
MARS : A METHOD FOR THE ADAPTIVE REMOVAL OF1

STIFFNESS IN PDES2

LAURENT DUCHEMIN∗ AND JENS EGGERS†3

Abstract. The EIN method was developed recently to remove numerical instability from PDE’s,4
adding and subtracting an operator D of arbitrary structure, one of which is treated implicitly, the5
other explicitly. Here we extend this idea by devising an adaptive procedure to find an optimal6
approximation for D. We propose a measure of the numerical error which detects numerical noise7
across all wavelengths, and adjust each Fourier component of D to the smallest value such that8
numerical instability is suppressed. We show that for a highly nonlinear and non-local PDE, the9
spectrum of D adapts automatically and dynamically to the theoretical result for stability. Our10
method thus has the same stability properties as a fully implicit method, while only requiring an11
explicit solver. The adaptive implicit part is diagonal in Fourier space, and thus leads to minimal12
overhead compared to the explicit method.13

Key word. Stiff set of PDEs, Hele-Shaw, Birkhoff–Rott integral, surface tension14

1. Introduction. Our ability to model many key physical processes is limited15

by the numerical stability of the partial differential equations (PDE’s) describing16

them. The reason is that the maximal stable time step of an explicit numerical17

integration scheme is of the order of the shortest time-scale in the system. In a18

stable physical system these are typically exponentially damped modes which relax19

back to equilibrium; the smaller the length scale, the faster the relaxation. This20

makes it particularly hard to simulate systems at large values of the viscosity or of21

the surface tension. For instance, surface tension driven flows in the open source22

fluid dynamics code Gerris [16] require a time step proportional to ∆3/2[4], where23

∆ is the grid spacing, which this program adapts dynamically in order to ensure24

a sufficient spatial accuracy [17]. As a result, for small geometries ∆ can be very25

small, resulting in time steps which are prohibitively small. This constraint is more26

restrictive than the CFL constraint, related to advection. Another example is the27

numerical computation of solidification/fusion fronts, which uses a non-linear heat28

equation [22] : the corresponding time step constraint is ∆2.29

If for example relaxation is controlled by a differential operator of order m (m = 230

for ordinary diffusion, m = 3 for the Hele-Shaw flow to be described below), then31

the required maximum time step δt scales as δt = Cδxm, where δx is the smallest32

grid spacing or the size of the smallest sub-division. In a well-resolved numerical33

simulation, this should be considerably smaller than the smallest relevant physical34

feature. Rapid exponential decay implies that the amplitude of perturbations on the35

grid scale is very small, and contributes negligibly to the numerical solution. Thus36

one arrives at the paradoxical situation that the stability of the numerical scheme is37

controlled by a part of the solution which contributes negligibly, and which is actually38

the most stable from a physical perspective. This property is sometimes referred to39

as the stiffness of the PDE [13], which becomes worse with increasing spatial order m40

of the operator.41

∗Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, F-13384, Marseille,
France (duchemin@irphe.univ-mrs.fr).
†School of Mathematics - University of Bristol, University Walk, Bristol BS8 1TW, United King-

dom (Jens.Eggers@bristol.ac.uk).

1

This manuscript is for review purposes only.

mailto:duchemin@irphe.univ-mrs.fr
mailto:Jens.Eggers@bristol.ac.uk

To deal with this constraint on the time step, which often is so severe that it makes42

the exploration of important physical parameter regimes impractical, one has to resort43

to implicit methods. This means that the right hand side of the equation (or at least44

the stiffest parts of it) has to be evaluated at a future time step, making it necessary45

to solve an implicit equation at each time step [12, 1]. This makes the numerical code46

both complicated to write and time-consuming to solve. This is true in particular47

if the operator is non-local (as is the case for example of integral operators, as they48

appear in boundary integral type codes [18, 11]).49

To address this problem, it has long been realized that not the whole of the right50

hand side of an equation has to be treated implicitly, as long as the “stiffest” part of51

the operator is dealt with implicitly. This gives rise to the so-called “implicit-explicit52

methods” [2], which divide up the problem between explicit and implicit parts, such53

that hopefully the implicit contribution is sufficiently simple to invert. If this is not54

clear, as is typically the case for an integral operator, the problem can be solved by55

judiciously slicing off the stiffest part, which can be local [11]). However, this has to56

be done on a case-by-case basis, and will not always be possible. Recently, we have57

presented a much more general method to stabilize stiff equations, which makes use of58

the arbitrariness in which splitting between explicit and implicit parts can take place59

[8, 7]. We consider a partial differential equation of the form60

(1.1)
∂u

∂t
= f(u, t),61

where u(x, t) is a function of space and time or a vector of functions of space and time.62

In order to stabilize the stiff terms in f(u, t), we add two terms on the right-hand-side63

of the discretized version of equation (1.1) :64

(1.2)
un+1
i − uni
δt

= fi(u
n, tn)−Di[un] +Di[un+1],65

where n denotes the time variable (tn = nδt) and D is an arbitrary operator. The66

variable u as well as f are defined on a spatial grid xi = iδx, where δx is the grid67

spacing. Clearly, the added terms are effectively zero apart from the first-order error68

that comes from the fact that D is evaluated at different time levels, which motivates69

the name “Explicit-Implicit-Null” method or “EIN”. If D is the same as the original70

operator f(u, t), this is a purely implicit method, if D = 0, it is explicit. Similar ideas71

have been implemented to stabilize the motion of a surface in the diffuse interface and72

level-set methods [21, 10, 19], and for the solution of PDEs on surfaces [14]. We also73

show that by a simple step-halving procedure [3], (1.2) can always be turned into a74

scheme which is second order accurate in time [7].75

The crucial insight is that D can be chosen for maximum effectiveness, with no regard76

as to the structure of the original operator f . In particular, we can choose D to be77

diagonal in Fourier space, rendering the implicit step almost trivial to perform:78

(1.3)
ûn+1
k − ûnk
δt

= f̂k(un, tn) + λ(k)ûnk − λ(k)ûn+1
k ,79

where ˆ denotes the Fourier transform and the damping spectrum λ(k) ≥ 0 is an80

arbitrary function. The Fourier transform f̂k can be calculated effectively from the81

spatial discretizaton fi using the fast Fourier transform (FFT). From (1.3), we can82

calculate ûn+1
k directly for each k, so we obtain the desired solution from the inverse83

2

This manuscript is for review purposes only.

transform. The scheme (1.3) (as well as any other first order scheme) can be turned84

into a second order scheme by Richardson extrapolation [3]. Namely, let u1,n+1 be85

the solution for one step δt, u2,n+1 the solution for two half steps δt/2. Then86

(1.4) un+1 = 2u2,n+1 − u1,n+1 +O(δt3),87

is second order accurate in time, and88

(1.5) E = u1,n+1 − u2,n+1
89

can be used as an estimate for the error.90

To analyse (1.3) further, we adopt a “frozen-coefficient” hypothesis, that the solution91

is essentially constant over the time scale on which numerical instability is developing.92

Then for small perturbations δûnk about the current solution ûnk we can linearize.93

At least on the small scale (i.e. in the large k limit), f̂k(un, tn) is expected to be94

translationally invariant, making the operator diagonal in Fourier space, so we can95

write96

(1.6) f̂k(un + δu, tn) ∼ −e(k)δûnk .97

Here for simplicity we assume that the eigenvalues e(k) are real, as it is typically the98

case for physical problems, where the dominant process in small scale is dissipative.99

We have shown in [7] that, as long as λ(k) > e(k)/2, the system (1.3) is unconditionally100

stable. This is a generalization of a method first presented, for the case of the diffusion101

equation in two dimensions, in [5]. If (1.3) is turned into a second order scheme using102

(1.4), this condition is [7]:103

(1.7) λ(k) > λc(k) = 2e(k)/3,104

with λc(k) the theoretical stability limit. Thus for sufficiently large values of λ(k),105

there is always stability; however, the rounding error increases with λ, and should106

therefore be kept as small as possible, consistent with the stability constraint. There107

is a certain similarity here with the preconditioning of matrices, where a matrix is108

approximated by a simple diagonal matrix [23, 9].109

In [7] we have tested the ideas underlying the EIN method, calculating the spectrum110

e(k) for a variety of operators, including nonlocal operators treated previously in [11].111

We approximated λ(k) as a power law, derived from the low wavenumber limit of the112

exact discrete spectrum. As predicted by the above analysis, we find the scheme (1.3)113

unconditionally stable, and performing with the same accuracy as that proposed in114

[11]. Obviously, this still requires one to obtain a good estimate for the spectrum.115

In the present paper, we aim to remove this analytical step, and to make the calcu-116

lation of λ(k) self-consistent. The idea is to determine λ(k) iteratively, by detecting117

numerical instability. If there is numerical noise, the damping is increased, while λ(k)118

can be reduced if the code is stable. In the simplest version of our procedure, we119

focus on the high wave number limit, where most of the stiffness is coming from, and120

approximate λ(k) by a power law, determined by one or two parameters, depending121

on whether the exponent is to be prescribed. While we found this approach to work,122

it introduces arbitrary assumptions into the procedure, and assumes a separation be-123

tween a high and low wave number regimes. Instead, here we present the results of a124

scheme which adjusts each Fourier mode individually, based on noise detected in the125

same Fourier mode. This models the original operator in much greater detail, and126

leads to a spectrum λ(k) which corresponds exactly to the theoretical stability limit.127

3

This manuscript is for review purposes only.

2. Adaptive stabilization. Our method is based on the formulation (1.3),128

which together with (1.4) is an unconditionally stable second order scheme, as long as129

λ(k) is sufficiently large. We would like to find an adaptive procedure which refines130

λ(k) at each time step, so as to keep it as small as possible consistent with stability.131

To achieve this, we have to address two issues: (i) find a measure ε(k) of the noise,132

or of numerical instability, for each Fourier mode k; (ii) specify the evolution of λ(k)133

for a given noise.134

Finding a suitable measure of the error is the crucial question, to be discussed in more135

detail below. As for (ii), we aim to adjust each Fourier component λ(k) individually,136

although we have also explored representing λ(k) by a finite number of parameters. We137

adopt the simplest possible approach, taking a local relation between ε(k) and λ(k).138

For each Fourier mode, if ε(k) is larger than an upper bound εu, the corresponding139

λ(k) is increased in a geometric progression. If on the other hand ε(k) < εu, λ(k) is140

increased at a much smaller progression, in order to avoid a sudden onset of instability.141

As to a measure of noise, a first guess might be to take ε(k) as the Fourier transform142

of the error (1.5). We tested this idea using the interface dynamics discussed in more143

detail in the next section, and illustrated in Fig. 5. Figure 1 shows the evolution144

of the Fourier transform Êk of this error, as a function of time, without using the145

EIN method. The time step is chosen to be δt = 3.125× 10−5, the number of points146

N = 1024, and we use a purely explicit scheme (no stabilization), so that the modes147

with the largest wavenumbers are unstable. Indeed, as explained in the next section,148

there exists a region in k−space which would be stable with an explicit scheme (on149

the left of the vertical dashed line), and an unstable region (on the right), where150

we would like to detect numerical instability. As a result, the noise level grows very151

rapidly for the right-hand side of the spectrum, and for the first two time steps there152

is little power in the small-k modes. Thus Êk could be used to detect correctly the153

numerical instability for large k.154

However, the left part of the spectrum is soon invaded through non-linear mode-155

coupling, and there grows a considerable component of the error at small k (corre-156

sponding to large scales), which would not be damped away if λ(k) was increased.157

The problem is clear: in the proposed scheme, there is no clean distinction between158

noise resulting from numerical instability, and the broad spectrum of unstable modes159

which is part of the physical solution. The crucial problem of defining the numerical160

noise ε lies in this distinction.161

We have tried various refinements of the definition of ε which attempt to make the162

distinction more clearly. For example, we used a higher order approximation of the163

truncation error E by taking into account several time steps. However, although the164

procedure worked for a little longer, it soon failed in the same way. A successful165

procedure came from the idea of spatial smoothing, taking the truncation error as166

the starting point. To compute ε at the i’th gridpoint, we consider the error Ei,167

and compare it to a smoothed version Ēi at the same point. The reasoning is that168

Ēi contains the full spectrum coming from the deterministic nonlinear dynamics, so169

Ei − Ēi contains the random noise produced by numerical instability. Taking the170

Fourier transform, we define171

(2.1) ε(k) = Êk − ˆ̄Ek.172

There are many possible choices for the smoothed- out error. We chose a polyno-173

mial approximation over 2n gridpoints, but excluding i itself, otherwise ε would be174

4

This manuscript is for review purposes only.

10−30

10−20

10−10

100

100 101 102

Ê
k

t = 3.125× 10−5

(a)

k
=
k e

100 101 102

t = 6.25× 10−5

(b)

100 101 102

t = 9.375× 10−5

(c)

100 101 102

t = 1.25× 10−4

(d)

Fig. 1. The evolution of the Fourier transform Êk of the error, for the first four time steps,
without damping (∀k, λ(k) = 0). Initially the error is uniformly small for a flat interface with a
white noise, but eventually develops significant components at smaller k. The vertical dashed line,
at k = ke (see equation (3.11)), separates to the left values of k for which an explicit scheme is
stable, and to the right values of k for which our EIN method is needed.

identically zero. In other words,175

(2.2) Ēi = P (Ei−n, . . . , Ei−1, Ei+1, . . . , Ei+n) .176

The measure of the error with this new definition is shown in figure 2. The same177

parameters as for figure 1 have been used, and the three data curves correspond to178

n = 1 (red), n = 2 (blue) and n = 3 (green). The results to be reported below are179

for n = 2, i.e. using 4 points for the interpolation. The choice n = 1 yielded similar180

results, but the procedure broke down earlier as the interface became very strongly181

deformed.182

10−30

10−20

10−10

100

100 101 102

ε(
k)

t = 3.125× 10−5

(a)

k
=
k e

100 101 102

t = 6.25× 10−5

(b)

100 101 102

t = 9.375× 10−5

(c)

100 101 102

t = 1.25× 10−4

(d)

Fig. 2. The evolution of the error ε(k) defined by equation (2.1), for the first four time steps,
without damping (∀k, λ(k) = 0). Initially the error is uniformly small for a flat interface with a white

noise. The large values observed at small k on Êk after a few time steps are significantly reduced
with this new definition of the error. The three colors correspond to three averaging methods : Red :
n = 1 in equation (2.2), i.e. one point to the left, one to the right; Blue : n = 2; Green : n = 3.
The vertical dashed line is the stability boundary k = ke.

This shows that the procedure does not rely on the selection of a particular length183

scale, as defined by the ratio of the size of the smoothing region, divided by the grid184

size. However, for n = 3 we ran into numerical difficulties in trying to compute the185

interpolating polynomial. Instead, we used n = 2, i.e. two points to the left, two to186

the right, to define the average error; this procedure worked equally well.187

The difference between the naive error measure Êk and ε(k) based on smoothing is188

illustrated in Fig. 3. We ran the same computation as in figures 1 and 2, but using our189

5

This manuscript is for review purposes only.

10−20

10−15

10−10

10−5

100

Ê
k

k

10−20

10−15

10−10

10−5

100

ε(
k)

k

k
=
k e

k
=
k e

Fig. 3. The effect of smoothing on the solution at t = 0.04 (third panel of Fig. 5 below). On the

left, we show the spectrum of the error Êk, which is broad in the nonlinear regime. On the right, we
show the numerical noise ε(k) as defined by (2.1), which is substantial only in a high wave number
region where noise is detected. The vertical dashed line is k = ke. The horizontal red line is the
threshold εu used to adapt λ(k).

adaptive procedure. Equation (2.1) is used as a measure of the error (with n = 2) to190

adapt λ(k) at each time step, with the threshold εu = 10−10. The left curve shows the191

Fourier transform Êk as a function of k : clearly, this error alone is ill-suited to detect192

instability, since it has significant components for k < ke, where the explicit scheme193

is stable, so there is no instability even for λ(k) = 0. The right curve shows the error194

(2.1) used to adapt λ(k) as a function of k : the instability is correctly detected at195

large values of k and this error remains low, i.e. does not require any damping, in the196

region where an explicit scheme is stable.197

3. Example: Hele–Shaw flow.198

3.1. Equations of motion. We consider an interface in a vertical Hele-Shaw199

cell, separating two viscous fluids with the same dynamic viscosity, with the heavier200

fluid on top [11]. As heavy fluid falls, small perturbations on the interface grow201

exponentially: this is known as the Rayleigh-Taylor instability [6]. However, surface202

tension assures regularity on small scales. For simplicity, we assume the flow to be203

periodic in the horizontal direction. We briefly recall the dynamics of the interface204

here; for more details, see [7].205

The interface is discretized using marker points labeled with α, which are advected206

according to :207

(3.1)
∂X(α)

∂t
= Un + T s.208

Here X(α) = (x, y) is the position vector, n = (−yα/sα, xα/sα) and s = (xα/sα, yα/sα)209

are the normal and tangential unit vectors, respectively, and sα = (x2α+y2α)1/2. Hence210

U = (u, v) · n and T = (u, v) · s are the normal and tangential velocities, respectively.211

The tangential velocity does not affect the motion, but is chosen so as to maintain a212

reasonably uniform distribution of points [11, 7]. If z(α, t) = x+ iy is the complex po-213

sition of the interface, which is assumed periodic with period 1 (z(α+2π) = z(α)+1),214

6

This manuscript is for review purposes only.

the complex velocity becomes :215

(3.2) u(α)− iv(α) =
1

2i
PV

∫ 2π

0

γ(α′, t) cot [π(z(α, t)− z(α′, t))] dα′,216

where γ is the vortex sheet strength. For two fluids of equal viscosities [15],217

(3.3) γ = Sκα −Ryα,218

where κ is the mean curvature of the interface :219

(3.4) κ(α) =
xαyαα − yαxαα

s3α
, recalling that sα = (x2α + y2α)1/2.220

Here S is the non-dimensional surface tension coefficient and R is the non-dimensional221

gravity force. To compute the complex Lagrangian velocity of the interface (3.2), we222

use the spectrally accurate alternate point discretizaton [20] :223

(3.5) uj − ivj ' −
2πi

N

N−1∑
l=0

j+l odd

γl cot [π(zj − zl)].224

Derivatives κα and yα are computed at each time step using second-order centered225

finite differences, and α is defined by α(j) = 2πj/N , where j ∈ [0, N] and N is the226

number of points describing the periodic surface. Note that the numerical effort of227

evaluating (3.5) requires O(N2) operations, and thus will be the limiting factor of our228

algorithm.229

3.2. Stabilization. Combining (1.3) with (3.1), the numerical scheme becomes :230

(3.6) x̂n+1
k = x̂nk +

ûnk
δt−1 + λ(k)

, ŷn+1
k = ŷnk +

v̂nk
δt−1 + λ(k)

,231

where ûnk and v̂nk are calculated from the Fourier transform of (3.5). The new grid232

points xn+1
i , yn+1

i are obtained from the inverse Fourier transform. Using the Richard-233

son scheme (1.4), from two half steps δt/2 of the first-order method (3.6), one obtains234

(3.7) xn+1
i = 2x2,n+1

i − x1,n+1
i , yn+1

i = 2y2,n+1
i − y1,n+1

i ,235

which is second-order accurate.236

In [7], we performed a linear analysis (1.6) of the discrete modes of (3.5) about a flat237

interface. We found that238

(3.8) e(k) =
SN3

L3

(
1− cos

2πk

N

)
sin

2πk

N
≡ ẽ(x) = (1− cosx) sinx, x =

2πk

N
,239

where L is the length of the interface, andN the number of gridpoints. The normalized240

form of the spectrum is shown in Fig. 4. For long wavelengths, i.e. small wavenumbers,241

this can be approximated by the power law242

(3.9) e(k) ≈ S

2L3
(2πk)3 ≡ ẽ(x) =

x3

2
,243

which is shown as the dashed line in the same figure.244

7

This manuscript is for review purposes only.

10−3

10−2

10−1

100

101

10−1 100

ẽ(
x)

x

Fig. 4. A double logarithmic plot of the dispersion relation ẽ(x), as defined in (3.8). The
long-wavelength approximation (3.9) is shown as the dashed line.

t = 3.125× 10−5 t = 0.02 t = 0.04 t = 0.06

Fig. 5. A simulation of the Hele-Shaw problem, with the interface shown on the top row. On
the lower row, the corresponding spectrum of ε(k) defined by equation (3.12) (green), as well as
λ(k) (red). The dotted line is the stability limit λc(k) = 2e(k)/3, with e(k) given by (3.8), the top
horizontal blue line the explicit stability boundary 2/δt. The vertical dashed line is k = ke. The
ranges in the interface plots are [−1 : 2] in x, [−1.5 : 1.5] in y, and in the log-log plots [1 : 512] in
x, [10−20 : 1010] in y.

In [7] we found that (3.7) was stable as long as λ(k) was chosen according to the245

stability criterium (1.7). For simplicity, we chose the asymptotic form (3.9), which is246

always larger than the true spectrum. In other words,247

(3.10) λ(k) ≥ S

3

(
2πk

L

)3

248

8

This manuscript is for review purposes only.

is a sufficient condition for stability. In addition, for e(k)δt < 2 the purely explicit249

scheme (λ ≡ 0) is stable; this is the stability boundary for an explicit Euler scheme.250

Thus for a given time step δt, the condition e(k)δt = 2 defines a stability boundary251

ke for the wave number, below which an explicit step is stable:252

(3.11) ke ≈
L

2π

(
4

Sδt

)1/3

.253

Since this boundary typically lies in the limit of small wavenumbers, we can use the254

asymptotic expression (3.9).255

Using the procedure described in Sec. 2, for each Fourier mode if ε is larger than an256

upper bound εu = 10−10, λ is multiplied by 1.2. If on the other hand ε is smaller than257

εu, λ is decreased by a factor of 1/1.02. Figure 5 shows our adaptive scheme at work,258

as the interface (shown on the top row) deforms, and the length L of the interface259

increases. The error ε(k) is defined by :260

(3.12) ε(k) = MAX(Êxk − ˆ̄Exk , Ê
y
k −

ˆ̄Eyk).261

In equation (3.12), the error defined by equation (2.1) is computed, for each mode,262

for both x and y spectra, and the global error is defined as the maximum of the two.263

We chose this definition for the error, because rapid oscillations can occur in both x264

and y variables. We have initialized λ(k) to the asymptotic power-law form (3.10)265

of the stability boundary, also used in [7]. After the first time step (first panel of266

Fig. 5), λ(k) still has its initial value, while the error ε(k) is very small as expected.267

As seen in the second panel, λ(k) has converged onto the theoretical stability limit268

λc(k) = 2e(k)/3 (cf. (1.7)), with e(k) given by (3.8). The damping spectrum has thus269

dropped from the initial condition (3.9), which overpredicts the stability boundary.270

However, convergence only occurs for k > ke, since below k = ke no numerical271

instability occurs. As a result, for k < ke the stabilizing spectrum λ(k) is reduced272

at every time step, and has already fallen by orders of magnitude below the stability273

limit of the EIN scheme. Correspondingly, by adjusting λ(k) the error ε(k) is kept274

close to the threshold εu = 10−10 for k > ke. Below ke, ε(k) remains very small, since275

there is no instability to trigger it.276

In addition, owing to the increase in L, the explicit stability boundary ke (3.11) moves277

in time to the right (vertical dashed line), and the stability limit (3.10) (dotted line)278

moves down. As seen in the third and fourth panel of Fig. 5), λ(k) continues to adapt279

to the stability limit as it drops further, but only in the regime k > ke, which becomes280

progressively smaller. The results described above are not changed significantly as εu281

is varied over several orders of magnitude up or down from 10−10, but of course the282

value must be significantly over the rounding error, and below the expected truncation283

error.284

In our earlier EIN scheme [7], we used λ(k) based on the the simplified stability285

boundary (3.10) to stabilize the Hele-Shaw interface motion shown in (5). However,286

this overpredicts the necessary damping for large k. For k < ke, on the other hand,287

no damping is necessary, and our adaptive scheme reflects that by decreasing λ(k)288

more and more. As a result, the damping in the adaptive scheme is significantly289

smaller than in our previous EIN scheme. In Fig. 6 we show a comparison of the290

numerical results to those of the earlier scheme, and find very good agreement. The291

major advance is of course that λ(k) no longer needs to be prescribed, but is found292

9

This manuscript is for review purposes only.

Fig. 6. A comparison of the interface as obtained from our current adaptive scheme (red curves)
and our earlier EIN scheme (black curves) [7], which used the theoretical stability boundary (3.10).

self-consistently as part of the algorithm which ensures stability. Only in the last293

panel is there a significant discrepancy between the two results. This occurs in places294

where two sides of the interface have come in close proximity, comparable to the295

spacing between grid points. But this means our evaluation of the velocity integral is296

no longer sufficiently accurate to be reliable.297

4. Outlook and conclusions. We have thus demonstrated the feasibility of298

our method using a difficult model problem, in that the operator is both very stiff299

and non-local. However, there are many ways in which to extend and improve the300

present approach. Firstly, we estimated the damping spectrum by analyzing the301

current solution in Fourier space, which is particularly easy for the periodic domain302

considered by us. However, this may be circumvented by periodically continuing a303

solution defined over a finite domain only. In addition, one could formulate the entire304

method in real space, as done in some cases described in [7].305

A second, more important issue is our assumption of the spectrum e(k) in (1.6) being306

real. This assumption is well founded, since the ultimate physical damping process307

is dissipative, leading to real eigenvalues. However, as demonstrated by the example308

of an inertial vortex sheet considered in [11], even problems lacking dissipation can309

display significant stiffness. This case leads to a system of PDEs, with pairs of complex310

eigenvalues e(k) on the right-hand-size of (1.6), corresponding to traveling waves. In311

that case the damping spectrum λ(k) would also have to be complex to ensure stability,312

a case we have not yet considered.313

Finally, a problem we still need to address is how to choose an initial condition for the314

damping spectrum λ(k). In the present work we choose a power-law spectrum which315

can be inferred from a simple analysis of the continuum version of the equations of316

motion, which then adapts to an optimal spectrum. It would be ideal if no input317

whatsoever was necessary, choosing for example λ(k) = 0 initially. At present, this318

is not possible, as the quality of the numerical solution deteriorates before λ(k) can319

adapt. We suspect that in order for such a scheme to be successful, one needs to320

implement a variable time step, such that initial steps during which λ(k) is found are321

very small.322

10

This manuscript is for review purposes only.

In conclusion, following our previous study on this subject, we propose a new method323

to remove the stiffness of PDEs containing non-linear stiff terms, i.e. high spatial324

derivatives embedded into non-linear terms. This method allows for the self-consistent325

estimation of a stabilizing term on the right-hand-side of the PDE, that ensures ab-326

solute stability for the numerical scheme. Analyzing the spectrum of the solution at327

each time step, we adapt automatically the stabilizing term such that each unsta-328

ble Fourier mode is damped optimally. The computational cost of this method is329

essentially the same as that of the explicit method.330

REFERENCES331

[1] W. F. Ames, Numerical methods for partial differential equations, Academic press, 2014.332
[2] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-333

dependent partial differential equations, SIAM J. Numer. Amal., 32 (1995), p. 797.334
[3] B. P. Ayati and T. F. Dupont, Convergence of a step-doubling galerkin method for parabolic335

problems, Math. Comput., 74 (2004), pp. 1053–1065.336
[4] J. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface337

tension, Journal of computational physics, 100 (1992), pp. 335–354.338
[5] J. Douglas Jr. and T. F. Dupont, Alternating-direction galerkin methods on rectangles, in339

Numerical Solution of Partial Differential Equations II, B. Hubbard, ed., Academic Press,340
1971, pp. 133–214.341

[6] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, Cam-342
bridge, 1981.343

[7] L. Duchemin and J. Eggers, The explicit-implicit-null method: removing the numerical in-344
stability of pdes, Journal of Computational Physics, 263 (2014), pp. 37–52.345

[8] J. Eggers, J. R. Lister, and H. A. Stone, Coalescence of liquid drops, J. Fluid Mech., 401346
(1999), pp. 293–310.347

[9] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers:348
with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific349
Computation, 2014.350

[10] K. Glasner, A diffuse interface approach to hele-shaw flow, Nonlinearity, 16 (2003), pp. 49–66.351
[11] T. Hou, J. Lowengrub, and M. Shelley, Removing the stiffness from interfacial flows with352

surface tension, J. Comp. Physics, 114 (1994), pp. 312–338.353
[12] A. Iserles, A first course in the numerical analysis of differential equations, no. 44, Cambridge354

university press, 2009.355
[13] A.-K. Kassam and L. Trefethen, Fourth-order time-stepping for stiff pdes, SIAM J. Sci.356

Comput., 26 (2005), pp. 1214–1233.357
[14] C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the numerical358

solution of partial differential equations on surfaces, SIAM J. Sci. Comput., 31 (2009),359
pp. 4330–4350.360

[15] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University361
Press, Cambridge, 2002.362

[16] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comp.363
Phys., 228 (2009), pp. 5838–5866.364

[17] S. Popinet, Numerical models of surface tension, Annual Review of Fluid Mechanics, 50 (2018),365
pp. 49–75, https://doi.org/10.1146/annurev-fluid-122316-045034.366

[18] C. Pozrikidis, Boundary Integral and singularity methods for linearized flow, Cambridge Uni-367
versity Press, Cambridge, 1992.368

[19] D. Salac and W. Lu, A local semi-implicit level-set method for interface motion, J. Sci.369
Comput., 35 (2008), pp. 330–349.370

[20] M. Shelley, A study of singularity formation in vortex sheet motion by a spectrally accurate371
vortex method, J. Fluid Mech., 244 (1992), p. 493.372

[21] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J.373
Sci. Comput., 19 (2002), pp. 439–456.374

[22] M. Ulvrov, S. Labrosse, N. Coltice, P. Raback, and P. Tackley, Numerical modelling of375
convection interacting with a melting and solidification front: Application to the thermal376
evolution of the basal magma ocean, Physics of the Earth and Planetary Interiors, 206207377
(2012), pp. 51 – 66.378

[23] A. Wathen and D. Silvester, Fast iterative solution of stabilised stokes systems. part i:379

11

This manuscript is for review purposes only.

https://doi.org/10.1146/annurev-fluid-122316-045034

Using simple diagonal preconditioners, SIAM Journal on Numerical Analysis, 30 (1993),380
pp. 630–649.381

12

This manuscript is for review purposes only.

	Introduction
	Adaptive stabilization
	Example: Hele–Shaw flow
	Equations of motion
	Stabilization

	Outlook and conclusions
	References

