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Self-focusing of thin liquid jets

BY LAURENT DUCHEMIN*

IRPHE, Université d’Aix-Marseille I, 49 rue Joliot-Curie, BP 146,
13384 Marseille Cedex, France

The nonlinear evolution of an initially perturbed free surface perpendicularly
accelerated, or of an initially flat free surface subject to a perturbed velocity profile,
gives rise to the emergence of thin spikes of fluid. We are investigating the long-time
evolution of a thin inviscid jet of this kind, subject or not to a body force acting in the
direction of the jet itself. A fully nonlinear theory for the long-time evolution of the jet is
given. In two dimensions, the curvature of the tip scales like t3, where t is time, and the
peak undergoes an overshoot in acceleration which evolves like tK5. In three dimensions,
the jet evolves towards an axisymmetric shape, and the curvature and the overshoot in
acceleration obey asymptotic laws in t2 and tK4, respectively. The asymptotic self-
similar shape of the spike is found to be a hyperbola in two dimensions, a hyperboloid in
three dimensions. Scaling laws and self-similarity are confronted with two-dimensional
computations of the Richtmyer–Meshkov instability.

Keywords: potential flow; self-similarity; thin jets
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1. Introduction

Free-surface thin jets of inviscid fluids occur in many different areas of fluid
dynamics (Eggers 1997), including surface waves (Longuet-Higgins 1976, 1983;
Longuet-Higgins & Dommermuth 2001), asymmetric bubble collapse (Blake
et al. 1997; Prosperetti 1997; Popinet & Zaleski 2002), bursting of bubbles at a
free surface (Duchemin et al. 2002), drop impact onto a solid surface (Bartolo
et al. 2006) or even ink-jet printing (Dijksman 1999). Fundamental instabilities
involving jets have been widely studied, among which are the Rayleigh–Taylor
(RT; Rayleigh 1900; Taylor 1950) and Richtmyer–Meshkov (RM) instabilities
(Richtmyer 1960; Meshkov 1969). These two instabilities correspond to the
situation where a fluid is accelerated towards another one, the boundary between
the two fluids being initially perturbed. In the case of the RT instability, a heavy
fluid is subject to a constant body force like gravity acting in the direction of
a lighter fluid, whereas in the case of the RM instability, the perturbed interface
is impulsively accelerated by a shock wave, a situation which can be well
approximated by imposing an impulsive acceleration perpendicular to the
interface (Carles & Popinet 2001). Special attention has been drawn recently to
the limit where the lighter fluid does not play a role in the evolution of the
surface (Clavin & Williams 2005; Duchemin et al. 2005; Antkowiak et al. 2007),
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i.e. when its density is much lower than the one of the heavier fluid. In particular,
this assumption is relevant in the context of water impact problems (Cooker &
Peregrine 1995) and in the context of inertial confinement fusion (ICF;
Duchemin et al. 2005). These recent studies of hydrodynamic instabilities
occurring on ICF targets focus on the long-time dynamics of the tiny spikes
observed in the RT instability, in two dimensions. In this context, it is shown
that the spikes undergo an overshoot in acceleration scaling like tK5 and that the
peak’s curvature evolves like t3, where t is time.

In this paper, we concentrate on the special case of infinite density ratio (i.e. a
free-surface flow), for which the Kelvin–Helmholtz instability cannot occur; we
neglect the effect of surface tension and assume that the fluid is incompressible.
The type of ‘free’ jets we are interested in corresponds to jets without an imposed
mass flux or velocity profile; they are free-evolving jets subject to a time-
dependent body force and arise in any of the cited fundamental free-surface
instabilities.

A general nonlinear theory is given for the spike evolution at long time, in both
two and three dimensions. The theory is valid for jets subject or not to a body
force acting in the direction of the jet itself. In the two-dimensional case, we
recover the same type of self-similarity and scaling laws as the one found by
Clavin & Williams (2005) for the special case of the RT instability. In three
dimensions, self-similarity and scaling laws around the spike differ from the two-
dimensional ones: the curvature scales like t2 and the overshoot in acceleration
like tK4. It is also shown that at long time, any three-dimensional jet will end up
being axisymmetric. Finally, predicted scaling laws are confronted with a two-
dimensional simplified version of the RM instability. A good agreement is
obtained between the theoretical scaling laws and self-similarity exponents and
the numerical results.
2. Theory

We consider a vertical inviscid thin jet subject to a time-dependent body force
g(t) pointing either upwards or downwards. Instead of solving this specific
problem, we consider the rigorously equivalent configuration in which there is no
body force and the fluid far from the jet is subject to an acceleration Kg(t)
(cf. figure 1). The theory developed in this paper will be valid for any function
g(t), including the Dirac function.

This flow is completely described by the definition of a velocity potential 4
satisfying Laplace’s equation

D4Z 0; ð2:1Þ

where 4 is a function of space and time coordinates, and the velocities of fluid
particles along x -, y- and z -axes are given by uZ4x, vZ4y and wZ4z,
respectively, where the subscript denotes differentiation. Since we are looking for
a velocity potential valid in a region where jxj, jyj/1, symmetric about the
z -axis, a second-order expansion in x and y of this potential gives

4ðx; y; z; tÞZ40ðz; tÞCx241ðz; tÞCy242ðz; tÞ: ð2:2Þ
Proc. R. Soc. A (2008)
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Figure 1. Galilean frame of reference according to which the flow is described. The fluid far from
the jet moves away from this frame of reference with acceleration Kg(t).
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At this stage, we make the assumption that the flow is well described by a pure
straining flow potential

4Z
1

2

_a

a
x2 C

_b

b
y2 C

_c

c
z2

 !
; ð2:3Þ

where a, b and c are functions of time only. This notation is the one used
by Longuet-Higgins (1983) and allows a natural way of finding the free-
surface shape.

Although equation (2.3) seems to be a strong assumption, a physical argument
can be given in favour of this choice. Indeed, asymptotically, we expect the
trajectories of fluid particles in the jet to be Galilean, i.e. with velocity components
(U, V, W ) different for each particle and constant in time, and positions
XZUtCX0, YZVtCY0 and ZZWtCZ0 where (X0, Y0, Z0) is the initial
position of the particle. In other words, we expect the pressure gradient in the
fluid to be negligible, at large time, compared to inertia. The velocity components
of fluid particles as a function of their current and initial positions read
UZ(XKX0)/t, VZ(YKY0)/t and WZ(ZKZ0)/t. Considering that at large
time, the fluid particles are far from their initial position, the vertical velocity
component can be approximated by WzZ/t. Such an asymptotic velocity
corresponds to an Eulerian velocity potential quadratic in z. Using this fact in
expansion (2.2) together with Laplace’s equation, we find that 41 and 42 have to be
functions of time only. This finally leads to a velocity potential of the form (2.3). As
explained later, the linear behaviour in z of 4z is validated thanks to the numerical
study presented in this paper.
Proc. R. Soc. A (2008)
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In order for 4 to satisfy Laplace’s equation, functions a, b and c must satisfy

abcZM ; ð2:4Þ
where M is a constant. It is worth noting that functions a, b and c can be rescaled
according to any constant, without altering the velocity potential 4. Only
the value of M is changed. On the free surface, both the Bernoulli pressure
K2pZ24tC42

xC42
yC42

zC f ðtÞ and its Lagrangian derivative ðvtC4xvxC
4yvyC4zvzÞðK2pÞ are zero (f(t) is an unknown function of time). Following
Longuet-Higgins (1983), we replace the expression for 4 in these equations and
obtain:

€a

a
x2C

€b

b
y2 C

€c

c
z2C f ðtÞZ 0 ð2:5Þ

and

afflaC _a€a

a2
x2C

bfflbC _b€b

b2
y2 C

cfflcC _c€c

c2
z2C _f ðtÞZ 0: ð2:6Þ

In order for these equations to represent the same surface, the four terms in
equations (2.5) and (2.6) have to be in proportion. Integrating these new
relations according to time and rescaling a, b and c in order to remove the
integration constants, we find

a€a Z b€b ZKc€c Z f ðtÞ: ð2:7Þ
Since we are interested in elongated jets, we consider only the two-sheeted
hyperboloid case, which corresponds to a negative constant in front of c€c and
positive constant in front of the other terms. Using the expression for the Bernoulli
pressure on the surface and equation (2.7), we find the equation of the surface

K
x2

a2
K

y2

b2
C

h2ðx; y; tÞ
c2

Z 1; ð2:8Þ

where h(x, y, t) is the elevation of the free surface.
3. Three-dimensional flow

Asymptotically for long-time evolution, solutions to equations (2.4) and (2.7) are
power series expansions of time awa0t

a, bwb0t
b and cwc0t

g at leading order.
The case aZ0 or bZ0 corresponds to the two-dimensional flow (see §4). We
exclude the case aZbZ0 which implies gZ0 from equation (2.4) and would
correspond to a static configuration: it is impossible unless there is initially no
fluid motion. Since the jet is thin, a and b are negative; then from the first
equality in equation (2.7), we have at leading order

a2
0aðaK1Þt2aK2 Z b20bðbK1Þt2bK2: ð3:1Þ

It follows that aZb and a0Zb0, which means that the flow and the free surface
are asymptotically axisymmetric. From equation (2.4), we have aCbZ2aZKg.
Equation (2.7) leads to

a2
0aðaK1Þt2aK2 ZK2c20að2aC1ÞtK4aK2: ð3:2Þ
Proc. R. Soc. A (2008)
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Then, aZK1/2 and gZ1 is the only solution, and a2
0c0ZM . Indeed, time

exponents in equation (3.2) are unbalanced unless aZ0. Since we look for a!0,
the prefactors have to be then identically zero, and the balance is ensured at the
next order in the expansion. At leading order, aðtÞZa 0t

K1=2 and c(t)Zc0t. The

leading-order term in a€a is 3a2
0t

K3=4Z3MtK3=4c 0, such that the next term in c
is c1=t

2ZKM=8c20t
2,

cðtÞZ c0tK
M

8c 2
0t

2
CoðtK2Þ: ð3:3Þ

At this stage and for simplicity, we can choose c0Z1, which is equivalent to
rescaling a, b and c according to c0 and change the constant M. From the
equation of the free surface, we extract the curvature at the tip

k0 Z 2vxxhð0; 0; tÞZ 2
c

a2
Z 2

c2

M
w2

t2

M
ð3:4Þ

and the vertical position, velocity and acceleration of the tip in the Galilean
frame of reference, respectively,

zt Z tK
M

8t2
CoðtK2Þ; ð3:5Þ

vt Z vthð0; 0; tÞZ _cZ 1C
M

4t3
CoðtK3Þ ð3:6Þ

and

at Z vtthð0; 0; tÞZ €c ZK
3M

4t4
CoðtK4Þ: ð3:7Þ

Finally, coming back to a frame of reference R 0, where the fluid is at rest at
infinity, the acceleration of the tip reads

at

����
R0
Z gðtÞK 3M

4t4
CoðtK4Þ: ð3:8Þ

Therefore, knowing 1/M from the long-time evolution of the tip’s curvature, we
have direct access to the coefficient in front of the tip’s overshoot in acceleration
3M/4t4. The asymptotic self-similar equation of the surface reads

K
X 2 CY 2

M 2
CZ2 Z 1; ð3:9Þ

where XZxt1/2, YZyt1/2 and ZZz/t. We have shown that the curvature of
the tip scales like t2 and that the overshoot in acceleration undergone by the spike
scales like tK4.
4. Two-dimensional case

The two-dimensional case corresponds to the surface equation

K
x 2

a2
C

h2ðx; tÞ
c2

Z 1; ð4:1Þ
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where h(x, t) is the elevation of the free surface and a and c satisfy

acZM and a€a ZKc€c: ð4:2Þ
As in the general case, functions a and c are power series expansions of time;
then, from equations (4.2), it follows that the leading-order exponent of either a
or c has to be equal to 1. Therefore, remembering that we are looking for thin
jets, the leading-order exponent of a is K1 and c is 1. Using the second equation
in (4.2), we deduce the next order coefficient and exponent in the expansion for c,

cðtÞZ c0tK
M 2

6c30t
3
CoðtK3Þ: ð4:3Þ

Choosing again c0Z1, the tip’s curvature reads

k0 Z vxxhð0; tÞZ
c3

M 2
w

t3

M 2
: ð4:4Þ

The vertical acceleration of the tip in R0 is given by

at

���
R0 Z gðtÞK 2M 2

t5
CoðtK5Þ: ð4:5Þ

The asymptotic self-similar equation of the surface reads

K
X2

M 2
CZ2 Z 1; ð4:6Þ

where XZxt and ZZz/t, and we have shown that in two dimensions, the
curvature scales like t3 and the overshoot in acceleration undergone by the spike
scales like tK5.
5. Numerics

The theory is tested using a simplified two-dimensional version of the RM
instability. This instability occurs when a shock wave impulsively accelerates an
interface between two fluids with different densities. In the case we consider, the
fluid is incompressible and an initial velocity profile is imposed at the free
surface. In reality, this velocity profile would result from the impact of the shock
wave on the free surface, a situation that corresponds to the experiment
described by Antkowiak et al. (2007), for which the evolution time scale of the
free surface is much larger than the acoustic time scale.

Initially, the fluid is at rest and the free surface is flat. An initial velocity
potential 4(x, y)ZK5 cos(x) is imposed on the free surface and the subsequent
evolution of the periodic surface (in the absence of a body force) is computed
using a boundary integral method. Successive profiles of the free surface are
shown in figure 2. We expect the theory to be valid once the jet is very elongated,
i.e. when its vertical extension is much larger than the horizontal length scale.
We can approximate the critical time t 0 after which the self-similar behaviour
should be observed by t 0zL/2v0, where L is the wavelength and v0 is the initial
velocity. In our numerical simulation, LZ2p and v0Z5, then t0zp/5.

The boundary integral method used to test the theory is a two-dimensional
periodic method described in detail by Duchemin et al. (2005). Knowing 4 on the
free surface at a given time step, we solve a Fredholm equation of the second type
Proc. R. Soc. A (2008)
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Figure 2. Computed successive profiles during RM instability, for different times t ranging from 0
to 1.2 and separated by 0.1. Horizontal and vertical coordinates have been rescaled according to p.
As in the RT instability, a high-curvature spike develops at large time.
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(the integral representation of equation (2.1)), which allows us to find the stream
function on the surface and therefore the velocity of fluid particles. Then, the
velocity potential is updated in time using Bernoulli equation, and the points are
moved according to the kinematic condition on the surface. We emphasis the
fact that a non-uniform mesh is used. Indeed, more collocation points are
distributed at each time step around the spike than on the rest of the surface, in
order to obtain an accurate representation of this region, in terms of geometry
and dynamics.

Using this method, we were able to test the two-dimensional theory. Figure 3
shows the curvature of the tip as a function of time in a log–log plot. The long-
dashed line corresponds to a fit of the curvature in t3/M 2. A value of 1/M 2Z1000
is a good approximation for the prefactor, but it is worth mentioning that an error
of G5% on this prefactor can exist. Knowing the prefactor 1/M 2 from the
curvature, there remains no adjustable parameter in the self-similar shape of
the surface and the acceleration of the spike. The dashed curve in figure 3 is the
acceleration of the tip as a function of time in a log–log plot, and the long-dashed
line corresponds to the scaling law 2M 2/t5, using again 1/M 2Z1000. Figure 4
shows the expected self-similar evolution of the spike. The collapsed profiles on the
Proc. R. Soc. A (2008)
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Figure 3. Curvature of the spike (solid line) and overshoot in acceleration (dashed line) as a
function of time in a log–log plot. The long-dashed lines correspond to the predicted scaling laws
t 3/M 2 and 2M 2/t 5 for the curvature and the overshoot, respectively. The same value M 2Z1/1000
has been used to draw these two curves.
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r.h.s. of figure 4 confirm not only that the shape is asymptotically self-similar, but
also that the self-similar shape is indeed the one predicted by the theory (4.6), and
that the coefficient 1/M 2 found in figure 3 is correct. Thanks to these numerical
computations, we have been able to check the linearity in z of 4z on a large part of
the jet. This numerical check together with the self-similar behaviour are in favour
of the use of equation (2.3) as an ansatz to describe the dynamics of the jet. Using a
pure straining flow potential, we have shown that an inviscid thin jet undergoes an
overshoot in acceleration scaling like tK4 in three dimensions and tK5 in two
dimensions, that its curvature scales like t 2 in three dimensions and t 3 in two
dimensions and finally that the shape of the jet is a hyperboloid in three
dimensions, a hyperbola in two dimensions. The ansatz (2.3) remains to be
validated in three dimensions and the self-similar behaviour and scaling laws to be
confronted with accurate axisymmetric computations.
6. Conclusions

The constant M can be related to the physics of these instabilities. Indeed, in two
dimensions, the asymptotic dimensional curvature reads k0wt 0

3
=b2, with

b2ZM 2LT3, where L and T are, respectively, the length and time scales used
to non-dimensionalize the equations. On the other hand, the dimensional
amplitude of the initial perturbation reads aZAL2=T , where A is the
dimensionless amplitude. Eliminating T between b2 and a, on which we have
no control, we find b2ZðA3M 2ÞL7=a3. Since A and M do not depend on the
Proc. R. Soc. A (2008)
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Figure 4. Self-similar structure of the tip: the interface profiles around the spike have been
superimposed (and shifted vertically such that y(0)Z1) on the l.h.s. for different times t ranging
from 0.62 to 1.27. The r.h.s. shows the same curves rescaled by factors 1/t and t for the x and y
coordinates, respectively, following the scaling behaviour predicted by the theory. The circles
correspond to the self-similar equation of the surface (4.6), with 1/M 2Z1000 found from the
curvature in figure 3.
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physical quantities b2, L and a, then A3M 2 has to be a constant (numerically,
by varying A, we find A3M 2x8) and the physical parameter b2 is set by the
choice of L and a. Equivalently for the RT instability in two dimensions, we find
b2ZM 2L5=2=g3=2. One of the most challenging studies remaining is the matching
of the spike geometry and dynamics with the asymptotic bubble going up
(cf. figure 2), which would give the value of M 2A3 for any initial condition and
would allow a global description of the nonlinear evolution of these instabilities.
Moreover, an interesting future would be to include weak effects of surface
tension in this theory.

From an experimental point of view, although the overshoot in acceleration is
a very small nonlinear effect, experiments showing the self-similar structure of
the tip could be designed. Indeed, as long as the initial acceleration is large
enough, viscosity and surface tension effects can be neglected on a wide range of
time. For instance, for the experiment described by Antkowiak et al. (2007), we
can define a Bond number BoZrgR2/s, where r is the liquid density; g is the
impulsive acceleration; R is a relevant length scale (the diameter of the tube or
the diameter of the emerging jet); and s is the surface tension coefficient. On the
surface of the jet, a viscous boundary layer will grow in time with a thickness
equal to

ffiffiffiffi
nt

p
, where n is the dynamic viscosity and t is time. In the experimental

set-up used by Antkowiak et al. (2007), the Bond number is not large enough to
discard the effect of surface tension. It would be very interesting to design an
Proc. R. Soc. A (2008)
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experiment with a much larger impulsive acceleration, such that capillary and
viscous effects could be neglected, in order to observe the self-similar behaviour
of the tip and the overshoot in acceleration.

It is my pleasure to thank M. Le Bars, C. Josserand and S. Le Dizès for their useful comments.
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