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We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface.

We use an axisymmetric model for which both the gas and the liquid are incompressible;

lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the

absence of surface tension a finite time singularity whose properties are analysed is formed and the

liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges

from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath

this jet is always smaller than the mean free path in the gas suggesting that the liquid film

eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the

splash. VC 2011 American Institute of Physics. [doi:10.1063/1.3640028]

Drop impact is present in many surface flows and

diphasic dynamics. It is crucial to our understanding of

atomization, ink-jet printing or deposition for instance,1 as

well as for environmental issues such as raindrop impact

erosion or aerosol spreading.2 The general situation

involves an almost spherical drop impacting on a dry or

wet solid surface. A splash is observed for strong impact

conditions, whereas a gentle spreading of the drop is seen

otherwise. On a dry substrate as considered further on, the

splash is characterized by a corolla that detaches from the

solid substrate forming a corona shape from which droplets

can eventually detach.3 This complex dynamics involves

various parameters which can highly influence the transi-

tion between these two regimes: primarily viscous and

capillary effects are invoked, quantified by the Reynolds

and the Weber numbers respectively. The impacted surface

is also important: in particular, the roughness of the surface

can control the splash formation4,5 as enhanced with

textured surfaces.6 Recently, the surrounding gas, often

neglected in these problems, has been shown to be crucial

since the splashing observed at atmospheric pressure disap-

pears when the ambient gas pressure is lowered.7 Despite

the few models already proposed to explain this striking

effect, invoking in particular compressibility of the sur-

rounding gas7 or the entrapment of a (compressible) gas

bubble by air cushioning,8,9 a complete understanding for

the mechanism of the splash formation is still lacking. The

aim of this paper is thus to disentangle the role of the

surrounding gas for the drop impact on solid surfaces in

the limits, where the viscosity of the liquid of the drop can

be neglected and where both fluid can be considered

incompressible.

We consider the impact of an incompressible liquid

drop of radius R, density ql, with vertical velocity V on a

solid substrate (see Figure 1). The gas is taken incompressi-

ble of density qg, dynamic viscosity g and surface tension c.

Although in the experiments7 the gas is clearly in a com-

pressible regime beneath the drop due to the large pressures

created by the air cushioning, we argue that the gas compres-

sibility might not be crucial to understand the splashing tran-

sition since it does not change the general structure of the

equations. Gravity can be neglected since the Froude num-

bers (Fr¼V2=gR) are always above 102 and axisymmetric

approximation can be safely assumed at short time. We note

t¼ 0, the time at which the drop would touch the wall in the

absence of the surrounding gas. The dominant effect of the

gas lies in the dynamics of the viscous thin gas film under-

neath the drop. In this situation, the viscous boundary layer

in the liquid created by the gas shear flow is small and the

liquid velocity can be approximated by a potential flow while

the dynamics of the gas layer follows the lubrication equa-

tion.8,11 Our model is thus similar to the 2D approach

addressed recently,8,11,12 where a liquid parabola impacts a

solid surface, but with crucial differences: (1) it is axisym-

metric; (2) a spherical drop impacts; (3) we use a curvilinear

description of the interface which allows for the description

of the jet.

FIG. 1. Sketch of the impacting drop.
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Finally, the liquid drop and the gas film dynamics are

given by the following dimensionless set of equations in the

cylindrical coordinates (r, z)

ð@XÞ@tuþ
1

2
ru2 þ pþ 1

We
j ¼ CðtÞ; (1)

ð@XÞ@th ¼
1

12rSt
@rðrh3@rpÞ; (2)

ð@XÞ@th ¼ @zu� @ru@rh; (3)

ðXÞDu ¼ 0; (4)

where u is the velocity potential in the drop

u r; z; tð Þ ¼ ru r; z; tð Þð Þ, X is the liquid domain, @X is the

boundary of the drop and p is the lubrication pressure in the

gas. The lengths have been rescaled by R, velocities by V,

densities by ql and the gas pressure by qlV
2. The full inter-

face fr(s, t), z(s, t)g is indexed by the curvilinear coordinate

s and j is the mean curvature of the interface. This set of

equations introduces the two dimensionless numbers of the

problem, the Weber and Stokes numbers

We ¼ qlRV2

c
and St ¼ g

qlVR
:

Remarkably, general experimental conditions correspond to

St� 1 as considered further on. The incompressibility con-

dition (4) joint with the Bernoulli equation at the drop inter-

face (1) describes the liquid potential flow. This dynamics is

coupled with the surrounding gas flow through the interface

advection Equation (3) and the pressure, given in the thin

film by the lubrication approximation (2). Notice that lubri-

cation is only valid where the slope of the interface is small

enough, otherwise a free surface condition (p¼P0) has to be

applied in Bernoulli equation: lubrication equation is written

in terms of the arc-length along the interface, then it is

solved from the axis of symmetry to the first point where the

interface is vertical (at short-time, this point is the equator of

the drop; once the jet is formed, it is the radial extension of

the jet). In this region where @rh� 1, the radial pressure

gradient decays like 1=h2. After this point, free surface con-

dition is applied.

The numerical method proceeds as follows: Laplace’s

Equation (4) is solved using a boundary integral method, the

pressure is calculated through the lubrication Equation (2),13

the interface and the velocity potential are advanced in time

using the kinematic condition (3) and Bernoulli Equation (1)

respectively.

A sequence of snapshots of the drop impact is shown in

Figure 1 for We¼ 23.7 and St¼ 1.35� 10�3. The drop

deforms as it approaches the wall and a dimple appears

underneath. Then a quasi-horizontal liquid jet expands rap-

idly. We observe in Figure 1 that the liquid never touches the

wall and the jet “skates” on a thin gas layer! This is consist-

ent with the general property of viscous film that cannot

break-up in a finite-time.14 However, this is not the case in

the absence of surface tension where corner like interface

can be created as described below.

Finite time singularity for We¼1: as observed in

2D,8,11,12 the dynamics exhibits a finite time singularity in the

zero surface tension case, as shown in Figure 2. It corresponds

as t! t0 to a corner like interface located at rc(t)! r0 where

the curvature j0(t) diverges as the film thickness h0(t) van-

ishes. Similarly, the maximum pressure p0(t) is located in

rp(t)= rc(t) and diverges when t ! t0 (and rp(t) ! r0),

following:

p0 / h
�1

2
60:05

0 j0 / h�260:05
0 ;

as presented in Figure 3. The radial position r0(t) of h0(t) fol-

lows approximately the geometrical intersection between the

undeformed drop and the solid wall (r0 �
ffiffiffiffi
2t
p

and

_r0 ¼ 1=
ffiffiffiffi
2t
p

). Using the typical gas film thickness H*¼St2=3

by balancing the drop inertia and the lubrication pressure,8

one can estimate t0�H* and thus r0 �St1=3 ð _r0 � St�1=3Þ at

the singularity, in good agreement with the numerical

results.

To understand the properties of this singularity, we seek

self-similar solutions of the form: ~hðr; tÞ ¼ h0ðtÞHðRÞ,

FIG. 2. Interface profile near the singularity for a drop impact with zero sur-

face tension and St¼ 1.35� 10�3.

FIG. 3. p0 and j0 as functions of h0. The two dotted lines show respectively

the h
�1

2

0 and h�2
0 scalings. The inset shows h0(t) and p0(t) as function of

(t0� t) close to the singularity, with the fitted scalings h0 tð Þ / t0 � tð Þ3=2

and p0 tð Þ / t0 � tð Þ�3=4
.
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~pðr; tÞ ¼ p0ðtÞPðRÞ, and ~uðr; tÞ ¼ u0ðtÞUðR; ZÞ, where

R¼ (r� r0(t))=l(t) and Z¼ z=l(t). Near the singularity, the

spatial variations are seen numerically slower than (t0� t)
(see caption of Figure 3), so that the time derivatives shall be

replaced by ðh0 _r0=lðtÞÞ@R and Eqs. (1)–(4) give at dominant

order, after dropping the tilde

ð@XÞ � u0 _r0

l
@RUþ 1

2

u2
0

l2
rU2 þ p0P ¼ CðtÞ; (5)

ð@XÞ � h0 _r0

l
H0 ¼ h3

0p0ðH3P0Þ0

12 St l2
; (6)

ð@XÞ � h0 _r0

l
H0 ¼ u0

l
ð@ZU�

h0

l
H0@RUÞ; (7)

ðXÞDU ¼ 0: (8)

Taking _r0 ¼ St�1=3, we identify two regimes based on the

relevant terms in Eq. (7).

Regime I: h0 � l: the second term both in Eq. (5) and in

the right hand side of Eq. (7) can be neglected, and balancing

all the other terms, we obtain: u0 � St�1=3h0, l � St�2=3h
3=2
0

which leads to the observed numerical scalings

p0 � h
�1=2
0 and j0 � St4=3h�2

0 :

We thus deduce that this regime corresponds in fact to thick
gas layer h0 � St4=3.

Regime II: h0 � l: here the dominant terms balance

gives: u0 � St�5=3h2
0, l � St�4=3h2

0 and

p0 � St�2=3 and j0 � St8=3h�3
0 :

Consistently, this regime holds for thin gas layer h0 � St4=3

and this analysis suggests that the self similar behavior

observed in the numerics is valid only for large enough h0.

We predict thus another self-similar regime closer to the

solid surface, not identified previously and never reached in

all the numerical simulations so far.8,10–12 In particular, it is

not clear whether or not a finite time singularity would still

exist (as a cusp then). Moreover, the lubrication hypothesis

would not be valid anymore there, since h0=l� 1, and full

Navier-Stokes equations should be considered in the gas

film.

Jet formation with surface tension: when adding the sur-

face tension, the singularity is regularized since the high cur-

vature regions are smoothed by the capillary pressure, as

illustrated in Figure 4, where the minimal air film thickness

is shown for different Weber and Stokes numbers. We

observe that the dynamics separates from the We¼1 case

when h0 becomes small enough while the film thickness con-

verges. As the Stokes number decreases, the dimple size

decreases, and the jet appears earlier with more capillary

waves. Moreover, the small angle between the tilted jet and

the surface varies both with the Weber and the Stokes num-

bers (see Figure 5). The minimal gas layer thickness can be

estimated thanks to the two different self-similar regimes

exhibited for the singular case We¼1. Indeed, balancing

the capillary term We�1j with the singular pressure gives

for the gas layer depending on the regime

I : h0 � St8=9We�2=3 and II : h0 � St10=9We�1=3

while the two behaviors cross for We �St�2=3 (with high

Weber number for regime II). Such dependence is investigated

in Figure 6, where the minimal gas thickness is compared with

the predicted scalings. We find that the two exponents vary as

follows h0� St0.9–1.We�0.33–0.4 which is in reasonable agree-

ment with regime II. Finally, taking the capillary length due to

the drop deceleration
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRH�=qlV

2
p

� St1=3We�1=2 for the jet

thickness,15 mass conservation16 gives for the jet velocity Vjet

�We1=2St�2=3, in good qualitative agreement with Figure 5.

What are the main conclusions of our work? Since our

two control parameters (We and St) do not vary when the gas

pressure changes, compressibility of the gas was invoked

before7,8,12 as a clue to explain the splashing dependence on

the gas pressure observed in the experiments.7 However,

FIG. 4. Minimum gas film thickness h0 for four different values of the

Stokes number (St¼ 3.93� 10�4, 7.86� 10�4, 1.57� 10�3, 2.36� 10�3),

as a function of time. The zoom for St¼ 3.93� 10�4 near the axis shows the

evolution for different Weber number, We¼ 47.5, 95, 238, and1 from top

to bottom.

FIG. 5. Five different computations, with We¼ 238, 95, 47.5, 23.7, respec-

tively, from top to bottom and St¼ 1.35� 10�3. The bottom figure is for

We¼ 23.7 and St¼ 6.29� 10�4.
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computing the minimal gas thickness in the experiments7 fol-

lowing the scaling laws for h0 obtained above, we observe

that it is of the order of a few angstrom, much below the mean

free path even at atmospheric pressure (�60 nm). Therefore,

it is reasonable to consider that the liquid film eventually

touches the solid so that the lubrication approximation made

here is not valid anymore: instead we have a rapid expansion

of a liquid jet in contact with the solid. Notice that such esti-

mate would give similar conclusions if compressibility was

accounted for. Although we cannot provide a final explanation

for the splashing transition when the pressure varies, we want

to emphasize that other physical mechanisms than compressi-

bility should be investigated, such as the coupling between the

complex dynamics of the rapidly moving contact line17 with

the surrounding gas for instance. In addition, we would like to

point out that the present work exhibits the first numerical evi-

dence of the emergence of a liquid jet within the lubrication

approximation and thus the measurement of the skating

height, data which could not be obtained from previous 1D

numerical computations.8,12

Finally, since the scaling laws for h0 are deduced

before the jet formation, it is important to notice that liquid

viscosity would not drastically affect the main conclusions

of our calculations although it would change the jet thick-

ness (then of order St1=3Re�1=2 in general much smaller

than the capillary length calculated before) and the jet ve-

locity (Re1=2).16,18

1M. Rein, “Phenomena of liquid drop impact on solid and liquid surfaces,”

Fluid Dyn. Res. 12, 61 (1993).
2M. Coantic, “Mass transfert across the ocean-air interface: small scale

hydrodynamic and aerodynamic mechanisms,” PhysicoChem. Hydrodyn.

1, 249 (1980).
3R. Rioboo, M. Marengo, and C. Tropea, “Outcomes from a drop impact on

solid surfaces,” Atomization Sprays 11, 155 (2001).
4K. Range and F. Feuillebois, “Influence of surface roughness on liquid

drop impact,” J. Colloid Interface Sci. 203, 16 (1998).
5C. Josserand, L. Lemoyne, R. Troeger, and S. Zaleski, “Droplet impact on

a dry surface: triggering the splash with a small obstacle,” J. Fluid Mech.

524, 47 (2005).
6L. Xu, L. Barcos, and S. R. Nagel, “Splashing of liquids: Interplay of sur-

face roughness with surrounding gas,” Phys. Rev. E 76, 066311 (2007).
7L. Xu, W.W. Zhang, and S.R. Nagel, “Drop splashing on a dry smooth

surface,” Phys. Rev. Lett. 94, 184505 (2005).
8S. Mandre, M. Mani, and M. P. Brenner, “Precursors to splashing of liquid

droplets on a solid surface,” Phys. Rev. Lett. 102, 134502 (2009).
9P. D. Hicks and R. Purvis, “Air cushioning and bubble entrapment in

three-dimensional droplet impacts,” J. Fluid Mech. 649, 135 (2010).
10F. T. Smith, L. Li, and G. X. Wu, “Air cushioning with a lubrica-

tion=inviscid balance,” J. Fluid Mech. 482, 291 (2003).
11A. A. Korobkin, A. S. Ellis, and F. T. Smith, “Trapping of air in impact

between a body and shallow water,” J. Fluid Mech. 611, 365 (2008).
12M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing

on a solid surface,” J. Fluid Mech. 647, 163 (2010).
13J. R. Lister, A. B. Thompson, A. Perriot, and L. Duchemin, “Shape and stabil-

ity of axisymmetric levitated viscous drops,” J. Fluid Mech. 617, 167 (2008).
14J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev.

Mod. Phys. 69, 865 (1997).
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FIG. 6. Minimum gas film thickness h0 for four different values of the

Stokes number (St¼ 3.93� 10�4, 7.86� 10�4, 1.57� 10�3, 2.36� 10�3),

rescaled by St and not-rescaled (inset), as a function of the Weber number.
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