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We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at Atwood
number one using a boundary integral method. We are able to attain the asymptotic behavior for the spikes
predicted by Clavin and Williams for which we give a simplified demonstration. In particular, we observe
that the spike’s curvature evolves as ¢3, while the overshoot in acceleration shows good agreement with the
suggested 1/#° law. Moreover, we obtain consistent results for the prefactor coefficients of the asymptotic
laws. Eventually we exhibit the self-similar behavior of the interface profile near the spike.
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Introduction.—The Rayleigh-Taylor (RT) instability ap-
pears when, under gravity, a heavy liquid is placed over a
lighter one [1]. This instability is crucial for our under-
standing of different phenomena in fluid mechanics: mix-
ing, thermal convection ([2], and references therein), and
also finger number selection in splashes [3]. It is also
important in inertial confinement fusion (ICF) where the
mass ablation provides a stabilizing effect to the interface
instability [4]. Without ablation, after the exponential
growth of the perturbations due to the linear RT instability,
nonlinear profiles develop through the formation of bub-
bles of lighter fluid rising into the heavier one and falling
spikes of the heavier liquid penetrating the lighter one. In
the general situations of viscous fluids, which are immis-
cible and/or have Atwood number not equal to unity [A; =
(o — p1)/(pn + p;), with p, and p, being the density of
the heavier and lighter fluids, respectively], famous mush-
roomlike structures grow for larger times [2,5,6]. The limit
of an inviscid fluid above a vacuum (A; = 1) without
surface tension plays a specific role since no stabilizing
effects are present in the linear dynamics. It is important to
understand ICF in the limit of high density ratio, and it is
also the most challenging case for the numerics. Most
theoretical and numerical work have focused on this ideal-
ized limit in order to track insights into the instability itself
[7-12]. It has been shown using a conformal mapping that
a finite time singularity might appear in the conformal
plane [13], and it is also suspected that for some suffi-
ciently irregular initial conditions finite time singularities
should also be observed in the physical plane. However,
starting with sufficiently smooth initial conditions, the
asymptotic dynamics [8,11,12] presents a constant velocity
rising bubble separated by free falling tiny spikes as dis-
played in Fig. 1. Although the rising bubble motion has
been described using local properties of the flow [14], the
asymptotic dynamics of the spikes is far from being well
understood. The single mode approach gives a fair descrip-

tion of the constant velocity of the rising bubble [v, =
\Jg/(3k), where g is the acceleration of the gravity and k
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the wave number of the perturbation] but gives only partial
results for the spike [8]. The fluid there obeys free fall
dynamics to a good approximation, and the pressure field
of the flow leads to an overshoot in the acceleration. The
accelerated motion of the liquid stretches the spike geome-
try and one expects self-similar behavior of the tip of the
spikes.

Recently, an asymptotic theory using a parallel flow
description of the velocity field near the spikes has been
constructed [15]. The interface dynamics is nonlinear for
large time and can be described using the theory of char-
acteristics which gives rise to finite time singularity solu-
tions. In the case of regular dynamics, a self-similar
description of the peak is obtained for large time: the
maximal curvature of the interface at the peak tip is found
to behave as the cubic power of time #. Moreover, the
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FIG. 1. Snapshots of the interface subject to the Rayleigh-
Taylor instability for time ranging from ¢ = 0 to 10, starting
with a small amplitude sine mode (left). On the right is shown
the velocity of several points along the interface, nondimension-
alized with the stationary bubble rising velocity +/g/3k, as a
function of time.
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spike position, following the free fall %gt2 at leading order,
is shown to converge to the constant acceleration g with an
overshoot in acceleration decreasing as ¢ . In this Letter,
we present a numerical study of the Rayleigh-Taylor in-
stability which focuses on the large time dynamics of the
spikes in order to investigate the self-similar dynamics
predicted in [15], where no numerical studies were per-
formed. We consider the dynamics for an inviscid liquid
(heavy) with an exterior fluid of zero density (A, = 1) and
no surface tension. The numerics use a boundary integral
method. Because of strong numerical instabilities, a careful
treatment of the interface using conformal mapping is
needed as explained below. The results are then shown
and compared with the theory.

Asymptotic analysis and numerical method.—We con-
sider the two-dimensional motion of an inviscid fluid
above a vacuum, subject to a negative acceleration —g.
A periodic sine perturbation of the interface of wave num-
ber k is implemented as initial conditions. Neglecting
surface tension, the equations of motion have no control
parameter after rescaling the time, the position, and the
velocity potential ¢ by factors /gk, k, and \/k>/g, respec-
tively. The interface is described by y = a(x, t), where y is
the direction along the gravity and x orthogonal to it (see
Fig. 2). The velocity field U = (u, v) satisfies the dimen-
sionless Euler equation

dU
dt
where P(x,y,t) is the pressure, e, the nondimensional

acceleration due to gravity, and the fluid density p = 1.
The kinetic equation for the interface reads

= —VP +e,,

dalx1) | da(x 1) _ Y
Jt x
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with the velocity field (u, v) evaluated at the interface
[x, a(x, )]. Starting at time ¢ = 0 with a small sine ampli-
tude interface, we observe for large time that the fluid
particles located in the vicinity of the tiny spikes come
from an almost free fall from the initial interface region.
Therefore, following [15], we assume quasiparallel steady
flow for the velocity field which gives then in the tip region
lul < |v| and v ~ /2y with y ~ 1 for large time. Writ-
ing a perturbation expansion of the velocity field in the tip

Y

FIG. 2. Conformal map used to transform the physical periodic
plane () into a closed domain M.

region |x| << y, we in fact consider v = /2[y + f(x, y, 1)],

with f(x, y, t) < y. Taking a Taylor expansion in x of the
perturbation f, we obtain by symmetry v = /2y + % +
N

%Ly + O(x*). We limit our expansion to the second order
y

in x for the velocity field later on. Incompressibility gives
u= _(\/Ziy + M)x + O(x?). At the leading order

Jdy
[where we neglect even the perturbation f(x,y,f)], we
obtain the following expression for the interface location:

da(x, 1) X da(x, 1) — Pac D
at Lalx, ) ox 2l 1),

which can be solved using the methods of characteristics
(see [15]). Writing a(x, 1) = 1[5 — y(x, 1)] and noting that
v(x, t) < t/2 in the spike region, we obtain, after lineari-
zation,

ay(x, 1) _ X dy(x, 1) _
at t  ox

bl

which has the self-similar solution of the form y(x, ) =
O(xt). A first conclusion can be drawn about the curvature
of the interface at the tip, k = —d?a/dx*|,—, which is
thus found to increase as the cubic power of time [16]:

k= 130"(0). (1)

The next order terms of the expansion allow the deter-
mination of the function fy(y, ) near the tip. Using the
constant value of the pressure at the interface, we use the
projection of the Euler equation at the interface on its lo-
cal tangent: % + % dd—’t’ = %, since on the inter-
face dP(x, a(x, 1), t)/dx = 0. We develop this equation at
first nonzero order (which will end up the first order in x)
with the expansion 6(xt) = 6(0) + x*20"(0)/2 + O(x*).
Remembering that |f| << y, we can neglect also the large
scale terms 0%(fo(y, 1)/+/2y)/9tdy and /2yd*(fo(v, 1)/
V2y)/dy* with respect to the others. We finally obtain

for the tip position y = y,: fobe) "’;ﬁ"‘”) + 2y, folet) =

Jy
dfovet) — (21
dt Vs K°

Recalling that &= = /2y, + M\/z_’) we obtain, for the tip
yX

dt
acceleration at leading order,

2
dys:1+ 1 dfO(ys’t):l_’_ 2 ’
t50/l(0)

dr 2y, di
which corresponds to an overshoot in the spike accelera-
tion decreasing as the fifth power of time. An overshoot in
the acceleration was observed in numerical simulation al-
ready in [17], but with no explicit scaling laws.

The numerical method is elaborated using the incom-
pressible and potential properties of the flow. The velocity
field can thus be evaluated everywhere when the velocity
potential is known on the interface thanks to Cauchy’s
theorem, in the spirit of other pioneering works [17-20].
The nondimensional Bernoulli equation on the free surface
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reads
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where the velocity potential ¢ is a harmonic function in the
fluid domain ):

Ap =0. 4

The kinematic condition on the free surface expresses
the fact that fluid particles move with the same normal
velocity as the free surface itself:

d—x ‘n=Vop- -n 5)
dt

Knowing ¢ on the free surface at a given time step, we
search for the solution of Eq. (4) that satisfies this boundary
condition (5). We use the complex potential 8(z) = ¢ +
ity and the conformal map f(z) = exp(—iz) (cf. Fig. 2),
where z = x + iy and ¢ is the stream function. The con-
formal map transforms the periodic domain () into the
closed domain M. Since ¢ is harmonic inside (), B(z) is
analytic inside Q) and therefore y({) = B(f(z)) is analytic
inside M. Using Cauchy’s theorem, we obtain a Fredholm
equation of the second kind for the stream function ¢,
which is solved using discretization of the free surface
(0Q) and thus dM). This linear system of equations is
solved using a LU decomposition. Once we know i on
each point on dM, the complex velocity of each marker in
the physical plane is given by

ap
dz

where u and v are the horizontal and vertical velocities,
respectively. This complex velocity is computed with a
finite difference scheme using the values of the complex
potential on the collocation points on 9{).

The position of the surface markers (kinematic condi-
tion) and the value of the velocity potential on each of these
markers (Bernoulli equation) are then updated in time
using a fourth order Runge-Kutta method. Finally, an
adaptive mesh refinement technique is used in order to
concentrate markers on the spike.

Results and discussions.—We have performed numeri-
cal simulations of the Rayleigh-Taylor instability using the
numerical method described above. We start with a sine-
mode deformation of the interface of amplitude a < 1.
The unavoidable numerical noise cannot be damped by the
numerics and the calculations always end up subject to
numerical instabilities. Nevertheless, we emphasize that
the numerical scheme used here is remarkably robust and
can be accurately evolved to reach the large time where the
scalings predicted by the theory [15] are valid. Comparing
our simulations with recent numerical works [5,6,9], we
have been able to run the dynamics at least twice as far,
which corresponds roughly to an increase of a factor of 8 in
the tip’s curvature.

=u— iv, (6)
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FIG. 3. Position of the spike y,(z) as a function of time. The

inset shows in a log-log plot of the spike position (solid curve) as

function of time ¢ — #,, with 7, = 3.74 obtained by a second

order polynomial fit of y;. The dashed line shows the expected

behavior 1 7.

The position of the spike is shown on Fig. 3 as function
of time. We observe that the asymptotic dynamics are very
well approximated by the relation y, = 1g(t — 10)?, as
shown in the inset of the figure with #, = 3.74 for the
amplitude of the initial perturbation a = 0.01. This re-
markable behavior, in good agreement with the free fall
hypothesis, suggests that #, is the time delay accounting for
the initial exponential development of the instability.
Indeed, the linear growth rate of the perturbation is pre-
cisely one, and, varying a, we observe that the time delay
correspond to ae® = 0.42, which corresponds in the nu-
merical simulation to a constant amplitude of the spike of
0.22 to be compared to 0.21 obtained with the linear
instability only. The time and amplitude correspond thus
roughly to the transition between the linear and the non-
linear regime. We will therefore present further data on the
curvature dependence and the acceleration of the tip as
functions of this delayed time ¢ — ¢, instead of .
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FIG. 4. Spike curvature «, calculated at the tip y =y, as
function of the delayed time ¢ — ¢, in a log-log plot. The dashed
line displays the cubic law (1) with 8”(0) = 1.5.
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acceleration overshoot

t-t,
FIG. 5. Overshoot in acceleration, defined as the difference
between the tip acceleration and the gravity. The plot is in log-
log scale and with the delayed time ¢ — 7,. The dashed line
shows the theoretical prediction (2) using the value of 6”(0)
obtained from Fig. 4.

The curvature «, at the tip is then shown in Fig. 4. The
large time asymptotic behavior is similarly found to follow
the cubic law [see Eq. (1)] with 6”(0) = 1.5. We have not
been able to deduce analytically this value of the self-
similar curvature #”(0) = 1.5 using the characteristic dy-
namics, which is valid for large times only.

In addition, the acceleration of the tip is computed by
finite differences on the tip velocity and the overshoot in
the acceleration is presented on Fig. 5. We observe that the
results look noisier than the two previous ones. Two factors
can explain such noise: first, we are looking to a finite
difference which decreases to zero so that the numerical
errors are relatively more important. However, we note that
the overshoot in acceleration shows good agreement with
the 1/ law, noting that no adjustable parameter is used in
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FIG. 6. Self-similar structure of the tip: the interface profiles
around the spike have been superimposed on the right side of the
figure for different time ¢ ranging from 4 to 12. The left side of
the figure shows the same curves rescaled by factor 1/(z — t;)
and (¢ — t) for the x and y coordinates, respectively, following
the scaling behavior predicted by the theory.

this comparison. Finally, the self-similar structure of the
interface near the tip has been exhibited on Fig. 6. We
observe after the proper rescaling on the left part of the
figure that the interface profiles collapse onto a single
curve near the spike.

We have thus exhibited large times numerical simula-
tions of the Rayleigh-Taylor instability which present
asymptotic scaling behavior in agreement with theoretical
predictions using Taylor expansions of the free fall velocity
field at the spike [15]. Although our numerics always stops
due to numerical instability, we have been able to reach
large time enough to exhibit the cubic power in time
dependence for the spike curvature and the inverse of the
quintinc power of time decreasing of the overshoot in
acceleration. Moreover, the numerical methods used here
and the analytical description of the flow in the vicinity of
the spike offer a powerful tool to investigate Rayleigh-
Taylor and Richtmyer-Meshkov instabilities for any den-
sity ratio.
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