force does enable propagation

by drawing enough energy from the beam to prevent the

build-up of a standing wave (figure 3d). This dissipative

action of the surrounding fluid is thus decisive, in that it

allows the undulations to develop into a travelling wave.

It is important to note that, physically, the quadratic term

in equation (2.3) reflects the kinetic energy lost into the

fluid through transverse flow separation at each half-stroke

(e.g. [41]). In Lighthill’s theory, the estimation of the thrust

generated by the swimmer is based on considerations of

momentum and energy losses [9]. Our system differs from

this theory in that, energy is not only wasted from the tail,

but also from the sides. Dissipation thus contributes to the

energy balance through an additional wasted kinetic energy

term that can be written in a similar way to the kinetic

energy lost in the wake. The available energy to produce

thrust is hence reduced, but the global mechanism for pro-

pulsion remains unchanged. At first approximation, the

expression of the thrust, taking into account quadratic dissipa-

tion, has the form given by equation (1.1) but with a correction

factor depending on the transverse drag coefficient Cd. For the

determination of the cruising velocity and the swimming effi-

ciency, this correction is taken into account when balancing

the expression of the thrust force with the global drag of the

swimmer, through the adjustable coefficient CD. Transverse

flow separation impacts the performance of the swimmer

mostly by damping the body oscillations along its length

(owing to the fact that energy is extracted from the solid and

transferred univocally to the fluid).
The results of the numerical simulation are plotted in

figure 2 in solid lines. The phase velocity is computed a
posteriori from the simulated motion of the beam. The

measurement is performed in the same way as for experimen-

tal data, by tracking in time, the position of the points of the

swimmer crossing the body midline. Comparison between

experimental data and theoretical predictions shows a good

agreement, with a relative deviation of 22% for �yw and 29%

for �A. This confirms the ability of the present model to

describe our system and to predict the tail amplitude as

well as the phase velocity.

One should note that, despite the possible surface effects

mentioned previously, the model of a fully immersed swim-

mer described by equation (2.7) provides a good prediction of

the time–space dynamics of our surface swimmer. This leads

to the conclusion that surface effects may either be negligible

or already incorporated in the adjustable quadratic fluid dis-

sipation term (equation (2.3)). A detailed study of the surface

deformations is the subject of ongoing work.

3. Discussion
3.1. Swimming speed
Using Lighthill’s model (equation (1.1)), we obtain a predic-

tion for the thrust force. The swimming speed reached in

the steady-state regime is then determined by a balance

between the thrust generated and the drag experienced by

the filament. In the regimes encountered here, the swimmer

produces a significant wake whose width is set by the ampli-

tude of the tail displacement Ar; the drag is hence given the

form [41]

kDl ¼ 1

2
rU2CDS0; ð3:1Þ

where CD is a drag coefficient and S0 ¼ 2Ar � d the effec-

tive section. Using a simplified kinematics y(x, t) ¼
Arcos(2p( ft 2 x/l)) (with l, the wavelength), the equality

between equations (1.1) and (3.1) gives us a first-order

estimation of the swimming velocity

U ¼ Gðl;ArÞyw; ð3:2Þ

where Gðl;ArÞ ¼ ð1þ S0CDl
2=2SA2

rp
2Þ�1=2 is a function of

the spatial shape characteristics of the swimmer. Although

desirable, a robust measurement or prediction of CD for a

slender structure whose shape is changing in time is very dif-

ficult to perform, especially as the nature of this drag is not a

straightforward question.1 In the following, it has been used

as an adjustable parameter and its value of CD � 0.23 is in

agreement with the order of magnitude of the drag coefficient

of streamlined bodies [42].

All data points from the present experiments are plotted

in the compact form of equation (3.2) in figure 5a. It is note-

worthy that, although the theory is based on relatively simple

arguments, the data collapse around a single linear relation-

ship. A slight deviation above the master curve is observed

for the longest filaments, meaning that the obtained value

of CD � 0.23 overestimates the actual drag. This may be

related to the enhanced streamlining of the envelope of

oscillation observed for long filaments where the amplitude

at the tail Ar is significantly smaller than that of the head.

The estimate of U provided by Lighthill’s theory comple-

tes the beam model introduced previously in characterizing

our swimmer.

http://rsif.royalsocietypublishing.org/
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Figure 5. (a) Implementation of equation (3.2) using experimental data. The
line of slope unity around which the data line up is the identity defined by
Lighthill’s theory. A single value of CD � 0.23 was used, which is obtained as
an adjustable parameter giving the best fit of all points. (b) Hydromechanical
efficiency, calculated from equation (3.3), plotted against g which is a func-
tion of the kinematic characteristics of the swimmer. The dotted line
corresponds to the hðgÞ ¼ 1=2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð1þ gÞ

p
Þ function issued

from Lighthill’s theory.
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3.2. Efficiency
Following Lighthill’s steps, one can then define an efficiency

(similar to the Froude efficiency of a propeller), h ¼ UkTl/kWl
that illustrates the ability of the swimmer to convert the work

done by its flexural movements into useful thrust. When the

undulation takes the form of a travelling wave of velocity yw,

this hydromechanical efficiency can be written (see [10])

h ¼ 1� 1

2
ðyw �UÞ=yw: ð3:3Þ

In other words, the swimming speed U should tend toward

yw to produce thrust efficiently; U cannot be too close to yw

though, or the thrust generated will not be sufficient to over-

come the drag resistance kDl (the limit case U ¼ yw

corresponding to a swimmer slipping into the water without

giving it any lateral displacement). Using equation (3.2), h

can be expressed as a function of the kinematic characteristics

of the swimmer:

h ¼ 1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðl;ArÞ

1þ gðl;ArÞ

s !
; ð3:4Þ

where g(l, Ar) ¼ p3dAr/4CDl
2. The efficiency, calculated

from equation (3.3), is plotted against g using experimental

data (figure 5b). The good agreement with the theoretical

g-function of equation (3.4), represented here by the dotted

line, confirms the ability of the expression to describe the

dependence of h on l and Ar. As both lengths result from
the elastic response of the filament, equation (3.4) thereby

describes how the cost of propulsion changes with the

imposed forcing.

In order to make the forcing dependency of the effi-

ciency more explicit and to understand the observed trend

in figure 5b, g(l, Ar) is rewritten by approximating the dis-

persion relation to that of a beam immersed in a still fluid

without any energy losses, l ¼ 4p2(B/(m þM )1/4f21/2. It

then reads g � bArf, which is homogeneous with respect to

the speed of the lateral displacements of the tail, with b a con-

stant set by the characteristics of the fluid–solid system; this

g-form includes both the input ( f ) and the outcome (Ar) of

the ‘transfer function’ represented by the elastic system.

Injecting it into equation (3.4) and noticing that g is small

compared with unity, we get h � 1=2ð1þ
ffiffiffiffiffiffiffiffiffiffi
bArf

p
Þ. As

observed in figure 5b, swimmers thus experience an

improved efficiency when increasing the forcing frequency.

Note that contrary to swimmers executing standing waves,

which cannot achieve efficiencies exceeding 1/2 [9], the pre-

sent system yields values of h systematically higher than 1/

2. This highlights the importance of developing travelling

waves along the beam. As mentioned previously, however,

passive propagation requires a source of dissipation. This

loss of energy causes a decrease in amplitude along the

swimmer that is especially pronounced for long filaments

or high forcing frequencies (figure 2f ). In the present exper-

iment, the fact that an increase in frequency cannot be

dissociated of a decrease in the amplitude Ar limits the effi-

ciency that can be reached, which consequently is reflected

by a saturation in the h(g) curve. This limiting effect of the

spatial damping also shows in figure 2c, where �U decays

with �vf. The crucial question for the present swimmers is

then to remove enough energy along the passive elastic

body to prevent the build-up of standing waves while main-

taining a substantial amplitude of oscillation down to the tail.

A key parameter is clearly the magnitude of the dissipative

term in equation (2.7), which is quite large in the present

experiment, but that will most likely to change for other

body shapes or fully submersed swimmers.
4. Conclusions
We have presented useful results for the design of an easy-to-
build model of a self-propelled swimmer, which could be

adapted to other environments and scales. These swimmers

differ from fishes in that they are locally actuated and use

their elasticity to passively propagate a wave. We fully

characterize the swimmer by first developing a model

giving a complete description of its dynamics under actua-

tion, and then showing that average swimming speed and

efficiency are well predicted by a potential flow theory as

introduced by Lighthill.

More precisely, we have shown that the production of

anguilliform kinematics is dependent on the ability of the

mechanical system to dissipate energy along the body of

the swimmer in order to prevent the build-up of stationary

waves. In return, this substantial amount of energy lost into

the fluid leads to a decrease of the undulations along the

length of the swimmer that limits its performance. This

non-trivial problem is the focus of oncoming works in

relation to previous studies on other passive fluid–elasticity

mechanisms relevant to bioinspired propulsion in the inertial

http://rsif.royalsocietypublishing.org/
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regime [43,44]. Lastly, we have showed that a precise descrip-

tion involves a complete understanding of the nature of the

global drag acting against the forward motion. This point

will also be studied in near future by taking into account

the full kinematics of the swimmer’s shape and incorporating

viscous effects.
publishing.org
JR

SocInterface
10:20130667
5. Material and methods
5.1. Experiments
The swimmers are composed of a slender cylindrical flexible

tail (diameter d ¼ 460 mm; flexural rigidity B ¼ 5.4 � 10210+
1.0 � 10210 N m2) made of acrylic polymer (polyvynil syloxane),

with a small embedded magnet constituting the head. They

float through capillary forces at the free surface of a water tank

(12 � 6 � 27 cm) which is placed between a pair of large coils

mounted in a Helmholtz configuration (figure 1b). A spatially

uniform magnetic field that actuates the head of the swimmer

is generated. Applying an AC voltage to the coils produces an

oscillating magnetic torque T(t) ¼m � B(t) (where m is the mag-

netic moment of the magnet and B(t) is the applied field) as the

permanent magnet attempts to align with the alternating field.

The rotational oscillations of the magnet generate a backward-

propagating wave along the flexible tail, causing it to swim

forward. On each run, the swimmer is first held still by a closed

gate (figure 1a), accelerates from rest when the gate opens and

reaches rapidly (in a typical time of order 0.5–1 s) a steady swim-

ming speed U determined by a balance between the forward thrust

generated by the body undulations and the drag experienced by

the filament. The Reynolds number based on the cruising speed

U and the length of the filament L, Re ¼ UL/n (n being the kin-

ematic viscosity of the fluid) ranges from 350 to 6100. Viscous

effects are thus negligible with respect to inertia.

5.2. Numerical solution of the fluid – structure model
The motion of the swimmer is assumed to be harmonic, the angu-

lar frequency vf being set by the forcing, ~yðx; tÞ ¼ Reð~YðxÞeivftÞ,
where ~YðxÞ is the dimensionless complex amplitude along the

beam. We neglected the higher harmonics appearing through the

nonlinear term (a time Fourier transform of the body motion
showed that they were indeed negligible). Inserting this form of

y into equation (2.7) yields the following amplitude equation:

�v2
f ð1þ ~mÞ~Yþ @4

~x
~Yþ ~m½2ivf

~U@~x ~Yþ ~U
2
@2

~x
~Y�

þ 8

3p
~ajivf

~Yþ ~U@~x ~Yjðivf
~Yþ ~U@~x ~YÞ ¼ 0:

ð5:1Þ

Care needs to be taken with the complex notations for the

nonlinear term. The 8/3p factor comes from the projection of

j@~t~yþ ~U@~x~yjð@~t~yþ ~U@~x~yÞ onto the harmonic eivft [32]. Equation

(5.1) is re-written in a matrix form using finite differences and

solved numerically in Matlab to obtain the complex amplitude
~YðxÞ, and subsequently the motion of the beam y(x, t). The beam

is discretized over 100 points, which is sufficient to account for

the spatial variations along its length. The actuation is imposed

through the implementation of the boundary conditions.

5.3. Estimation of Cd
We calculated the value of Cd that minimizes the square difference

between the simulated and experimental motion (denoted here

yt(x, t) and ye(x, t)) over a time period T,
Ð T

0 ½
Ð L

0 ðyt � yeÞ2dx�2dt.
Repeating the process on 27 videos (three different frequencies

and nine swimmers of different lengths) yielded mean value

Cd ¼ 2.2+0.8, which is consistent with the typical values of

order one obtained for bluff bodies [45].

Acknowledgements. We thank Olivier Doaré, Cyril Touzé, Sebastien
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Endnote
1The drag balancing the thrust force could be a combination of form
drag and skin friction. Here, form drag is assumed to be dominant, so
that we define equation (3.1) with a drag coefficient CD that is
expected to be fairly constant in the range of Reynolds number
encountered for this ‘bluff body’ Reb ¼ 2ArU/n � [40–103].
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