
J. Fluid Mech. (2008), vol. 617, pp. 167–185. c© 2008 Cambridge University Press

doi:10.1017/S0022112008003868 Printed in the United Kingdom

167

Shape and stability of axisymmetric levitated
viscous drops

JOHN R. LISTER1†, ALICE B. THOMPSON2,
ANTOINE PERRIOT1 AND LAURENT DUCHEMIN3

1Department of Applied Mathematics and Theoretical Physics, Institute of Theoretical Geophysics,
Wilberforce Road, Cambridge CB3 0WA, UK

2School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
3IRPHE, 9, Rue F. Joliot-Curie, 13384 Marseille Cedex 13, France

(Received 19 October 2007 and in revised form 5 August 2008)

We consider levitation of an axisymmetric drop of molten glass above a spherical por-
ous mould through which air is injected at a constant velocity. Owing to the viscosity
contrast, the float height for a given shape is established on a much shorter time scale
than the subsequent deformation of the drop under gravity, surface tension and the
underlying lubrication pressure. Equilibrium shapes, in which an internal hydrostatic
pressure is coupled to the external lubrication pressure through the total curvature
and the Young–Laplace equation, are determined using a numerical continuation
scheme. The set of solution branches is surprisingly complicated and shows a rich
bifurcation structure in the parameter space (Bo = ρgV 2/3/γ, Ca = μav/γ ), where Bo
is bond number and Ca is capillary number, ρ and V are the drop density and
volume, γ the surface tension, μa the air viscosity and v the injection velocity. The
linear stability of equilibria is determined using a boundary-integral representation for
drop deformation that factors out the rapid vertical adjustment of the float height.
The results give good agreement with time-dependent simulations. For sufficiently
large Ca there are intervals of Bo for which there are no stable solutions and, as
Ca increases, these intervals grow and merge. The region of stability decreases as
the mould radius aM increases with an approximate scaling Ca ∼ a−5

M , which imposes
practical limitations on the use of this geometry for the manufacture of lenses.

1. Introduction
In a recent study, Duchemin, Lister & Lange (2005), hereafter referred to as DLL,

investigated the axisymmetric equilibrium shapes of a viscous drop that is levitated
above a spherical porous mould by a lubricating film of air injected through the
mould. The study was motivated by an industrial process for the casting of glass
lenses, which uses air-film levitation to avoid contact between a drop of molten glass
and the mould, and thus achieves high surface quality in the finished product. There
are two limitations to the process. The first is the existence of static ‘brim’ waves
near the edge of the drop, where variations in the film thickness cause the drop to
deviate from the shape of the mould. DLL adapted the analysis of Wilson & Jones
(1983) to demonstrate that these brim waves are capillary ripples generated by the
jump in curvature from that of the mould to that of the sessile upper surface. The
scaling of the waves with the film capillary number, the mould slope and the capillary
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length were determined, and these are minimized for a given geometry by reducing
the air injection rate as much as possible. The second limitation is an instability
whereby, for some mould shapes, the air seems unable to escape the edge of the
drop sufficiently rapidly, and so an air bubble accumulates under the centre of the
drop, deforming it and eventually breaking through the drop’s upper surface. This has
been seen both experimentally and in Navier–Stokes simulations with the industrial
finite-element code POLYFLOW (Lange 2002; figure 6 of DLL), but has not yet
received a theoretical analysis. This is one of the purposes of this paper. The other is
further exploration of the branches of equilibrium shapes.

The equilibrium shapes are determined from the Young–Laplace equation, which
couples the hydrostatic pressure inside a stationary drop to the lubrication pressure
in the air outside. In DLL, this equation was solved using a fourth-order adaptive
Runge–Kutta shooting technique, which proved computationally delicate owing to
the need to control spatially growing exponential perturbations on the lower surface.
The curvature was also approximated by the two-dimensional curvature to avoid
the coordinate singularity on the axis. While this seemed reasonable for large Bond-
number flat-lying drops, the approximation was not evaluated and it is probable,
as will be confirmed later, that the solution-branch structure was affected by it.
The solution branches of DLL possessed two notable features. First, the branch
structure (see figure 2) was much more convoluted than initially expected, owing
to the possibility of solutions with large-amplitude oscillations on the base of the
drop. If these solutions are discarded as almost certainly unstable, then the remaining
more ‘reasonable’ solutions do not cover parameter space and the gaps are roughly
coincident with the regions where time-dependent simulations show instability. This
was suggestive, but not conclusive.

In this paper, we solve the Young–Laplace equation using the free continuation
software Auto97 (available at http://indy.cs.concordia.ca/auto/), which allows
us much greater freedom to explore the bifurcation structure. We use the full
axisymmetric curvature and show that this has a significant effect on the structure of
solutions with large basal oscillations. The branch structure is still highly convoluted,
however, and we illustrate some of the varied bifurcations. We also present a
detailed linear stability analysis of the equilibrium shapes and show that the resultant
predictions agree with time-dependent simulations. The stability analysis couples a
boundary-integral representation of the flow inside the drop to the lubrication pressure
outside the drop and an equation of quasi-steady vertical equilibrium. Throughout this
paper, we consider axisymmetric perturbations to axisymmetric equilibria, since there
is no indication in the industrial process that non-axisymmetric shapes are relevant.

We briefly note that drop levitation by air injection through a plane porous surface
has been investigated by Goldshtik, Khanin & Ligai (1986) as a model for the well-
known Leidenfrost phenomenon, whereby an evaporating drop is supported above
a hot plate by a vapour film. In contrast to the larger viscous drops investigated
here, Goldshtik et al. focused on water-like drops of not much more than capillary
size. As a result, only a single monotonic branch of equilibrium solutions was found
theoretically, and the self-sustained oscillations sometimes observed experimentally
had inviscid dynamics.

1.1. Dynamic regime

Before embarking on detailed analysis, we briefly motivate the dynamical regime to
be considered using parameters typical of the manufacturing process and some simple
scaling estimates. The molten glass used for casting lenses has a typical viscosity
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μ = 102 Pa s, surface tension γ = 0.3 N m−1 and density ρ =2400 kg m−3 (cf. Seward &
Vascott 2006). The capillary length lc =(γ /ρg)1/2 is thus about 3.6 mm, and a drop
of typical radius Rt = 5 cm will have thickness of order H = 2lc = 7 mm. Hot air of
viscosity μa =3 × 10−5 Pa s and density ρa =0.6 kg m−3 is injected through the mould
with Darcy velocity v of order 1 cm s−1.

It is apparent from the huge viscosity contrast that the time scale associated with
deformation of the glass drop is likely to be much longer than that associated with the
lubricating air film. This is readily confirmed using, for simplicity, the theory for the
levitation of a rigid disk above a horizontal porous surface with injection (Hinch &
Lemaitre 1994). (This is not quite the same problem, but has almost the same
film thickness and allows estimation of the relevant time scales by straightforward
analysis.) Consider a disk of thickness H and radius R levitated at a (uniform) height
h(t) above the surface. By mass conservation, the radial volume flux across radius r is
πr2(v − ḣ), where ḣ = dh/dt . From lubrication theory, this flux is driven by the radial
gradient of a pressure p(r, t) = 3μa(v − ḣ)(R2

t − r2)/h3. The integral of this pressure
over the bottom of the disk balances the weight and inertia πR2

t Hρ(g + ḧ) of the disk.
Finally, we obtain

ḧ

g
+

(
ḣ

v
− 1

) (
h0

h

)3

+ 1 = 0, (1.1)

where h0 = [3μavR2
t /(ρgH )]1/3 is the equilibrium float height. For the above

parameters h0 = 0.25 mm. Linearizing (1.1) about h0 shows that vertical displacements
are overdamped with a typical damping time h0/(3v) ≈ 8 ms.

A levitated drop has a curved lower surface, but h and h0 can be thought of
as typical values of the non-uniform film thickness. Vertical displacements are then
governed by an equation similar to (1.1) and are damped on the same 8 ms time
scale. On the other hand, a capillary-relaxation time scale for the molten glass drop
is μH/γ ≈ 2 s. This is much more than the vertical damping time, but comparable
with the experimentally observed time scale of instability over some tens of seconds.
We conclude that the drop rapidly achieves a quasi-equilibrium float height without
significantly changing its shape, and then slowly changes its shape due to any mismatch
between the lubrication pressure and that given by the Young–Laplace equation.
This separation of time scales is a key feature of the analysis in the rest of the
paper.

We close this preliminary section by noting that typical Reynolds numbers are
estimated as ρavh0/μa = 0.05 in the air film and ργH/μ2 = 5 × 10−4 in the drop. It is
thus appropriate to use the equations of lubrication theory in the air and of Stokes
flow in the drop.

2. Governing equations
Consider a very viscous axisymmetric drop of viscosity μ, density ρ, surface tension

γ and volume V that is being levitated above a porous mould with surface z = f (r)
by injection of air with viscosity μa at a Darcy velocity v (figure 1). The velocity v is
assumed to be uniform, and not affected by the small variations in the air pressure p

under the drop.
Let the drop have surface area A, given parametrically in terms of an arc length

s ∈ [0, L] by x =[r̃(s), z̃(s)] in cylindrical coordinates, where s = 0 at the bottom of
the drop and s = L at the top. The outward normal is given by n(s) = (z̃′, −r̃ ′), where
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Figure 1. Sketch of the problem. Air is injected with Darcy velocity v through a porous
mould with surface z = f (r). A viscous drop of viscosity μ and density ρ with surface (r̃, z̃),
0 � s � L, floats on a lubricating air film of viscosity μa and thickness h = z̃ − f (r̃). The
maximum radius is r = R.

primes denote d/ds, and the total curvature κ̃ is given by

κ̃ =
dψ

ds
+

sinψ

r
, (2.1)

where

ψ = tan−1(z̃′/r̃ ′) (2.2)

is the angle between the tangent and the horizontal. The last term in (2.1) is the
azimuthal curvature, which was neglected in DLL.

The normal-stress condition on the surface of the drop is the Young–Laplace
equation

P − ρgz̃ = p + γ κ̃, (2.3)

where p is the air pressure on the drop and the normal stress n · σ · n in the drop has
been written as ρgz̃ − P so that P represents the deviation from a hydrostatic state.
The motion of the drop is thus driven by the distribution of the modified pressure
P , which incorporates the effects of gravity, surface tension and the supporting
lubrication pressure p. As usual in lubrication theory, the shear stress exerted by the
air flow under the drop is very much less than p and can be neglected.

Let h denote the vertical thickness of the lubricating air film so that

h = z̃ − f (r̃) (2.4)

on the lower surface of the drop. As discussed earlier, deformation of the drop occurs
much more slowly than establishment of a quasi-equilibrium float height, and thus
|∂h/∂t | � v. Also, assuming that |∂h/∂r | � 1 and |∂f/∂r | � 1 in a shallow mould, we
apply mass conservation and the lubrication approximation to obtain (DLL; Hinch &
Lemaitre 1994)

− h3

12μa

∂p

∂r
=

πr2v

(2πr)
. (2.5)

Thus

p(r) = 6μav

∫ ‘∞’

r

r dr

h3(r)
, (2.6)

where ‘∞’ denotes a point on the interface beyond which the gap h is sufficiently
large that the air pressure can be considered to be uniform.

DLL took ‘∞’ in (2.6) to be where tan ψ = 10, arguing that p was negligible beyond
this point. For convenience, we convert (2.6) to an integral with respect to arc length,
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assume that (2.4) and (2.6) apply over the whole surface of the drop and take ‘∞’ to
be s =L. In § 3 we verify that, as expected, this simplifying assumption makes very
little difference to the results since the strong dependence of the integrand on h means
that the contribution from p on the upper surface is indeed negligible.

We make all lengths dimensionless with respect to the capillary length lc =(γ /ρg)1/2

and pressures with respect to ρglc = γ /lc. We also introduce the two dimensionless
parameters (Capillary and Bond numbers)

Ca =
μav

γ
and Bo =

V 2/3

l2c
. (2.7)

In dimensionless form, (2.3) and (2.6) then reduce to

P (s) = z̃(s) + κ̃(s) + 6Ca

∫ L

s

r̃

[z̃ − f (r̃)]3
dr̃

ds
ds, (2.8)

and Bo3/2 is the dimensionless volume.

2.1. Statics

If P is uniform then the drop is in static equilibrium. The equation dP/ds =0 can be
rewritten with the help of (2.1), (2.2) and (2.8) as a set of four first-order ODEs:

dr̃

ds
= cos ψ,

dz̃

ds
= sin ψ,

dψ

ds
= k1,

dk1

ds
=

6Ca r̃ cos ψ

[z̃ − f ]3
+

(
k1 − k2

r

)
cosψ − sinψ,

⎫⎪⎪⎬
⎪⎪⎭

(2.9a–d)

where k1 is the two-dimensional curvature and k2 = (sin ψ)/r is the azimuthal
curvature. These equations are subject to the boundary conditions

r̃(0) = ψ(0) = 0, r̃(L) = 0, ψ(L) = π (2.10)

and the volume constraint (which determines L)

π

∫ L

0

r̃2 sinψ ds = Bo3/2. (2.11)

2.2. Dynamics

If P is non-uniform then the Stokes flow in the drop can be determined from P

using a boundary-integral representation (e.g. Rallison & Acrivos 1978; Lee & Leal
1982; Pozrikidis 1992). In particular, the velocity u on the surface of the drop, made
dimensionless by γ /μ, is given by the solution of the singular integral equation

1
2
u(x) =

∫
A

u( y) · K · n dAy +

∫
A

J · f ( y) dAy, (2.12)

where

f = −P n, (2.13)

J(x, y) =
1

8π

(
I
d

+
dd
d3

)
, K (x, y) = − 3

4π

ddd
d5

and d = x − y. (2.14)
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Equation (2.12) has a null eigenvector u = ẑ, where ẑ is the unit vertical vector, and
the corresponding solubility condition is

ẑ ·
∫

A

f dA = 0. (2.15)

Equation (2.15) is the condition that there is no net vertical force on the drop
and can be shown, from (2.3), (2.13) and κ̃ = ∇ · n, to be equivalent to a balance
between the weight (ρgV or Bo3/2) of the drop and the net vertical force from the
lubrication pressure p. This balance reflects the assumption that the drop establishes a
quasi-equilibrium float height on a time scale much shorter than that of deformation.

The maintenance of an equilibrium float height as the drop deforms determines
what multiple of the null eigenvector ẑ must be added to a solution of (2.12). The
evolution of the drop is thus determined by (2.8) and (2.12)–(2.15).

3. Static equilibria
Equations (2.9)–(2.11) were solved using the continuation software Auto97. The

starting point was a spherical drop of a given volume in the absence of both gravity
and lubrication pressure. The effects of gravity and the lubrication pressure were then
increased by continuation until (2.9d) was satisfied, giving an equilibrium solution
for particular values of Bo and Ca. A branch of equilibrium solutions can then be
explored by continuation in either Bo or Ca. The results discussed later are mainly
for the spherical mould considered by Lange (2002) and DLL, namely

f (r) = aM −
(
a2

M − r2
)1/2

, (3.1)

with aM = 50. The effect of the mould radius aM is considered in § 3.4.

3.1. The effect of full curvature

We begin by testing the continuation method against the results of DLL, which were
obtained by shooting, and by evaluating the effect of the azimuthal curvature k2. In
figure 2 we show the solution branches obtained by continuation for Ca ≈ 4 × 10−5 to
both the system (2.9)–(2.11) and the system solved by DLL in which k2 is omitted from
(2.9d). The branch structure obtained for the system with only the two-dimensional
curvature agrees with, and even extends, that shown in figure 2 of DLL, thus validating
the Auto code.

The branch structure obtained with the full curvature has the following features in
common with that obtained from the two-dimensional approximation: (1) For many
values of Bo there are multiple solutions. For example, in figure 3 we show five
different equilibrium shapes for the same parameters Bo = 100, Ca = 3.59 × 10−5. (2)
For many values of Bo the solutions with the smallest radius R lie close to that for
a sessile drop with 180◦ contact angle with the mould (the limit as Ca → 0). These
solutions correspond to ‘reasonable’ shapes in which the lower surface of the drop
approximately follows the shape of the mould. (3) The solutions with the larger values
of R lie on extensions of the branches well above the trend of the sessile curve. These
solutions correspond to more exotic shapes in which there are large-amplitude waves
on the lower surface of the drop (cf. figure 3 of DLL and figure 3 here). Sufficiently far
along the branch extensions, the waves pierce the upper surface; such self-intersecting
shapes are clearly non-physical despite satisfying (2.9)–(2.11). (4) There are two gaps
around Bo = 25 and Bo = 75 where there is no solution branch close to the trend of
the sessile solution.
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Figure 2. Solution branches at Ca = 3.59 × 10−5 with the full curvature (solid) and the
two-dimensional approximation of DLL (dashed). The lowest parts of the solution branches lie
close to the solution for a sessile drop with 180◦ contact angle (dotted), but there are two gaps
around Bo =25 and 75 where there are no solutions near the sessile curve. The full-curvature
solutions for Bo = 100 (arrow) are shown in figure 3.
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z

Figure 3. Five different equilibrium solutions with the full curvature for Bo = 100 and Ca =
3.59 × 10−5. The shape with the smallest radius R is stable. The other four, more elevated and
exotic shapes, are unstable (see § 4).

The most obvious differences between the solution branches for the full curvature
and for the two-dimensional curvature are in the form of the large-R extensions of the
branches away from the sessile trend. As we shall see in § 4, these more exotic solutions
are unstable anyway and hence these differences are not of much consequence. A more
important difference is that the gaps in the ‘reasonable’ solutions along the sessile trend
occur at larger Bo with the full curvature. For example, at Ca =3.59 × 10−5 there
is a gap 16.9 <Bo < 41.0 with the full curvature and 13.5 < Bo < 31.6 with the two-
dimensional curvature. These gaps are regions where there are no stable axisymmetric
solutions and hence it is not possible to cast a lens with these parameters using the
levitation process.

3.2. The effect of the lubrication approximation

In using (2.9d) over the entire surface for simplicity, we have assumed that it does
not matter much what approximation is used for p on the upper surface since p is
negligible there. In order to test this, we compared the solutions of (2.9)–(2.11) with
two other approximations. First, we replaced cosψ by 1 in the first term of (2.9d).
This is equivalent to replacing ∂p/∂r by ∂p/∂s in (2.5) and noting that ψ ≈ 0 and r ≈ s
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Figure 4. Detail of a solution branch at Ca = 3.59 × 10−5 for the alternative lubrication
approximations in which (2.9d) is modified as described in § 3.2. (i) cosψ �→ 1 (dashed) and
(ii) cos ψ �→ 0 if cosψ < 0 (solid). The unmodified (2.9d) gives a branch that is indistinguishable
in this figure from alternative (ii) (see also figures 2 and 6b) The solution curves lie above that
for a sessile drop (dotted).
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Figure 5. The equilibrium shape with the smallest R for Ca = 10−3 and Bo = 60 with (2.9d)
unmodified (solid), with cosψ �→ 1 (dashed) and with cosψ �→ 0 if cosψ < 0 (dotted). There is
very little difference between the three approximations, even though the gap thickness is quite
large for this Ca (see § 3.2 for discussion). The shape is stable (see figure 11b).

in the lubricating film, though not on the upper surface. Second, we replaced cos ψ by
0 in the first term of (2.9d) when cos ψ < 0. This is equivalent to setting p = 0 on the
upper surface of the drop, or taking ‘∞’ to be the point of maximum radius rather than
s = L. As shown in figures 4 and 5, these alternative approximations give essentially
the same solution shapes and branch structure as the original approximation, and so
we will use (2.9d) from now on.

3.3. Bifurcations in the branch structure

It is clear from figures 2 and 4 that the solution branches are quite complicated, even
at a fixed value of Ca. In figure 6, we show the branch structure for a number of
values of Ca, which gives an impression of some of the many bifurcations that occur
as Ca increases. An alternative view is provided in figure 7 by a plot in the (Bo, Ca)
plane of the location of some of the solution fold points. It is worth noting again
that only the solutions close to the sessile trend prove to be stable. Nevertheless, it
is necessary to understand something about the branch and bifurcation structures to
know when such solutions might exist. The following features can be discerned in
figures 6 and 7: (1) In a number of places there are two or more branches very close
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Figure 6. Solution branches at (a) Ca = 2 × 10−5, (b) 3.59 × 10−5, (c) 3 × 10−4, (d) 10−3,
(e) 3 × 10−3 and (f) 10−2. Letters a–i, x–z denote the fold points plotted in figure 7, and A–H
denote some of the bifurcations in the structure of the branches. The sessile solution is shown
dotted in (a) and (f).

and parallel to each other along the sessile trend. The main difference between the
corresponding shapes is in the curvature in the middle of the lower surface (cf. the
lowest two shapes in figure 3). As Ca increases, these nearly parallel branches can
touch and reconnect to leave a gap in the branch structure with a fold point on either
side. This process can be seen at points A–D. For the cases A, B and D, this creates
a gap in solutions along the sessile trend. (2) In a number of places solution branches
terminate in a spiral structure. At points E and F the spirals at each end of a branch
touch to form a closed loop (isola) of solutions, which shrinks and disappears as Ca

increases further. At E the gaps created near Bo = 25 and Bo = 70 at A and B merge
to form a large gap along the sessile trend that extends over 15 � Bo � 100. (3) The
reconnections B , C and D create kinks in the branch structure, which can be seen
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Figure 7. The variation with Ca of the fold points a–i and x–z shown at particular values
of Ca (arrows) in figure 6. Folds appear by the collision of two branches at A–D; the dashed
curves are folds that touch to form isolas, which subsequently shrink and disappear at E and
F ; kinks in solution branches disappear in cusp catastrophes at G and H .

in figure 6(c). The kinks fg and hi pull straight at G and H in cusp catastrophes,
whereby three solutions become one.

The stability of solutions near these bifurcations will be described in § 4.

3.4. Variation with the mould radius aM

We performed a brief exploration of the effect of varying the mould radius aM

in (3.1). The qualitative behaviour for aM =100 and 200 is very similar to that des-
cribed above for aM = 50, though there are differences in the detailed shape of the
branches for the ‘exotic’ solutions with large-amplitude waves on the lower surface.
Collision of branches close to the sessile trend still creates gaps and kinks in the
branch structure, as described in § 3.3; the variation of some of the corresponding
fold points is shown in figure 8. The first gap in the sessile trend (bifurcation A)
appears near Bo = 22 for all three values of aM ; the width of the first gap is almost
independent of aM if Ca is scaled by a−5

M . The appearance of gaps at B , C and D for
aM = 50 has analogues for aM = 100 and 200, but there is more variation in the critical
Bo for these gaps and there is only an approximate scaling of Ca with a−5

M . Moreover,
the fold structure for aM =200 has some features that do not have analogues for
aM = 50.

4. Stability
4.1. Theory

Consider the evolution of an equilibrium shape x̃(s) under an infinitesimal
perturbation

x̃(s) → x̃(s) + δ(s) (4.1)

to the interfacial position. In order to represent a physically realizable perturbation, δ

should be such that both the volume of the drop and the vertical-force balance (2.15)
are preserved. The application of these constraints is discussed further below.

By linearizing (2.8) about equilibrium, we can obtain the perturbation �P to the
modified pressure P on the drop in the form

−�P n = F[δ], (4.2)
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Figure 8. The variation of some of the fold points for mould radius aM = 50, 100 and 200.
Some of the fold structures for aM =200 have no analogue when aM = 50 or 100 and are
shown dashed. The dotted curves are the results for aM =50 reduced by factors of 32 and 1024
to show the approximate scaling Ca ∼ a−5

M .

where F[δ] is a linear functional of δ; the detailed calculation is described in the
Appendix. The operator F is non-local due to the integration involved in the
lubrication pressure. Since P is uniform in equilibrium, it produces no flow, and
thus the linearized flow is driven by F[δ] acting on the unperturbed shape.

The vertical-force balance (2.15) is imposed by subtracting an appropriate vertical
translation from δ. Accordingly, we define a projection operator P by

P[δ] = δ − ẑ
(

ẑ ·
∫

F[δ] dA
)/(

ẑ ·
∫

F[ ẑ] dA
)

(4.3)

so that FP[δ] satisfies (2.15). Thus P projects a general perturbation δ onto one that
satisfies the vertical-force balance. It also follows from (4.3) that P[ ẑ] = 0.

The interfacial velocity u driven by the force distribution

f = FP[δ] (4.4)

is obtained from the boundary-integral representation (2.12). The linearized equation
is of the form

A[u] = J[ f ], (4.5)

where the operator A = 1
2
I − K is singular with null eigenvector ẑ, and J and K are the

obvious integral operators over the unperturbed shape. Since f satisfies the solubility
condition (2.15) by construction, (4.5) can be inverted to give

u = A−1J[ f ] + k ẑ . (4.6)

The vertical velocity k ẑ in (4.6) is determined by applying the projection operator P
to u so that the vertical-force balance (2.15) continues to be satisfied as the interface
moves under the kinematic boundary condition δ̇ = u, where the dot denotes d/dt .

Finally, we note that the tangential components of u and δ do not change the
shape, and define δ = δ · n. Thus

δ̇ = n · PA−1JFP[δn] or δ̇ = S[δ]. (4.7)
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The operator S has two zero eigenvalues: P[ ẑ] = 0 from (4.3); J[n] = 0 since a
uniform pressure gives no flow. Hence δ = ẑ and δ = (FP)−1[n] both give S[δ] = 0.
Now ẑ is a vertical translation and (FP)−1[n] is the perturbation that gives an
equilibrium (constant P ) drop of a slightly different volume. So the two null
eigenvalues correspond to perturbations that do not conserve the vertical-force
balance and the volume. The remaining eigenvalues correspond to eigenfunctions
δ(s) that do conserve the vertical-force balance and volume, and are thus physically
realizable. These non-trivial eigenvalues and eigenfunctions determine the dynamics
and stability of the drop under small perturbations.

4.2. Numerical calculation of stability

The equilibrium shapes returned by Auto97 are represented by the values of [r̃(s), z̃(s)]
at N unevenly spaced gridpoints, where typically N =100 and the spacing is adapted
as part of the continuation procedure to give good resolution of regions of rapidly
changing curvature. In the stability calculation, the perturbation δ is also represented
by the values at these gridpoints, and S becomes an N × N matrix with N − 2
dynamically significant eigenvalues. In order to calculate S, both the equilibrium
shape and the perturbation are interpolated with quintic splines, from which normals
and curvatures can be calculated with high accuracy.

As usual, the azimuthal integrations of the kernels in (2.12) were performed
analytically in terms of elliptic integrals using the formulae given in Lee & Leal
(1982). The leading-order logarithmic singularity in the arc-length integration of the
J-integral was subtracted and integrated analytically. The remaining integrations in
the discrete representations of the operators J and K, the integration involved in the
contribution of the lubrication pressure to F and the integration in (4.3) for P were
all performed using a seven-point Gaussian scheme.

Since they relate vectors at the N gridpoints, F, P, J, K and A are all represented as
2N × 2N matrices. The matrix representation of S is readily constructed from these
matrices, n and (4.7). The eigenvalues and eigenvectors of S are found using NAG
subroutines.

4.3. Comparison with time-dependent simulations

The stability calculation described above can be tested by comparison with the
observed decay rate towards equilibrium in a time-dependent simulation of the
evolution of a drop with parameters such that the equilibrium shape is stable.

The time-dependent simulations were performed using a similar numerical method
to the stability calculation (though the two codes were written largely independently
and by different authors). The time-dependent code solves (2.12)–(2.15), (2.8) and the
kinematic condition ẋ = u. The interface is represented by N gridpoints, with N ≈ 100,
and is interpolated using a cubic spline. The integration of the kernel functions J and
K was performed as above to transform (2.12) into a matrix equation for the values
of u at the gridpoints. The (near) singularity in the matrix equation, caused by the
(nearly) null eigenvector u = ẑ, was suppressed using singular value decomposition
to find the interfacial velocity to within a vertical translation. The interface was
advanced using forward-Euler time stepping with the normal velocity. A vertical
translation to the new float height was added, with the magnitude determined from
a bisection search on (2.15). A tangential redistribution of points with a suitable
weighting function was used to maintain good resolution, in particular of the rapid
decrease in the lubrication pressure near the edge of the drop.

In figure 9, we show two examples of decay of the interfacial velocity towards
equilibrium for Bo =55, Ca = 10−7 and for Bo = 50, Ca =10−4. The initial shape in
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Figure 9. Time-dependent decay of |u| at the top (solid) and bottom (dotted) of a perturbed
drop. (a) Bo = 55, Ca =10−7. The dashed line is the function 0.01 exp(−0.792t). (b) Bo = 50,
Ca = 10−4. The circles lie on the fitted function 0.021 exp(−0.176t)| cos(0.164t + 0.85)| (also
shown dashed after multiplying by 10−3). Note that the velocities at the top and bottom of
the drop are not in phase.

each case was a rescaling of an approximate equilibrium for a different value of Bo.
The decay was characterized by the velocity at r = 0 on the top and bottom of the drop.
The initial perturbation is a mixture of eigenmodes, but after a while the perturbation
becomes dominated by the most slowly decaying mode. For Bo = 55 and Ca = 10−7

the decay becomes monotonic with a real decay rate σ = −0.792. For Bo = 50 and
Ca = 10−4 the decay is oscillatory with a complex decay rate σ = −0.176 ± 0.164i.
These values are in good agreement with the predictions of the numerical stability
analysis, which gives σ = −0.799 and −0.181 ± 0.167i, respectively.

There is also good agreement between the normal velocity u · n of the time-
dependent calculation and the real part of the eigensolution δ from the stability
analysis. As shown in figure 10, the oscillatory decay for Ca =10−4 is characterized
by the outward propagation of waves on the underside of the drop, which are driven
by the variations in the lubrication pressure. There are also outward propagating
waves on the upper surface, but of lower amplitude and with a phase lag. This
suggests that the waves on the upper surface are driven by the deformation of the
lower surface and reduced by capillary and gravitational levelling. The displacement
and normal velocity are almost zero at the outer ‘nip’ where the lubricating air gap
is narrowest near r = 7.3, since the vertical-force balance (2.15) is very sensitive to the
gap thickness in this region. The outward and inward motions of the rim of the drop
beyond the nip in r > 7.3 correspond to spreading and contraction of the drop as air
accumulates and discharges from the gap beneath the drop.
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Figure 10. Profiles of the normal velocity for the oscillatory decay at Bo = 50 and Ca = 10−4

over half an oscillation. The decay exp(−0.181t) is suppressed. The larger velocities (bold)
are on the lower surface. (a) u · n exp(0.181t) from the time-dependent simulation for
t = 40+(nπ/4)/0.167, n= 0, . . . , 4. (b) Re(δeiφ) from the linear stability calculation for φ = nπ/4.
The (arbitrary) amplitude of the least stable eigenmode δ was chosen to match the simulation
in (a).

4.4. Stability of branches

In figure 3 we showed five equilibrium shapes for Bo = 100 and Ca = 3.59 × 10−5.
The least stable eigenvalue for each shape is real and given, in the order of increasing
maximum radius R, by σ = −0.41, 0.33, 0.84, 1.92 and 2.37, respectively. Thus only
the smallest-radius lowest-lying shape is stable, and the others are all unstable.
The equilibrium shape for Bo = 60 and Ca = 10−3 shown in figure 5 is stable with
σ = −0.054 + 0.146i, but the other equilibrium, with the larger value of R at Bo = 60
on the isola in figure 6(d), is unstable with σ = 0.198. These examples suggest a simple
rule of thumb that the solution with the smallest value of R is stable and others, if
they exist, are unstable. Unfortunately, this is an oversimplification, though it does
appear to be true that only the solution with the smallest value of R can be stable.

The first point to note is that there is always a neutrally stable eigenmode where
a solution branch has a fold point with respect to Bo. This can be argued from
the canonical form of a saddle-node bifurcation or, more simply, by noting that
the deformation from an equilibrium on the lower part of the branch to the equal-
volume equilibrium on the upper part is clearly a neutrally stable (finite-amplitude)
perturbation. As the fold is approached, this perturbation becomes infinitesimal and
corresponds to a neutrally stable linear eigenmode. A similar argument shows that
this eigenmode exchanges stability round the fold.

An example of loss of stability at a fold is shown in figure 11(a), which plots the
least stable eigenvalue near the fold a for Ca = 10−3 (see figure 6d). The lower-R
part of the branch, which connects a to the origin, is stable and increasingly stable
as Bo → 0 and the drop becomes small and nearly spherical. The higher-R part
leading towards the spiral is unstable (though the solution of (2.9)–(2.11) becomes
self-intersecting before the spiral, and it then makes no sense to discuss the dynamics).
Similar behaviour is found near a for other values of Ca, so that the entire region to
the left of a in figure 7 contains a single stable solution.

Secondly, at all the folds we have examined, the neutral mode becomes unstable
as the fold is rounded in the direction of increasing R. It does not follow that the
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Figure 11. The least stable eigenvalue σ , or its real part, as a function of Bo for different
Ca (see figure 6 for the shape of the branches). Dashed curves denote a complex eigenvalue,
and the dots denote places where eigenvalues cross. (a) Ca = 10−3. The solution along the
sessile trend from the origin is stable and becomes unstable at the fold a where Bo = 15.1.
The solution with larger R is unstable, and is self-intersecting for Bo < 13.2. (b) Ca =10−3.
The isola of equilibria exists in 48.1 � Bo � 67.0 but the lower part of the loop is only stable
in 54.3 � Bo � 67.0. (c) Ca = 3 × 10−4, 10−3, 3 × 10−3 and 10−2. The region between folds f
and i at Ca =3 × 10−4 is stable. As Ca increases to 10−2 the region of stability decreases to
99.8 � Bo � 142.3 and becomes less stable.
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Figure 12. The critical Ca below which there is one stable equilibrium and above which
(shaded) there are no stable equilibria. Most of this boundary (solid line) coincides with the
folds a, b, e, f and i; the segments I–III correspond to neutral modes that are not at a
fold (figure 11b, c). Some of the other folds are shown (dashed lines) to aid comparison with
figure 7.

solution with smaller R is stable, since there may be at least one unstable mode before
the fold is even reached. An example of this is shown in figure 11(b), which plots the
least stable eigenvalue around the isola of equilibria for Ca = 10−3. Though the isola
extends between the folds b and e over 48.1 � Bo � 67.0, the lower part of the loop
is stable only in 54.3 � Bo � 67.0. There is a neutrally stable mode at the fold b,
which is stable along the lower part of the loop, but there is also at least one unstable
mode in 48.1 � Bo � 54.3. Similar behaviour is found for other values of Ca where
the isola exists, and so a part of the region between b and e in figure 7 contains no
stable solutions. Figure 11(b) also shows that different modes can become the most
unstable as Bo varies, and that some values give oscillatory behaviour and others
monotonic.

The other major region in the (Bo, Ca) plane where loss of stability is not simply
given by the neutral mode at a fold is associated with the disappearance of the
kinks at G and H as Ca increases. As shown in figure 11(c), for Ca =3 × 10−4 the
folds f and i are neutrally stable and the solution branch between them is stable.
For Ca = 10−3 the fold f is slightly unstable to another mode, as also is fold i for
Ca = 3 × 10−3. Thus the folds become unstable slightly before they disappear at G

and H , and the branch between them becomes less stable. This trend continues after
G and H so that for Ca =10−2 the range of stability decreases to 99.8 � Bo � 142.3,
and for Ca > 2 × 10−2 no part of the branch is stable.

The stability results are summarized in figure 12. Below a critical Ca there is one
stable equilibrium and above it there is none. Most of the critical curve coincides with
the folds a, b, e, f and i of figure 7, the exceptions being those just described with
reference to figures 11(b) and 11(c).

5. Concluding remarks
We have examined the shape and stability of an axisymmetric viscous drop levitated

above a mould by a lubricating air film. Though this appears to be a simple physical
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problem, the static solution structure and the dynamic stability are surprisingly
complicated. The source of these complications is almost certainly the presence of
capillary waves on the lower surface of the drop, which are required to match the
curvature of a nearly sessile upper surface to that imposed by the mould on the lower
surface.

We can gain some understanding of the effect of these waves in the limit Ca � 1.
In this limit, DLL showed that the lubricating film thickness h obeys the third-order
differential equation

h3(h′′′ + f ′) = 6Ca r, (5.1)

which supports a series of nips and lobes near the edge of the drop that decay
exponentially towards a uniform thickness in the middle (cf. Wilson & Jones 1983).
Solutions to (5.1) depend asymptotically on the small parameter

δ =
{
6Ca[f ′(Rt )]

5Rt

}1/3
, (5.2)

where Rt is the dimensionless contact radius of the sessile solution with no air
injection. The width of the first lobe scales like

δ3/10lc/f
′(Rt ) =

{
6CaRt/[f

′(Rt )]
5
}1/10

lc, (5.3)

and subsequent nips and lobes have almost identical scalings (see Appendix A of
DLL). This is the probable explanation of the approximate scaling Ca ∼ a−5

M of
some of the structures in figure 8 since f ′(Rt ) is approximately proportional to
a−1

M when aM � Rt . The boundary condition h′ = 0 at r = 0 is sensitive both to the
phase of the exponentially small oscillatory solutions of (5.1) and to the need to
suppress an exponentially growing solution. This casts some light on the variations
in figure 7 with Bo and on the existence of very similar equilibrium shapes that differ
slightly in the middle (see figure 3). However, it falls short of a complete explanation
of the complexity seen in figures 6 and 7. This complexity, and that of the crossing
eigenmodes in figure 11, suggests that careful numerical solution will remain necessary
for accurate quantitative predictions.

We find that a continuation method is a very effective way to determine the branches
of equilibrium solutions from the governing ODEs and to explore their dependence
on parameters. In particular, it is better adapted to deal with the oscillatory variations
on the lower surface than the shooting method of DLL. The approximation of the full
axisymmetric curvature by the two-dimensional curvature does not greatly affect the
shape of drops close to the sessile trend. However, it does have a significant effect on
the range of drop volumes over which there is a gap in such solutions (about 40 % for
the first gap in figure 2). Since these gaps correspond to parameters for which there is
no stable solution, this is a relevant consideration when trying to manufacture glass
lenses of given dimensions. The approximation made to the pressure on the upper
surface of the drop has little effect on either the drop shape or the solution branches
(figures 4 and 5).

We have developed a numerical scheme to determine the linear stability of the
static equilibria. This stability problem differs from the classic case of the oscillations
of an isolated viscous drop (Reid 1960; Chandrasekhar 1961) in a number of ways:
the unperturbed state is non-spherical and only known numerically; the restoring
force is determined non-locally due to the lubrication pressure; a vertical translation
is not neutrally stable but must be determined by the condition of global vertical-
force balance. The numerical predictions are in good agreement with time-dependent
simulations. It is found that, depending on the parameters, the onset of instability can
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be either direct or oscillatory and can occur either at a fold in the solution branch
or before the fold is reached. In all cases investigated, only the lowest-lying (smallest
radius) solution could be stable and for some parameters even this was unstable.

The most important features of the solutions for a mould radius aM = 50 are as
follows (see figures 6, 7 and 12). For Ca < 10−7 there is a continuous branch of stable
solutions along the trend of the sessile solution (to at least Bo = 200). As Ca increases,
gaps open up in this branch so that there are intervals of Bo where there are either
no solutions or no stable solutions. As Ca increases further, these gaps grow and
merge until by Ca = 10−1 there are no stable solutions for Bo > 12. The region of
stability is largely determined by the existence of a solution close to the sessile trend
though there are two regions, around (Bo, Ca) = (55, 10−3) and (130, 10−2), where
such a solution exists but is unstable.

The region of stability limits the lens manufacturing process. The sample parameters
in § 1.1 give Ca = 10−6, which would prevent manufacture in the range 20<Bo < 30
unless some of the parameters could be varied significantly. We tried radial variations
in the rate of air injection v (which might be achieved by varying the thickness of
the mould), but found that the excluded range of Bo varied little with the injection
profile and mainly with the total flux. This reflects the importance of air flow through
the final nip at the edge of the drop. By contrast, the excluded range of Bo increases,
and the limits to manufacture become more severe, for a mould with larger radius of
curvature, as shown in figure 8 and experienced in practice.

We note finally that the complicated behaviour described herein is for the simplest
case of a very viscous drop with no inertia and a supporting air cushion fed by a
uniform fixed flow. If the drop is less viscous, or if the supporting air cushion is
generated by evaporation in the Leidenfrost problem, then the addition of inertia
and time-dependent heat transfer is likely to introduce new modes of oscillation and
instability.

We are very grateful to E. J. Hinch for helpful discussions on this problem and
to the MAGICAL EU grant HPRN-CT-2002-00332 for financial support (L. D. and
A. P.).

Appendix. Calculation of the perturbation pressure
Consider a equilibrium drop with parametric shape x̃(s) = [r̃(s), z̃(s)] and outward

normal and tangent

n = (z̃′, −r̃ ′), t = (r̃ ′, z̃′). (A 1)

Let the interface be perturbed in the normal direction to x(s) = x̃(s)+ δ(s)n(s), where
|δ| � 1. We wish to calculate the linearized perturbation �P to the modified pressure
(2.8) on the drop.

Though s is the arc length for the unperturbed shape and r̃ ′2 + z̃′2 = 1, it is not the
arc length for the perturbed shape since (r ′2 + z′2)1/2 ≈ 1 + κ̃δ. Thus, the perturbed
curvature is calculated by linearizing

κ =
z′′r ′ − r ′′z′

(r ′2 + z′2)3/2
+

z′

r(r ′2 + z′2)1/2
(A 2)

about (r̃ , z̃) to obtain

�κ = −δ′′ − κ̃2δ − z̃′2δ

r̃2
− r̃ ′δ′

r̃
. (A 3)
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The change to the lubrication pressure

p = 6Ca

∫ ‘∞’

r(s)

r dr

h3
, h(r, z) = z − f (r) (A 4)

is most readily evaluated using the decomposition n = (z̃′ t − ẑ)/r̃ ′ of the normal into
vertical and tangential displacements, since the vertical displacement affects only the
integral in (A 4) through its dependence on h and the tangential displacement gives
only an end-point contribution at r(s). Thus

�p

6Ca
= −

∫ ‘∞’

r

δ

r ′
∂

∂z

r dr

h3
+

δz′

r ′
d

ds

∫ ‘∞’

r(s)

r dr

h3
=

∫ L

s

3δ r ds

h4
− δ z′r

h3

∣∣∣∣
s

. (A 5)

Combining these results, we obtain

�P = −r̃ ′δ + �κ − 6Ca z̃′r̃ δ

[z̃ − f (r̃)]3
+ 18Ca

∫ L

s

r̃ δ ds

[z̃ − f (r̃)]4
, (A 6)

where �κ is given by (A 3).
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