
Asymptotic behavior of a retracting two-dimensional fluid sheet
Leonardo Gordillo, Gilou Agbaglah, Laurent Duchemin, and Christophe Josserand 
 
Citation: Phys. Fluids 23, 122101 (2011); doi: 10.1063/1.3663577 
View online: http://dx.doi.org/10.1063/1.3663577 
View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v23/i12 
Published by the American Institute of Physics. 
 
Related Articles
Maximum speed of dewetting on a fiber 
Phys. Fluids 23, 112103 (2011) 
Optical interference effect on pattern formation in thin liquid films on solid substrates induced by irradiative
heating 
Phys. Fluids 23, 112102 (2011) 
Quasistatic computer simulations of shear behavior of water nanoconfined between mica surfaces 
J. Chem. Phys. 135, 174704 (2011) 
Features of the rupture of free hanging liquid film under the action of a thermal load 
Phys. Fluids 23, 102106 (2011) 
Regularized shock solutions in coating flows with small surface tension 
Phys. Fluids 23, 093103 (2011) 
 
Additional information on Phys. Fluids
Journal Homepage: http://pof.aip.org/ 
Journal Information: http://pof.aip.org/about/about_the_journal 
Top downloads: http://pof.aip.org/features/most_downloaded 
Information for Authors: http://pof.aip.org/authors 

http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Leonardo Gordillo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Gilou Agbaglah&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Laurent Duchemin&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Christophe Josserand&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3663577?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v23/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3659018?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3657433?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3657858?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3651361?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3635535?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov


Asymptotic behavior of a retracting two-dimensional fluid sheet

Leonardo Gordillo,1 Gilou Agbaglah,2 Laurent Duchemin,3 and Christophe Josserand2

1Departamento de Fı́sica, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Casilla 487-3,
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Two-dimensional (2D) capillary retraction of a viscous liquid film is studied using numerical and

analytical approaches for both diphasic and free surface flows. Full 2D Navier-Stokes equations are

integrated numerically for the diphasic case, while one-dimensional (1D) free surface model equa-

tions are used for free surface flows. No pinch-off is observed in the film in any of these cases. By

means of an asymptotic matching method on the 1D model, we derive an analytical expansion of

the film profile for large times. Our analysis shows that three regions with different timescales can

be identified during retraction: the rim, the film, and an intermediate domain connecting these two

regions. The numerical simulations performed on both models show good agreement with the

analytical results. Finally, we report the appearance of an instability in the diphasic retracting film

for small Ohnesorge number. We understand this as a Kelvin-Helmholtz instability arising due to

the formation of a shear layer in the neck region during the retraction. VC 2011 American Institute of
Physics. [doi:10.1063/1.3663577]

I. INTRODUCTION

A thin liquid sheet retracts due to the action of the sur-

face tension forming a growing rim at its retracting end as it

recedes. In 1959, Taylor and Cullick1,2 found simultaneously

that the retracting speed of a liquid film of uniform thickness

2e converges to a constant velocity UTC given by the balance

between inertia and surface tension

UTC ¼
ffiffiffiffiffi
c
qe

r
;

where c is the surface tension and q is the liquid density.

Numerical simulations (cf. Sec. II) show that, asymptoti-

cally, the geometry of the rim tends to a circular shape,

whose radius evolves as the square-root of time1–3 as illus-

trated in Figure 1.

Retraction dynamics is a crucial topic in many interface

dynamics problems such as curtain coating,4 atomization,5,6

and drop impact dynamics.7 In fact, many liquid sheet insta-

bilities commonly observed in nature are triggered by edge

retraction. Such a mechanism is reported in liquid curtains,

where transverse instabilities generated by retracting edges

can exhibit spatio-temporal chaos.8,9 In liquid jets, disinte-

gration of thin films leads to the formation of small droplets

and full atomization.10 In drop impact, the splashing and the

corona instability are linked to the dynamics of a free liquid

edge.11–13

Hence, a further analysis which goes beyond the classi-

cal Taylor-Cullick theory is of utmost importance for under-

standing film motion. The quasi-stationary Taylor-Cullick

model is based on non-local mass and momentum conserva-

tion without considering viscosity at all. In contrast, transient

dynamics and viscous effects can highly change the retraction

behavior.14–18 For instance, the liquid viscosity affects the

timescale of the transitory regime leading to the Taylor-

Cullick velocity17 and it also influences drastically the trans-

verse instability of the film.12,19,20 The film profile depend-

ence on the liquid viscosity in the quasi-stationary regime at

constant velocity is even more remarkable, as it has already

been seen in experiments and numerical simulations.14–17 For

instance, there is experimental evidence that a very viscous

film does not form any rim during retraction and that the film

apparently thickens as it retracts.14,15 Actually, numerical

simulations of the thin film equations have shown that in this

case, a very large retracting edge forms, which is thicker than

the film and the experimental film length.16 On the other

hand, when the viscous effects are small enough, a thin neck

connects the rim to the film of constant thickness. In that sit-

uation, one can ask whether this neck can lead to the two-

dimensional (2D) break-up of the film in the inviscid limit

for a large rim radius as postulated by Song and

Tryggvason.21

Therefore, the classical picture of a circular rim retract-

ing into a film of constant thickness has to be revised. In this

article, we investigate numerically and analytically the 2D

film profile evolution in the large time limit, i.e., when the

rim radius is much larger than the film thickness, so that the

film can be expanded into a quasi-stationary regime approxi-

mation. In Sec. II, we present the problem describing and

comparing the two numerical methods used to model the

film dynamics, i.e., integration of the Navier-Stokes equation

for the full system (liquid film and surrounding gas), and

simulation of the one-dimensional (1D) system of equations

obtained for thin films using the free surface boundary

conditions and lubrication approximation. In Sec. III, we

present the film dynamics within the 1D model in the
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quasi-stationary approximation. A mathematical analysis of

the 1D system of equations for large times shows that the

time asymptotic solution can be separated into three different

regions—film, neck and rim—with different length and time

scales. These regions can then be matched together in the

spatial domain in order to build a whole domain solution.

The details of the calculations can be found in Appendices A

and B. We would like to emphasize that obtaining such a

quasi-analytical solution of the 2D film retraction opens the

way to improving the 3D linear stability analysis of liquid

films, by taking into account the film profile shape in a more

accurate way. Finally, the comparison between asymptotic

solutions and numerics is discussed in Sec. IV.

II. DYNAMICS OF THE RETRACTING FILM

A. Fluids equations

We consider the two dimensional dynamics of a thin

film of initial uniform thickness 2e of a liquid in the presence

of a surrounding gas. The densities and dynamical viscosities

of the liquid and the gas are noted as (qL, qG) and (lL, lG),

respectively. Both fluids can be considered as incompressi-

ble, thus, the dynamics is governed by the 2-D incompressi-

ble Navier-Stokes equations

qð@tuþ u � $uÞ ¼ �$pþ lDuþ cjdsn; (1)

r � u ¼ 0; (2)

where the velocity and pressure fields are noted u¼ uexþ vey

and p, c being the liquid-gas surface tension. Capillary forces

are modeled by introducing the Dirac delta function ds at the

interface, with n and j denoting the local normal direction

and the local curvature of the interface, respectively.

Consequently, in this formulation, q and l are discontinuous

scalar fields that account for the densities and viscosities of

each fluid. If we define the capillary time s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qLe3=c

p
, the

dynamics can then be rewritten in terms of dimensionless

variables

~qð@tuþ u � $uÞ ¼ �$pþ Z~lDuþ jdsn; (3)

$ � u ¼ 0: (4)

The length, time, velocity, pressure, density, and viscosity

have been rescaled by e, s, UTC ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c=qLe

p
, c/e, qL, and lL,

respectively. Besides the density and viscosity ratios, the dy-

namics depends only on one dimensionless number, the

Ohnesorge number Z, which compares viscous and capillary

effects

Z ¼ lLffiffiffiffiffiffiffiffiffi
qLce
p :

The dimensionless density ~q and viscosity ~l are both 1 in the

liquid phase and qG/qL and lG/lL, respectively, in the gas

phase. As a consequence, the case of free surface flow can be

easily accounted for by considering qG¼ 0 and lG¼ 0.

B. Full numerical simulations

Numerical integration of the set of Eqs. (3) and (4) is per-

formed using the GERRIS code,22 which uses a staggered-in-

time discretisation of the volume-fraction/density and pres-

sure. The interface was tracked using the volume of fluid

method (VOF) and an adaptive mesh refinement based on

quadtree decomposition (octree in 3D) is used. The combina-

tion of both techniques allows efficient computation of com-

plex interfacial flows.23–25

FIG. 1. (Color online) Evolution of the sheet interface and vorticity field for Z¼ 0.14 at four different dimensionless times: (a) t*¼ 0, (b) t*¼ 10, (c) t*¼ 20,

and (d) t*¼ 30. The incompressible Navier-Stokes equations are solved for both fluids using a VOF method in GERRIS.22
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As an initial condition, we considered a long free end

liquid film of thickness e0¼ 2e as illustrated in Figure 2. The

simulations were performed in a comoving frame of refer-

ence that recedes at the Taylor-Cullick velocity. This was

achieved by imposing Dirichlet boundary conditions for the

velocity field on the left boundary and an outlet condition on

the right side. On the other hand, the mesh refinement is con-

trolled both by the interface position and the vorticity field,

in order to maintain a good resolution around the interface as

well as in the region where the vorticity becomes strong. We

will consider later an air/water like system by setting the

density and viscosity ratios to qL/qG¼ 850 and lL/lG¼ 50,

respectively. The evolution of the film profile and the vortic-

ity field is shown in Figure 1 for Z¼ 0.14. The surface

tension pulls back the rim and, after a few units of dimen-

sionless time, the rim reaches the Taylor-Cullick velocity

UTC, which corresponds to rest in the comoving frame. Then,

a quasi-stationary regime sets up where the most of the dy-

namics consists of a slow increase of the rim size. We will

refer to this asymptotic stage as the Taylor-Cullick regime.

As a first approach, following the arguments of Taylor

and Cullick,1,2,26 the rim can be considered circular (see

Figure 3) and a simple mass balance equation for the rim

gives the evolution of the rim radius R(t),

2eUTC ¼
d

dt
pRðtÞ2
� �

:

This equation can be easily integrated with our initial

conditions and yields

RðtÞ2 ¼ 2

p

� �
tþ 1;

in dimensionless units. This is in good agreement with the

numerical results shown in Figure 4. However, we must note

that this result relies on the rim being an approximately cir-

cular profile, a feature that depends strongly on the Ohne-

sorge number (see Figure 5). In particular, we observe a

qualitative change in the film profile as the Ohnesorge varies.

For viscous liquid, i.e., high Ohnesorge number, the film

thickness decays monotonically in the upstream �x direc-

tion. By contrast, for capillary driven flows, i.e., low Ohne-

sorge number, one can observe spatial oscillations, whose

amplitude decreases with the distance to the rim. The profile

behind the rim seems to be quite stable after convergence to

the Taylor-Cullick velocity, at least for the first two cases

(Z¼ 0.7 and Z¼ 0.14). Figure 5 also shows that for low

Ohnesorge numbers, vorticity is mainly concentrated in

strong curvature points, especially in the first minimum

region behind the rim. Henceforth, we will refer to these

regions as the neck of the film, following Song and

Tryggvason.21

C. Thin film equation

When the effects of the surrounding gas can be

neglected, the Navier-Stokes equations with free surface

boundary conditions can be reduced to a set of coupled equa-

tions within the thin film approximations—or long wave-

length limit, where horizontal variations can be considered

much smaller than the vertical ones—as shown by Erneux

and Davis.27 The equations are written in terms of the local

thickness 2h(x,t) and the parallel velocity of the flow u(x,t),
in dimensionless form

@thþ @x huð Þ ¼ 0; (5)

@t huð Þ þ @x hu2
� �

¼ @x 4Zh@xuþ
ð

h@xj dx

	 

: (6)

This set of equations, obtained within the lubrication approx-

imation, is valid both in a fixed reference frame or in a con-

stant velocity moving frame. Equation (5) is derived from

local mass conservation in the film while Eq. (6), written

here in a conservative form, corresponds to the local

FIG. 2. (Color online) Spatial domain and initial condition for the retracting

sheet numerical simulation. The domain consists of four square subdomains.

The initial length of the sheet is 18e0 and the square subdomain length is

20e0.

FIG. 3. (Color online) Fit between numerical rim for Z¼ 0.14 at t¼ 20 and

circular shape, (x� 0.199)2þ y2¼ 0.025

FIG. 4. (Color online) Time evolution of the rim radius extracted from the

direct numerical simulation of the capillary film retraction. The linear law

expected by the Taylor-Cullick regime is in very good agreement with the

numerics.
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momentum balance. However, in order to cope with the tip

of the rim, the surface-tension term has to be amended by

using the complete curvature j instead of its long wave-

length limit j� @xxh. The integral associated with the sur-

face tension term can then be expressed in a closed form

ð
h@xj dx ¼ h@xxhþ @xhð Þ2þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @xhð Þ2
q 3

:

This model has been able to reproduce successfully 2D film

retraction when the film is semi-infinite.16 The set of Eqs. (5)

and (6) is well-posed by adding consistent initial conditions.

For the free retracting fluid sheet, this problem can also be

seen as a kind of boundary value problem on a semi-infinite

domain which evolves with time. In the Taylor-Cullick ve-

locity moving frame the solutions satisfy a Dirichlet bound-

ary condition far from the tip

hðx; tÞ ¼ 1

uðx; tÞ ¼ 1

�
at x ¼ �1; (7)

and a singular Cauchy boundary condition at the film tip,

hðx; tÞ ¼ 0

@xhðx; tÞ ¼ �1
uðx; tÞ ¼ _x0

9=
; at x ¼ x0ðtÞ: (8)

The first boundary condition (7) comes from the unper-

turbed geometry far away from the rim and the influx veloc-

ity on the reference frame at which the rim does not recede.

The second boundary condition (8) is imposed by the

kinematic condition at the tip and the symmetries of the

problem.

Numerical simulation of these 1D Eqs. (5) and (6) can

be performed using a finite difference method. Equations (5)

and (6) are written in terms of u and A¼ h2 and solved on a

staggered grid. A numerical issue arising in these kinds of

equations is that the computational domain shrinks in time.

In order to avoid having a time-dependent grid, we mapped

the domain into [0,1], rescaling x by the total length of the

sheet l(t). As a consequence, the boundary of the film is mov-

ing in this frame and one needs to write an equation for _lðtÞ.
This equation simply says that the end point velocity, which

can be extrapolated from the bulk velocity, equals _lðtÞ. The

new set of equations reads

@TA ¼ � 1

l
u� _lX
� �

@XA� 2A

l
@Xu; (9)

@Tu ¼ � 1

l
u� _lX
� �

@Xuþ 4Z

l2A1=2
@X A1=2@Xu
� �

þ 1

l
@Xj; (10)

@Tl ¼ uðlðtÞ; tÞ; (11)

where X¼ x/l(t) and T¼ t.
A Runge-Kutta method is used together with centered fi-

nite difference formulas to solve this set of equations with

X 2 0; 1½ �. The time evolution of the film retraction is shown

in Figure 6 for the same Ohnesorge numbers as in Figure 5.

The numerical solutions are robust when the domain size is

such that the boundary is far enough from the spatial

FIG. 5. (Color online) Sheet profile and vorticity field for three different Ohnesorge numbers at t¼ 20: (a) Z¼ 0.7, (b) Z¼ 0.14, and (c) Z¼ 0.028.

FIG. 6. (Color online) Sheet profile for three different Ohnesorge numbers at t¼ 20, using the thin film approximation: (a) Z¼ 0.7, (b) Z¼ 0.14, and (c)

Z¼ 0.028.
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oscillations behind the rim. Numerical convergence of the

solution has been reached by changing the initial domain

size (l(0)).

A good qualitative agreement is found between the two

numerical methods. In particular, we observe that the film ge-

ometry changes similarly as the Ohnesorge number varies.

Before we perform more quantitative comparisons, we investi-

gate in Sec. III the main features of the solution of this model

using analytic expansions in the asymptotic large time limit.

III. ASYMPTOTIC EXPANSION

We are thus interested in finding an asymptotic expansion

for the thin film model of Eqs. (5) and (6) for large times. In

this regime, the rim is already well formed so that we can con-

sider that its radius is much larger than the film thickness

R tð Þ � eð Þ and that its receding velocity is only slightly dif-

ferent from the Taylor-Cullick value. In such a limit, by

choosing a proper set of length scales for x, y, and u, time

derivatives can be neglected at least at the leading order,

when other terms containing spatial derivative may become

dominant. In order to obtain a solution valid in the whole

domain at dominant and higher orders, we will analyze the

nonlinear system given by Eqs. (5) and (6) at different self-

similar scales. The existence of different length scales implies

the appearance of several regions, which should be matched

in space in order to generate a unique whole domain solution.

A. Far-field solution

We expect, as observed in our numerical simulations,

that in the co-moving frame, the far-field flow remains

unperturbed when the rim retracts. Thus, we pose solutions

of the form

hf x; tð Þ ¼ h
0ð Þ

f zð Þ þ h
1ð Þ

f z; tð Þ; (12)

uf x; tð Þ ¼ u
0ð Þ

f zð Þ þ u
1ð Þ

f z; tð Þ; (13)

where z: x� xf accounts for the translational invariance of

the equations. The fields h
ð1Þ
f z; tð Þ and u

ð1Þ
f z; tð Þ are supposed

to be small corrections of the dominant terms. Replacement

of the Ansatz (12) and (13) into Eqs. (5) and (6), yields at

zeroth order

@z huð Þ ¼ 0; (14)

@z hu2
� �

¼ @z 4Zh@zuþ
h@zzhþ @zhð Þ2þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @zhð Þ2
q 3

2
64

3
75: (15)

We have omitted subscripts and superscript symbols for sim-

plifying notations. The first equation can be easily integrated

using the boundary conditions at infinity (7). Furthermore,

the momentum equation (15) can be integrated after substitu-

tion of u in terms of h, yielding

1þ 4Z@zh

h
¼ h@zzhþ @zhð Þ2þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @zhð Þ2
q 3

: (16)

Because of the momentum balance between the inertial and

the surface-tension term at �1 coming from the Taylor-

Cullick frame of reference, the constant of integration of

Eq. (15) given by boundary conditions at �1 is zero.

At z ! �1, h
ð0Þ
f zð Þ tends to unity and nonlinear terms

can be suppressed. The equation then behaves as a second

order linear differential equation. By expanding the solution

in this limit, i.e., h
ð0Þ
f zð Þ ¼ 1þ � ek �z, we obtain

k ¼ 2Z6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z2 � 1
p

. We find thus that the decay length scales

as 4Z for large Ohnesorge number and as (2Z)�1 for low

ones. Moreover, the solution presents spatial oscillations if

Z<Z0¼ 0.5 with wavenumber ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Z2
p

which con-

verge to unity for small Ohnesorge numbers, in quantitative

agreement with our numerical results.

Numerical integration of Eq. (16) reveals the appear-

ance of two types of derivative singularities at finite z, cor-

responding to a positive and a negative infinite slope of the

interface, respectively, as shown in Figure 7. In fact, such

singularities appear because steady finite solutions of Eq.

(5) and (6) cannot be supported in the whole domain.

Indeed, they would violate mass conservation since there is

a net flux of mass from infinity. The phase portrait of Eq.

(16) shows as well the existence of a manifold that behaves

as the separatrix between the two types of singular solu-

tions. This separatrix plays a crucial role since it corre-

sponds formally to an infinite mass rim, the only one that is

consistent with the mass conservation for the steady film

evolution. Therefore, in the large time asymptotic limit, the

rim should match this separatrix at the leading order. This

curve is well defined in the whole domain and its asymptot-

ical behavior can be found by balancing the viscous and the

surface-tension terms of Eq. (16). At leading order, the sep-

aratrix is quadratic and it can be expanded around z ! 1,

FIG. 7. (Color online) The two families of singular solutions of Eq. (16) can

be obtained by choosing different initial conditions when performing numer-

ical integration. Both families develop derivative singularities for finite x but

differing sign diverging slopes: The upper left family for positive (red

online) and the lower right family for negative (blue online). The separatrix

(black dashed curve) is the unique function that can be defined in the whole

domain.
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lim
z!1

h
0ð Þ

f ¼
3

32Z

� �
z2 � 3

28Z
z ln zþ 3

28Z
z

þ 3

98
ln2 zþO 1ð Þ: (17)

The rise of this manifold is very important for calculations as

it is the signature of the existence of another spatial region in

which different expansions and scalings are required. In

addition, we observe that this manifold exhibits a finite

neck for small enough Ohnesorge number, i.e., Z< 0.5 (see

Figure 8), which shows that no pinch-off can occur in the

pure 2D dynamics of capillary retracting films. Indeed, even

in the zero Ohnesorge number limit, we observe that the

minimal film thickness tends to one half (see Figure 9). This

can be proved by setting Z¼ 0 in Eq. (16). The resulting

equation can be integrated after multiplying it by h�2@zh,

yielding

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @zhð Þ2

q ¼ 1

2
h�1 � 1

2
a a� 2ð Þh: (18)

Depending on the choice of a, the constant of integration, the

solutions can exist in an infinite domain or be restricted to a

finite one. This can be understood through the analysis of the

critical points of Eq. (18). For 0< a< 2, two critical points

with opposite concavities can be found, giving rise to period-

ical solutions. In the case of a> 2, only one critical point has

physical sense (h> 0) and due to its positive concavity, the

solution develops an infinite slope for z finite. The critical

case occurs when a¼ 2, with a solution given by

h� zð Þ ¼ lim
Z¼0

h0 zð Þ ¼ 1

2
cosh 2zð Þ:

Ignoring the fact that the unique solution that can satisfy the

boundary condition at z!�1 occurs when a¼ 1 due to the

loss of the dynamic term @zh, the solution h*(z) can be

regarded as the separatrix of Eq. (16) for Z¼ 0. Thus, its

minimum defines the maximal lower bound for the neck

thickness for any given Z> 0.

B. Rim solutions

It is imperative to look for a different kind of solution

that supports a mass influx into the rim. Inspired by the nu-

merical simulations and by the translational invariance of

lubrication equations, we seek a quasi self-similar solution

of the form

hr x; tð Þ ¼ R h 0ð Þ
r fð Þ þ h 1ð Þ

r f; tð Þ
h i

; (19)

ur x; tð Þ ¼ R�1 u 0ð Þ
r fð Þ þ u 1ð Þ

r f; tð Þ
h i

; (20)

where f:R�1(x� xr):R�1z. The free spatial origin of the

solution xr has been introduced. The correction fields h
ð1Þ
r ,

u
ð1Þ
r are small and R� 1 depend weakly on time. Theoreti-

cally, we can understand this scaling as a consequence of the

appearance of a natural length scale in the rim given by the

radius R. The fact that ur scales with R�1 is related with the

persistence of the flux quantity hu¼ 1 into this region as this

quantity cannot depend on the R length scale.

At zeroth order, Eqs. (5) and (6) become, respectively

(subscripts and superscripts omitted again),

R _Rh� R _Rf@fhþ @f huð Þ ¼ 0; (21)

@f
h@ffhþ @fhð Þ2þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @fhð Þ2
q 3

2
64

3
75 ¼ 0: (22)

The second equation is decoupled from the first one and also

independent of the choice of R. By contrast, the continuity

equation depends on the quantity R _R. This equation gives

physical and suitable solutions for our problem only if

R _R ¼ Oð1Þ in time, due to a least degeneracy argument.28

This distinguished limit breaks the invariance f ! �f and

FIG. 8. (Color online) Steady envelope solutions arising from Eq. (16) for

different Ohnesorge numbers. Equation (16) was integrated numerically in

the �x direction starting from a point near the separatrix for x� 1. Oscilla-

tions appear for Z< 0.5.

FIG. 9. (Color online) When the Ohnesorge number is Z < 1
2
, a neck is

formed behind the rim. The figure shows the neck thickness dependence on

the Ohnesorge number. Thickness values were obtained by numerical inte-

gration of Eq. (16), starting from a far point on the envelope (17).
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allows solutions with a net flux at one side and no flux at the

other one.

This system is also invariant under the two following set

of transformations: h ! R0h, f !f/R0, u ! R0u and f
!f� f0, u! uþ R _Rf0. The second equation can in fact

easily be integrated

hðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � f� f0ð Þ2
q

: (23)

In terms of z and t, we can then write

hðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðz� RÞ2

q
; (24)

where f0 has been fixed to R0 and the constant R0 has been

absorbed into R. This solution captures the dynamics

observed in the growing rim and its circular shape. We

remark that the power law dependence of R(t) appears natu-

rally, as R _R ¼ Oð1Þ implies R / t
1
2. Moreover, the result is

independent of the Ohnesorge number because, at this order,

the momentum is dominated by the surface tension term

only. However, its validity is restricted to a finite domain

0� z� 2R. While the right side z	 2R gives the correct

description of the rim tip, it does not represent the physical

solution on the left side when z ! 0 where the rim should

connect to the film. The rim solution exhibits a singular

behavior for z! 0 that can be expanded

lim
z!0þ

h 0ð Þ
r ðzÞ ¼ 2qð Þ

1
2 t

1
4z

1
2 þO t�

1
4z

3
2

� �
: (25)

Here, we have expressed our result in terms of q, where

q2 ¼ 2R _R. The value of q can be found by imposing the

boundary condition hu¼ 1 at z¼ 0, which is equivalent to

enforcing the mass conservation. Straightforward calcula-

tions give

q ¼
ffiffiffi
2

p

r
: (26)

It can easily be seen that this rim solution cannot be matched

to the film separatrix solution obtained above at the dominant

order. Therefore, an intermediate region with a different

self-similar scaling is required in order to match the two

regions.

C. Intermediate region

The intermediate region will have to match for z!þ1
with the rim solution (that scales in the intermediate region

like t
1
4z

1
2) and for z ! 0 with the separatrix (that scales there

like z2). We look for self-similar solutions of the form

hðz; tÞ ¼ taf ð z
tb
Þ that meet the time dependence of the match-

ing, that is, a� 1
2
b ¼ 1

4
and a� 2b¼ 0. Hence, the unique

self-similar scaling, which allows a matching between the

far-field and the rim solutions, is

hmðx; tÞ ¼ tþ
1
3 hð0Þm nð Þ þ hð1Þm n; tð Þ
h i

; (27)

umðx; tÞ ¼ t�
1
3 u
ð0Þ
m0 nð Þ þ uð1Þm n; tð Þ

h i
; (28)

where n 
 t�
1
6 x� xmð Þ 
 t�

1
6z and hð1Þm and uð1Þm are correction

terms. Indeed, the substitution of Eqs. (27) and (28) into

Eqs. (5) and (6) gives at leading order the following set of

equations (subscripts and superscripts have been omitted

again),

@nðhuÞ ¼ 0; (29)

@n
h@nnhþ @nhð Þ2

@nhj j3

" #
þ 4Z@n h@nuð Þ ¼ 0: (30)

The continuity equation can be integrated using the boundary

condition hu¼ 1 at n ! 0 as the flux should match the far-

field incoming flow. Replacing u by means of h in the mo-

mentum balance equation gives us, as well, an equation which

can be integrated again. Straightforward calculations provide

4Z
@nh

h

� �
¼ h@nnhþ @nhð Þ2

@nhj j3
: (31)

The constant of integration is zero because of the boundary

conditions imposed at n! 1 and deduced from the match-

ing with the rim solution. In this limit, the function must

match the rim solution so h 0ð Þ
m 	 n

1
2. Equation (31) is separa-

ble and it can be written as

ð
h

8Z

3
a�3 þ 8Z

3
h�3

� �1
2

dh ¼ n� n0;

where a is a constant of integration. The integral can be

expressed in terms of hypergeometric functions after a

change of variables. Then, the solution of the equations

acquires a closed form

h nð Þ ¼ aN�1 3

8Z

� �1
2 n

a
1
2

" #
; (32)

FIG. 10. (Color online) The solution of Eq. (31) (black dashed curve)

unveils the shape of the intermediate region that links the steady solution

with the growing rim. The asymptotic behavior when x ! 0 should coin-

cide with the envelope of Eq. (16) for x ! 1, while the behavior when x
! 1 should match the solution of the growing rim when t1=6 � x� t1=2,

i.e., f! 0.
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where h(0)¼ 0 has been imposed. N�1 represents the inverse

function of

N gð Þ ¼ 2g
1
2 2F1 �

1

2
;
1

6
;
7

6
;�g3

� �
; (33)

or equivalently,

N gð Þ ¼ 2
2
3p2

3 C 2
3

� �� 
3 þ 1

2
g2

2F1 �
2

3
;� 1

2
;
1

3
;�g�3

� �
: (34)

Both expressions have been included because the series

of the hypergeometric function 2F1 converges only inside the

unitary circle. Therefore, each expression will be useful for

matching the intermediate solution either with the far field or

with the growing rim regions, respectively.

Expanding the function N into a series of g, and invert-

ing it in terms of N, we get, at leading order, in terms of the

physical variables,

lim
z!1

h 0ð Þ
m ðzÞ ¼

3a3

2Z

� �1
4

t
1
4z

1
2 � A0

2Za5

3

� �1
4

t
5
12z�

1
2

þ Za3

6

� �1=2

t
1
2z�1 þO z�

3
2

� �
; (35)

lim
z!0

h 0ð Þ
m ðzÞ ¼

3

32Z
z2 þO a�3Z�4t�1z8

� �
; (36)

where A0 ¼ 2
2
3p2

3 C 2
3ð Þ½ �3 is the constant term of Eq. (34) (see Fig-

ure 10).

The previous results show that the intermediate region is

always driven by viscous and surface-tension terms. Viscos-

ity controls the bridge length, which scales with Z
2
3 (see Sec.

III D for the a value) and expands in time following a 1
6
th

power law.

While the far-field region of the film can be easily

identified in the interface as the unperturbed zone, the rim

region is pointed out as the swelling zone close to the tip.

In a similar way, the intermediate region can be recog-

nized as the zone where the slope maximum takes place.

This maximum is due to the change of curvature orienta-

tion required between the far-field and the rim region. In

fact, the maximum slope of the interface at dominant order

is given by

max
x

@

@x
hðx; tÞ

� �
¼ lZ�

1
3t

1
6: (37)

The constant l can be found directly from Eqs. (32) and

(33). Figure 11 shows the results from 1D numerical simula-

tions for the evolution of the film maximum slope for four

different Ohnesorge numbers. The collapse of the four curves

into a single one for large times is proof of the existence of

this region. It has to be noticed, here, that because of the

rapid variation of the profile near the neck, the lubrication

approximation is in general not valid anymore in this region.

This discrepancy is expected to be more relevant for small

Ohnesorge numbers where inertia might become important.

D. Asymptotic matching

The three solutions that we have obtained can be matched

when the free coefficients satisfy the following relations:

a ¼ 16Z

3p

� �1
3

; xr ¼ xm ¼ xf ¼ x0;

as is shown in Figure 10. Indeed, as the lubrication equations

are invariant under translations, we can freely choose x0¼ 0.

With the previous results, we can build a zeroth order

non-uniform solution of lubrication equations (5) and (6)

with proper boundary conditions (7) and (8),

hðx; tÞ ¼ t
1
2h 0ð Þ

r xt�
1
2

� �
þ t

1
3 h 0ð Þ

m xt�
1
6

� �
þ h

0ð Þ
f xð Þ

� 3

32Z
x2 � 2qð Þ

1
2 t

1
4x

1
2 þ h1 x; tð Þ; (38)

where the perturbative field h1(x,t) comes from the sum of

the perturbative fields h
ð1Þ
f , t

1
3h 1ð Þ

m , and t
1
2h

1ð Þ
r . The function h

ð0Þ
r

comes from Eq. (23) after substituting f0¼�R0 and R0¼ q,

while hð0Þm is defined by Eq. (32) after applying matching

conditions. On the other hand, the function h
ð0Þ
f comes from

the solution of Eq. (16) imposing (17).

Non-uniformity of the solution is due to the multiscale

nature of the problem. A hierarchy of equations can be built

up and the errors for each region follow different time scales

since it corresponds to different spatial time-dependent scales.

It is also important to notice that the convergence is very

slow—the next term on the far-field solution behaves as x ln x.

This asymptotic tail adds an error of order t
1
2 ln t into the rim

region. Therefore, a higher-order analysis is strongly required.

E. Higher-order analysis

The calculation of higher-order terms calculations is

complex. In the intermediate region, the integrals are very

FIG. 11. (Color online) Maximum slope evolution from 1D numerical simu-

lations for four different Ohnesorge numbers. The curves were rescaled by

Z
1
3 following the analytical prediction. The asymptotic behavior is consistent

with the asymptotic analysis of the 1D equations. The constant l, which

defines the vertical shift of the curve, was obtained from the asymptotic

analysis and not by curve fitting.
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hard to obtain analytically because they are related to non-

tabulated functions. However, some results can still be

deduced by numerical integration.

In Appendix A, we show how a hierarchy of linear equa-

tions for higher-order terms in each region can be found.

Nonlinearities appear as forcing terms that couple each equa-

tion with lower-order terms. The tip position, which can also

be expanded asymptotically in time, adds extra coupling

terms in the equations.

The first non-trivial solution of the hierarchy that fol-

lows the zeroth order solution appears for O t�1=3
� �

correc-

tions in the rim region. The inclusion of this correction

suppresses an asymptotic tail error which adds an error that

grew as t
1
6 in the rim region. In Figure 12, we plot the inter-

face at different times for Z¼ 1.0 using this higher-order

term. The far-field region has not yet been included. Solu-

tions are very similar to those obtained near the rim by

Sünderhauf et al.17

It can be shown that the next term of the expansion in

the rim region is O t�1=2
� �

. At this level, the first correction

for the tip position is obtained (see Appendix B for further

details). In Figure 13, we show the asymptotic evolution of

the interfaces obtained within this approach for several

Ohnesorge numbers. In order to validate these solutions and,

particularly, to estimate their accuracy, we require compari-

sons between these interface profiles and numerical simula-

tions obtained with both the 1D model and with the full

Navier-Stokes equations.

IV. COMPARISON AND DISCUSSION

Since the previous analytical results correspond to an

expansion in the large time asymptotic regime, one expects

the agreement—between numerical simulations and

theory—to increase with time. Hence, we performed numeri-

cal simulations for both the full diphasic Navier-Stokes

equations (3) and (4) and the 1D film equations (5) and (6) in

order to compare the interface profiles with the asymptotic

analysis developed in Sec. III for different times. We con-

sider the two Ohnesorge numbers Z¼ 0.14 and Z¼ 0.7,

investigating the two configurations with and without a neck,

respectively. Figure 14 shows the different profiles at three

different times showing a reasonable qualitative agreement

between the numerics and the asymptotic analysis. In partic-

ular, the agreement is particularly good (quantitatively)

between the asymptotic expansion of the 1D film equations

and the numerics of the same equations, while some differ-

ences appear for the full Navier-Stokes equations. In addi-

tion, we want to emphasize that the asymptotic expansion

limit, developed in Sec. III, gives a good analytical descrip-

tion of the film solution within the 1D long wavelength

approximation. Moreover, the discrepancy between the 1D

model and the full Navier-Stokes 2D equations can be

explained both by the long-wave approximation of the 1D

equations which is not valid for @xhj j � 0 (i.e., in particular

near the neck as discussed in Sec. II C), but also because of

the free surface boundary conditions—Navier-Stokes equa-

tions account also for the gas dynamics.

In fact, we remark that in the diphasic case, a dynamical

instability develops for large times and low Ohnesorge num-

bers, i.e., Z� 0.018 6 0.003, as was already reported by two

of us.25,29 An example of such an instability is depicted in

Figure 15(c). Such an instability is thus associated with the

presence of the surrounding gas and it is related to the motion

of a liquid rim within this gas.30,31 We argue here that the

appearance of this destabilizing mechanism can be understood

as the onset of a Kelvin-Helmholtz instability due to the strong

shear layer created by the liquid retraction surrounded by the

still gas. Indeed, when the gas is neglected, as is in the case for

the 1D film equation for free surface flows, the development of

the instability is completely suppressed in numerical simula-

tions. The Kelvin-Helmoltz instability is in fact often invoked

to explain atomization of liquid sheets, although in such cases

only a small rim has been formed.5,10,32–35 The growth rate of

the Kelvin-Helmholtz instability for a diphasic viscous flow

without gravity is given by

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qLqG

ðqL þ qGÞ2

s
kDU � �k2;FIG. 13. (Color online) Asymptotic solutions for four different Ohnesorge

numbers, Z¼ 0.1, 0.5, 1.0, and 2.0, in the comoving frame. The figures

show the evolution between t¼ 102 and t¼ 802 in dimensionless time units.

FIG. 12. (Color online) Asymptotic matching between the rim and the inter-

mediate regions for Z¼ 1.0 and t¼ 102 to 802 time units. The rim swells as

the flow is injected at x¼ 0. The region near the origin barely changes dur-

ing the motion.
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where k is the wavenumber (k¼ 2p/k, with k the wave-

length), �¼lL/qL is the kinematic viscosity and

DU ’ UTC ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c=qLe

p
. In the dimensionless units introduced

above, we obtain

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qLqG

ðqL þ qGÞ2

s
k � Zk2:

The Kelvin-Helmoltz instability develops thus for

k < k0 ¼ 1
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qLqG

ðqLþqGÞ2
q

, with the most unstable wave-number

kmax ¼
1

2Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qLqG

ðqL þ qGÞ2

s
:

Taking kmax > ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Z2
p

, the wavenumber of the spa-

tial oscillation of the liquid film behind the rim, we obtain

that the Kelvin-Helmoltz instability develops for

Z < Zlim ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qG

qL þ qG

r
:

FIG. 15. (Color online) Sheet profile and vorticity

field for three different Ohnesorge numbers at

t¼ 10.6: (a) Z¼ 0.14, (b) Z¼ 0.03, and (c)

Z¼ 0.005.

FIG. 14. (Color online) Comparison between the numerical simulations and the analytical approach of the evolution of the film thickness for two different

Ohnesorge numbers: Z¼ 0.7 (1) and Z¼ 0.14 (2). The initial instability behind the rim and the rim curvature and size are practically the same in the three cases.

From top to bottom in the legends, the curves correspond to: Navier-Stokes simulations (black line), thin film approximation, light gray line (blue online), and

asymptotic expansion, gray line (red online). The insets show a zoom for the neck region. Simulation times are shown in the legend of each of the figures.
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For the air-water system studied in our simulations, we

obtain Zlim¼ 0.01714 in very good agreement with our nu-

merical estimate Z� 0.018 6 0.003. Finally, we would like

to emphasize that even in these unstable cases, no sheet

break-up is observed.

V. CONCLUSION

In this article, we have studied the 2D capillary retrac-

tion phenomenon of a viscous fluid film. Two different

scenarios have been considered: a film surrounded by a

viscous gas and a film with free surface boundary condi-

tions. For the first case, we have solved numerically the

diphasic full 2D Navier-Stokes equations (3) and (4) using

GERRIS.22 For the second case, we have studied numeri-

cally and analytically the thin film 1D model given by

Eqs. (5) and (6). An analytic expansion of the interface is

obtained for this model using a matched asymptotic

method in the large time regime. We report a good agree-

ment between these analytical results and numerical simu-

lation for the diphasic and the free surface flow cases. It is

quite remarkable that our analysis shows that no pinch-off

can occur in the 2D retraction. Moreover, the retracting

film profile exhibits three well separated domains: the rim,

the film, and an intermediate region, which connects them.

The three regions have different length scalings for large

times (t1/2, 1, and t1/6, respectively). Finally, we have con-

sistently explained the destabilizing mechanism arising at

low Ohnesorge number for diphasic systems in terms of a

Kelvin-Helmoltz instability due to the shear between the

liquid and the surrounding gas.
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APPENDIX A: HIERARCHY OF EQUATIONS

Let us suppose that the corrective terms in Eqs. (12),

(13), (19), (20), (27), and (28) can be expanded in a power

series of t. A hierarchy of equations can then be written for

each region. For each order, a linear differential operator

acting on the n-th corrective term may be balanced with non-

linearities coming from lower-order terms. The free coeffi-

cients can then be fixed by matching leading terms with

those coming from other regions.

For the rim region, the hierarchy adopts the form

Lrh
nð Þ

r ¼ Xr fð Þ p nð Þ
r fð Þ; (A1)

where p
ðnÞ
r depends on f through h

ðiÞ
r and u

ðiÞ
r with

i¼ 0…(n� 1) and

Xr fð Þ ¼ 1

h
0ð Þ

r

1þ @fh
0ð Þ

r

� �2
	 
3

2

:

The kernel space of the linear operator is 2-D and can be

built up using the solutions of the leading order equation

found in Eq. (23) and is given by

kerLr ¼ vr ¼
q� h

0ð Þ
r @fh

0ð Þ
r

h
0ð Þ

r

; wr ¼
qþ h

0ð Þ
r @fh

0ð Þ
r

h
0ð Þ

r

( )
:

The non-homogeneous linear differential equation can be

solved using the method of variation of parameters. The

Wronskian of this set of solutions is

Wr fð Þ ¼ �2q h 0ð Þ
r
�2:

Thus the general solution of the ordinary differential equa-

tion (ODE) can be obtained from

h nð Þ
r fð Þ ¼ 1

2
q2

ð
h 0ð Þ

r
�2wrp

nð Þ
r df

� �
vr

� 1

2
q2

ð
h 0ð Þ

r
�2vrp

nð Þ
r df

� �
wr

� qP nð Þ
r þ A nð Þ

r vr þ B nð Þ
r wr:

It can be noticed that the solution space has an extra dimen-

sion given by a constant function associated with P
ðnÞ
r . Any-

way, this subspace does not interact directly, by means of

integrals, with the lower order terms.

Similarly, one can find that for the intermediate region

the hierarchy is

Lmh nð Þ
m ¼ Xm nð Þp nð Þ

m nð Þ; (A2)

where again pðnÞm depends on n through hðiÞm and uðiÞm with

i¼ 0…(n� 1) and

Xm nð Þ ¼ 1

h
0ð Þ

m

@nh 0ð Þ
m

� �3

:

Now, the 2-D kernel can also be constructed from solutions

of the zeroth order problem and can be chosen to be

kerLm ¼ vm ¼
a

q
@nh 0ð Þ

m ; wm ¼
1

a
h 0ð Þ

m �
1

2
n@nh 0ð Þ

m

	 
� �
:

Straightforward calculations show that the Wronskian of the

differential operator is

Wm nð Þ ¼ 3p
4q

h 0ð Þ
m

h i2

@nh 0ð Þ
m

h i4

:

By taking these results into account, a closed solution can be

found explicitly

h nð Þ
m nð Þ ¼ � 4q

3p

ð
h 0ð Þ

m
3@nh 0ð Þ

m

h i�1

wmp nð Þ
m dn

� �
vm

þ 4q
3p

ð
h 0ð Þ

m
3@nh 0ð Þ

m

h i�1

vmp nð Þ
m dn

� �
wm

þ A nð Þ
m vm þ B nð Þ

m wm þ P nð Þ
m pm þ Q nð Þ

m #m:
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The functions pm and #m come from the constants of integra-

tion of the mass and momentum conservation equations. They

also increase the solution space dimension by two, as was

expected, without direct interaction with nonlinearities. The

four functions of the solution space are plotted in Figure 16.

The boundary condition at the tip may also pose some

problems because of the inherent divergence of the deriva-

tive. To avoid them, we promote the parameter x0 as a weak

function of time. As a result, the tip position will play some

role in the hierarchy equations inducing extra terms for p
ðnÞ
r

and pðnÞm in Eqs. (A1) and (A2).

The first non-trivial solution of the hierarchy that fol-

lows the zeroth order solution appears for O t�1=3
� �

correc-

tions in the rim region. In this case, p
ð1=3Þ
r ¼ 0 in Eq. (A1)

and this linear equation become homogeneous. Boundary

conditions impose a solution of the form

h 1=3ð Þ
r fð Þ ¼ B 1=3ð Þ

r vr fð Þ:

The constant B
ð1=3Þ
r can be obtained by matching the first

term of h
ð1=3Þ
r around f¼ 0 with the second term of hð0Þm

around n¼1 in the physical space. This yields

B 1=3ð Þ
r ¼ �A0

pZa5

12

� �1
4

:

APPENDIX B: HIGHER-ORDER TERMS

The next term of the expansion in the rim region is

O t�1=2
� �

. The effect of the tip motion has been added by

expanding the tip position into a series, where

_x0t ¼ �
P

cdtd with d � 1
2
. The existence of the first term,

c12 which plays a role at this order, was suggested by Song

and Tryggvason,21 who reported O t�1=2
� �

corrections in the

neck velocity on their numerical simulations.

Thus, the forcing term in Eq. (A1) can be written as

follows:

p 1=2ð Þ
r ¼ c1=2h 0ð Þ

r u 0ð Þ
r �

1

2

ð
f@f h 0ð Þ

r u 0ð Þ
r

� �
df

þh 0ð Þ
r u 0ð Þ

r
2 � 4Zh 0ð Þ

r @fu
0ð Þ

r ;

which shows that viscosity and inertia effects are incorpo-

rated at this order through the forcing term. Plugging the pre-

vious expression into Eq. (A1) and solving the integrals, one

can find that the solution near f¼ 0 behaves as

lim
f!0

h 1=2ð Þ
r fð Þ ¼ 2Z

3
q�1f�1 � 1

4
ffiffiffi
2
p q

1
2f�

1
2 ln f

þ bþ
ffiffiffi
2
p

q
1
2B 1=2ð Þ

r

h i
f�

1
2 þ c

þO f
1
2 ln f

� �
; (B1)

where b and c are constant terms that depend on Z and c1/2.

The coefficient A
ð1=2Þ
r was fixed to zero as the term associated

with wr(f) cannot fulfill the boundary condition when f¼ 2q.

When Eq. (B1) is written in the physical space, one finds

that the first term matches the third term of expansion (35).

By contrast, matching the second term needs further calcula-

tions. If any matching is possible, this term would corre-

spond to the first of the O t�1=6
� �

corrections in the

intermediate region. Moreover, the constant B
ð1=2Þ
r would be

fixed by matching the third term of Eq. (B1) with the next

term of the O t�1=6
� �

corrections.

After some straightforward calculations on this order of

the intermediate region hierarchy, we find that the forcing

term on Eq. (A2) is

p 1=6ð Þ
m ¼ 1

h
0ð Þ

m

;

which comes from inertial forces. If we replace the last

expression in Eq. (A2), we can obtain the following order

correction in terms of the variable g:

h 1=6ð Þ
m nð Þ ¼ 2q

3a
U gð Þvm gð Þ �H gð Þ wm gð Þ½ �

þ A 1=6ð Þ
m vm gð Þ þ B 1=6ð Þ

m wm gð Þ

which depends on hð0Þm through g ¼ hð0Þm =a. The terms con-

taining Pð1=6Þ
m and Qð1=6Þ

m constants have been omitted as it

can be shown that the coefficients are equal to zero to ensure

the matching.

The functions U(g) and H(g) are related to the integrals

U gð Þ ¼
ðg

t�3 1þ t�3
� �1

2 dt;

H gð Þ ¼
ðg

t�2 1þ t�3
� �

t� 1

2

N tð Þ
N0 tð Þ

	 

dt;

which can be expanded analytically into series around g¼1
and g¼ 0þ. Thus, we can calculate the asymptotic behavior

of hð1=6Þ
m when g!1,

lim
g!1

h 1=6ð Þ
m gð Þ ¼ 3

4
B 1=6ð Þ

m �
ffiffiffi
3
p

pq
7aA0

� �
g� q

2a
g�1 ln g

þ A 1=6ð Þ
m � A0

2
B 1=6ð Þ

m þ 2
ffiffiffi
3
p

qp
21a

� q
4a

� �
g�1

þO g�2
� �

;

FIG. 16. (Color online) Solution space associated with the hierarchy linear

operator of the intermediate region. The functions vm and wm are related to

the translational and rim-size invariance, respectively.
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and the asymptotic behavior of hð1=6Þ
m when g! 0,

lim
g!0

h 1=6ð Þ
m gð Þ ¼ � 2q

7a
g

1
2 ln gþ A 1=6ð Þ

m � 4q
49a

� �
g

1
2

þO g
7
2 ln g

� �
:

From the former of these expansions, we can already notice

that the matching with the outer region is possible only if

B 1=6ð Þ
m ¼ 4pq

7
ffiffiffi
3
p

aA0

:

Furthermore, since we know the expansion of g in terms of

n, the last result implies that

lim
n!1

h 1=6ð Þ
m nð Þ ¼ � 1

4
ffiffiffi
2
p q

1
2n�

1
2 ln nþ 1

4
ffiffiffi
2
p q

1
2

1

2
ln

2Za

3e2
þ 8a

3q
dþ 4a

q
A 1=6ð Þ

m

	 

n�

1
2 þO n�1

� �
; (B2)

lim
n!0

h 1=6ð Þ
m nð Þ ¼ � 3

28Z
n ln nþ 3

56Z
ln

32Za

3e2=7
þ 3

32Za

� �1
2

A 1=6ð Þ
m

" #
nþO n7 ln n

� �
: (B3)

where d is a constant depending on Z. When these expan-

sions are written back into the physical plane, both dominant

orders match, respectively, the secondary terms of expan-

sions (17) and (B1). Besides, the constant coefficients Að1=6Þ
m

and B
ð1=2Þ
r from Eqs. (B1)–(B3), which have not been fixed

yet, should meet the following set of two linear equations:

3

56Z
ln

32Za

3e2=7
þ 3

32Za

� �1
2

A 1=6ð Þ
m ¼ 3

28Z
;

1

2
ln

2Za

3e2
þ 8a

3q
dþ 4a

q
A 1=6ð Þ

m ¼ bþ
ffiffiffi
2
p

q
1
2B 1=2ð Þ

r ;

in order to ensure the asymptotic matching in the whole do-

main. It is quite remarkable that the conditions that deter-

mine the coefficients arrive from the matching of secondary

terms instead of the dominant ones.

After solving Að1=6Þ
m and B

ð1=2Þ
r from the previous set of

equations, the second order solution can be built up. Indeed,

two extra terms should be added to suppress the effect of the

remanent time logarithmic tails coming from the secondary

terms of Eqs. (B2) and (B3). The corrections are O t�1=6 ln t
� �

and O t�1=2 ln t
� �

, respectively, and are related to the transla-

tional invariance of the solution. This intermediate-order

matching led to homogeneous equations in the rim and inter-

mediate regions that can be solved directly.

At this point, it seems that there is not any condition for

the tip position correction c12 at this order. However, a careful

analysis of the matching conditions shows that the O 1ð Þ cor-

rection in Eq. (B1), c, becomes dominant when the far-field

and intermediate regions are matched. In order to annihilate

this term, the first correction of the tip position should satisfy

c1=2 ¼
3

4
q 1� 2

9
pZ

� �
: (B4)

Taking all of these considerations into account, our second

order asymptotical approach is finally written in terms of

z¼ xþ 2c12t1/2 and given by

hðz; tÞ ¼ h
0ð Þ

f zð Þ þ t
1
3h 0ð Þ

m zt�
1
6

� �
þ t

1
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6
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2

� �
þ t

1
6h 1=3ð Þ

r zt�
1
2

� �

þ h 1=2ð Þ
r zt�

1
2

� �
� 3

32Z
z2 þ 3

28Z
z ln z� 3

28Z
z� 2qð Þ

1
2t

1
4z

1
2 þ A0

2Za5

3

� �1
4

t
5
12z�

1
2

� 2Z

3
q�1t

1
2z�1 þ 1

4
ffiffiffi
2
p q

1
2t

1
4z�

1
2 ln zþ bþ

ffiffiffi
2
p

q
1
2B 1=2ð Þ

r

� �
t

1
4z�

1
2

� 1

14

2a

3Z

� �1
2

t
1
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