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Impact on floating membranes
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When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid
pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave
front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward
stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels
at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this
property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface
but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the
development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body
system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the

domain of absorption of impact energy.
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I. INTRODUCTION

The impact of a solid sphere on a liquid surface is a
scientific problem that has attracted considerable interest since
the early observations of Worthington [1] of the dynamics of
the cavity formed in the wake of the sphere. This problem has
recently attracted a renewed interest, and the cavity dynamics
has been studied in detail by various authors [2,3]. Water
entry is indeed an important problem for various applications,
including aerospace science [4], where plane impacts have
served as an early motivation [5,6], naval engineering [7], and,
more recently, animal locomotion [8].

In most of the applications cited above, the force exerted on
the impacting body by the fluid results mainly from an inertial
response. This means that other types of effects such as surface
tension, gravity, or viscosity are negligible. For an object of
characteristic size r; impacting on a liquid surface (density
0, kinematic viscosity v, surface tension o) with a velocity
V, the Weber number that measures the ratio between inertia
and surface tension We = pr; V2 /o and the Reynolds number
Re = Vr; /v are very large in the context of these applications.

The case of small Weber numbers, i.e., surface-tension-
dominated impacts, has also been studied in the context of the
locomotion of small organisms [8,9]. Small Weber numbers are
obtained for small objects or when the surface tension is large.
The latter situation is encountered in particular when an elastic
membrane is at the interface between the liquid and the gas like
for a liquid-filled rubber balloon [10]. In this case, the tension
in the thin rubber membrane results from the internal pressure
in the balloon, and it can be several orders of magnitude larger
than the typical value for the water-air interface. Provided that
the initial tension is large and the amplitude of the motion of
the surface of the balloon is small, the analogy with a liquid-gas
interface is straightforward. However, in the general case, the
tension in the membrane varies with its local strain typically
through Hooke’s law. Therefore the surface tension coefficient
is, in general, not constant and not uniform: it is a dynamical
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variable that changes with the longitudinal (tangential) motion
of the membrane. Similar situations are encountered in the
case of liquid-gas interfaces in the presence of surfactants,
where longitudinal motion at the interface may change the
local concentration of surfactants and thus the surface tension
[11-14].

In the present paper, we investigate a situation in which
a floating membrane acts locally like an interface with a
very large surface tension coefficient compared to a liquid-gas
interface, such that, for our experiments, the Weber number
is smaller than 1. The Reynolds number is still very large,
which allows us to neglect viscous effects. Gravity can also
be neglected. The membrane is initially flat and tension
free (the small background stress imposed by the liquid-air
surface tension at the side of the membrane can be neglected).
In this case the surface tension coefficient is not known
a priori. It results from a coupling between the transverse
motion (throughout the text, transverse refers to the direction
normal to the interface) resulting from the impact and the
stretching of the membrane that builds up following the
impact. Because of this coupling and because the background
stress is negligible, the problem is considerably more difficult
than the classical problem of wave propagation on stretched
membranes [15]. In the absence of a liquid substrate, the
dynamics has been investigated by various authors in the
context of ballistic impacts [16—18]. These studies have shown
that the displacement in the plane of the membrane and
the transverse displacement are strongly coupled and need
to be considered concomitantly. Furthermore the analysis
has shown that the axisymmetric wave propagation can be
unstable and that wrinkles resulting from a buckling instability
appear.

In a recent paper [19], we investigated the two-dimensional
problem of a thin floating membrane, made of natural rubber,
being impacted by a horizontal metal rod. In this context, the
stretching response of the membrane is of the same nature as
liquid-gas surface tension but shows a surface tension coeffi-
cient increasing linearly with the impact velocity. This two-
dimensional coupled dynamics between the membrane and the
liquid (water) on which it floats exhibits self-similar solutions
like the ones observed for a liquid-gas interface [20]. This
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surprising fact results from the uniform state of strain in the
membrane, allowing for a straightforward analogy between an
impacted membrane and a liquid-gas interface. In the present
paper, we investigate axisymmetric situations, for which the
simplification of a uniform membrane stretching does not
hold. Indeed, when a metal ball or a vertical cylinder impacts
the membrane, the resulting strain in the membrane, and
therefore the related stresses, is highly nonuniform, as we shall
see.

This paper is organized as follows: in Sec. II we describe
the experiments and the phenomenology of the impacted
membrane. In particular we emphasize the propagation of two
distinct waves, a wave associated with the in-plane motion
of material points of the membrane that is decoupled from
the hydrodynamics and a transverse wave that is accompanied
by fluid motion. The wave dynamics is addressed in details
in Sec. III; then the static membrane equations are solved
numerically in Sec. IV in order to analyze the scaling for
the strain observed in the experiments. Section V discusses
the wrinkling instability of the membrane that develops as the
waves propagate, and Sec. VI discusses the deceleration of the
impactor.

II. EXPERIMENTS
A. Setup

A steel impactor with a hemispherical head of radius r; =
0.75 or 1.5 or 2.5 mm impacts transversally a thin rubber
membrane (thickness H in the range 0.15 to 0.30 mm) floating
at the surface of a water tank of dimensions 40x40x40 cm.
Impactors are accelerated by gravity or by a gas gun, and they
impact the membrane at speeds in the range 0.3 to 30 m/s.
Experiments addressing the wave dynamics (in particular at
low impact speeds) are conducted with impacting cylinders
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that are sufficiently heavy to ensure that the impactor does not
decelerate during the experiment. The membrane is a circular
or square sheet with a typical dimension (diameter or side
length) of 15 cm. The shape of the membrane is not relevant
since we focus on short-time dynamics before waves have had
time to interact with the boundary. The typical duration of an
experiment is less than 10 ms, and the dynamics is recorded
with a high-speed camera at typical frame rates of 10 000
frames per second.

The membrane is characterized by a stretching modulus
Y = E'H, with E' = E/(1 — v?), where E is Young’s mod-
ulus, v = 1/2 is the Poisson ratio, and H is the thickness of
the membrane in the reference state. The natural rubber used
in the experiments has a Young modulus E = 2.6 MPa, and a
stretching rate of 500% or more can be reached. For simplicity
and since most of the dynamics occurs at low stretching (below
10% except in a small area near the impactor), we will assume
that the material response can be accurately described by
Hooke’s law (see [21] for references to more complex models
in the context of impacts). A typical value of the stretching
modulus is 720 N/m. Thus, even for low strains € of the
order of 1073, the stresses induced by strains Ye are orders of
magnitude larger than the stress resulting from surface tension
at the liquid-air interface, and the latter will be neglected
throughout this work.

B. Phenomenology

After impact, two waves propagate on the membrane
(Fig. 1). They are clearly seen on a spatiotemporal diagram
showing the position of material points as a function of time.
A material point located at a distance R from the impact
point is first reached by a longitudinal wave front. Behind
this wave front, the material points move in the plane of

Space

FIG. 1. (a) Sketch of the experiment. (b) Successive snapshots of a floating membrane (thickness # = 0.2 mm) made of natural rubber
impacted by a solid sphere. The extension of a cavity delimited by a transverse wave front is accompanied by the development of a wrinkling
instability both inside and outside the cavity. (c) A spatiotemporal diagram of the motion of the material points along a radius of a membrane
impacted at V = 31.2 m/s obtained by recording the movie from below the surface. Marks drawn on the membrane reveal the motion of the
material points. Two waves can be seen: a longitudinal wave separates a domain where material points are at rest from a domain where they
move towards the impact point. The longitudinal wave front travels at the speed ¢ = 60 m/s (solid line). The dark shadow highlighted by the
dashed white line corresponds to the positions marked by the arrow in (b). This transverse wave front travels at nonconstant speed. The dashed

line is the line a’t*?3, with @’ = 13.2 mm ms~%/.
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FIG. 2. (a) Sketch of the impacted membrane and definition of
the length r . (b) Notations for the model.

the membrane towards the impact point. The displacement
is radial and is denoted u(R,t). At later times, the material
points move in the transverse direction, with the transverse
displacement being denoted w(R,t), experiencing first an
oscillation of growing amplitude and later a strong transverse
motion first upward and then downward towards the liquid.
The wave front associated with the longitudinal motion travels
at constant speed [Fig. 1(b)]. Behind this longitudinal wave
front, the membrane is stretched in a nonuniform manner:
the stretching increases towards the impact point. The trans-
verse wave front travels in the stretched domain. The out-of-
plane displacement occurs in an area well delimited by a hump,
which we use to define r/(f) [see Fig. 2(a)]. The transverse
wave front travels at a speed that decreases with time, and
its position is well approximated by the law r/(t) ~ at*/?
[Fig. 1(b)]. This scaling is typical of surface-tension-driven
flows, and it has been observed for two-dimensional impacts
on membranes [9,19,20]. The coefficient a changes with the
impact speed. This wave dynamics will be discussed in the
next section.

During its extension, the axisymmetric wave pattern
presents an instability, and radial wrinkles appear, as seen
in Fig. 1(b). Such patterns appear frequently on elastic
membranes which are not able to withstand compressive
in-plane stresses [22,23]. Inside the cavity, wrinkles develop
on the curved membrane. The number of wrinkles does not
change as the cavity extends, and the wrinkles extend from
the vicinity of the contact with the impactor to the ridge of the
cavity. Outside of the cavity, radial wrinkles are also present but
their number is different from the number of wrinkles inside
the cavity. We note that there is a transition area between
the cavity and the outer domain on which wrinkles are not
observed.
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III. WAVE DYNAMICS

The longitudinal wave front that travels first in the mem-
brane does so at a constant speed ¢ = 60 m s~!, independent
of the impact speed. The transverse wave front travels with a
well-defined law r (1) = at*?, where the constant a increases
with the impact velocity (Fig. 3). Here the membrane plays the
role of an interface with a surface tension coefficient o given
by the local tension resulting from stretching. Therefore, in
analogy with surface-tension-driven flows, we write for r ¢

Ye \ 13
re(t) = ar®® = <a—f) 123, (1)
o
where €y = |, is the radial strain in r = r(¢) and « is
an order 1 number. o = Ye; is the local tension (with the
dimension of a force per unit length) in the membrane: it plays
the role of surface tension. Measurements of the position of
the transverse wave front (Fig. 3) suggest that the prefactor
a is, to a good approximation, constant in time or at least
exhibits a very slow variation compared to #*/3. Therefore €
should be constant in time. Direct measurement of the strain
€; = (£ — £y) /Ly was performed by tracking two neighboring
material points drawn on the membrane and measuring the
current distance £ (£, is the distance in the undeformed
state). The strain €; measured in 7 is roughly constant (inset
of Fig. 4). From these observations, we conclude that the
membrane behaves locally, i.e., in r = r¢(¢), as a liquid-gas
interface, with a surface tension coefficient Ye.

We observe in the experiments that both the coefficient a3
obtained by measuring the position of the wave front and the
strain in » = r, measured by tracking material points € ; scale
like We'!/3 (Fig. 4), where

priV?
= 2
7 ()

is the Weber number. As in the two-dimensional case [19], the
local strain €, depends on the impact velocity, and we shall
study this dependence in Sec. IV.

We
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FIG. 3. Positions of the transverse front for different impact
speeds for a membrane of thickness # = 0.21 mm struck by an
impactor of radius 7; = 2.5 mm. The scaling law r; = at*/3 is robust
with a coefficient a increasing with the impact speed.
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FIG. 4. The strain €; = €,(ry) as a function of Weber number
We = pr; V2/Y. The red crosses correspond to direct measurements
of the strain at r, obtained by tracking the position of material
points. The circles and disks correspond to the strain inferred from
the prefactor a obtained from the fit ry = ar??. The strain is
€; = (1/a)pa®/ Y, where the coefficient @ = 6.1 is chosen to match
the direct measurements of €,. Red disks correspond to impacts
on a membrane of thickness 7 = 0.14 mm with an impactor of
radius r; = 0.75 mm (the same conditions as the red crosses). The
black circles correspond to impacts on a membrane of thickness
h = 0.21 mm struck by an impactor of radius r; = 2.5 mm (the data of
Fig. 3). The dashed line is a fit of the experimental data ey = § We'!/3,
with § = 0.22. The inset shows the direct measurements of the strain
in ry for different times (and thus different r() at different impact
speeds (black squares, V = 1.9 m/s; red disks, V = 4.3 m/s; blue
diamonds, V = 9.0 m/s). The strain € is constant.

The experiments also show that, for sufficient impact speeds
or for long times, the transverse displacement w(r,?) is a self-
similar profile of the form

o) = ir ;)

w(r1) =1 f(t)W(rf(t) ; 3)
where 1 depends on impact speed V. This scaling is also
characteristic of surface-tension-driven flows [20].

Figure 5 shows experimental profiles of one experiment,
rescaled according to at?/3 (with a determined in the experi-
ment) in both directions r and z. A unique curve is obtained
away from the impactor. In the impactor region, the scaling
of Eq. (3) does not hold since the vertical displacement is
Vt, neglecting the deceleration of the impactor. The matching
condition at the impactor — V¢ = w(r;,t) imposes the behavior
of the function W for small r. To obtain linearity with time, it
follows that W (x) ~ —x~/2, and choosing n = Vr/>/a*?,
we find for r; /ry — 0

vrl? ry

wrpt) = =~ T =V (4)

Despite these observations, the complete analogy with
surface-tension-driven flows is not straightforward because
the strain €; in the membrane is not uniform, as seen in
Fig. 6. Indeed, the stretching €, is large near the impactor and
decreases rapidly as r increases. Thus a detailed description of
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FIG. 5. (a) Shape (profile) of the membrane for an impactor
of radius ; = 0.5 mm impacting at V = 5.6 m/s a membrane of
thickness 7 = 0.2 mm. (b) Experimental profiles for which r and
z coordinates have been rescaled by at?3, with a = 7.3mm/ms?/?,
show a self-similar behavior. Inset: The self-similar profiles shown
in log-log scales. The matching of the self-similar profile with
the boundary condition in » = r; imposes the shape of the profile

w~r~2forr « 1.

the full dynamics, including the fluid and the membrane, must
be sought to obtain a description of the wave dynamics and,
in particular, to address the variation of the coefficient a with
impact speed.

IV. SCALING FOR THE STRAIN

A. The response of a membrane to transverse impact

To gain better insight into the dynamics of the fluid-body
coupled system and, in particular, to address the relation
between the coefficient a and the Weber number We, we
propose a model that couples the motion of the deformable
membrane with the motion of the underlying fluid. We make
the usual assumptions of wave theory (inviscid and irrotational
flow of an incompressible fluid) for which we can use the
velocity potential ¢(r,z,). We assume that the membrane
plays the role of an interface and that it can be described as an
infinitely thin sheet whose position is denoted w(r,t) (Fig. 2).
At this stage we assume that the problem is axisymmetric. The
velocity potential verifies the continuity equation A¢ = 0 in
the fluid domain. At the interface, z = w(r,t), the kinematic
boundary condition reads

ow + 0,w o, ¢ = 9,¢. ©)
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FIG. 6. (a) Successive profiles showing the motion of material
points. The stretching is higher near the impactor. In this experiment,
the radius of the impactor is r; = 1.5 mm, the thickness of the
elastic sheet is # = 0.2 mm, and the impact velocity is V = 6.6 m/s,
corresponding to We = 9.1x 1072, (b) Variations of the stretching €,
with r for the pictures in (a). Time increases from bottom to top.

The dynamic boundary condition (gravity is neglected) reads
1 » D

¢+ IVl + — =0, (6)
2 P

where p is the pressure difference across the membrane.

In the reference (undeformed) configuration, the membrane
is flat, and a material point has coordinates (R,8,0) in cylin-
drical coordinates [black dot in Fig. 2(a)]. After deformation,
the position is denoted by (r,0,z) [white dot in Fig. 2(a)].
The displacements are # = r — R in the radial direction and
w = z in the vertical direction. The equations of motion
for an element hrdsd6 of a membrane of mass pshrdsd6
experiencing a pressure difference p across its normal and
forces per unit length Ny and Ny in the radial and orthoradial
directions along the radial and vertical directions read

pshr& =—prsiny+i(Nrc0sy)—N @)
ar? s " o
P hraz—w = prcosy + i(N rsiny) ®)
a2 as ’
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where s is the curvilinear coordinate along a meridian line and
the angle y is given by
0
siny = —w. 9
as

The strains in the radial and orthoradial directions are

or
cosy = —,
as

as r
Za—R—, GQIE—I. (10)
From the relation r = R(1 + €y), one obtains after some
algebra a compatibility equation
1+e 1

14 €5 cosy -

€s

r ng
14 € dr

To describe the longitudinal wave that propagates ahead
of the transverse perturbation, we first consider the case of
in-plane displacement, with w = 0, for which the motion of
the membrane is not coupled to the fluid (because viscous
effects are neglected). Then y = 0 and assuming Hookean
behavior of the membrane,

Y

Ny =Y(es +veg), Ny =Y(eg+ vey), (12)

Eq. (7) reads, in the limit of small strains, i.e., for |ey| =

lu/R| <1,
1 8%u 1 9 R ou u 13

628t2_R3R< 8R> R?’ (13)
with ¢ = (E’/py). This equation describes the propagation of
a longitudinal (i.e., in-plane) perturbation at speed ¢, which
is a material constant, in quantitative agreement with the
experiment [Fig. 1(b)].

The full set of equations coupling the membrane and fluid
equations cannot be solved analytically. To gain insight into the
physics of the waves we make the following simplifications:
(i) we neglect the left-hand side in Eq. (7); that is, we consider
that the in-plane stresses are at equilibrium up to r = ct. (ii)
We also neglect the left-hand side in Eq. (8) in comparison
with the fluid inertia (a hypothesis that is valid for waves with
a wavelength larger than the thickness of the membrane). We
obtain the following set of equations for the membrane:

10
p+ ——(Nsrsiny) =0, (14)

ror

d
—[rNy] — Ng = 0. (15)

dr

Equations (14) and (15) are the normal and tangential
equilibrium equations for the membrane element, respectively.
Equation (14) is also a dynamic boundary condition for the
fluid motion, coupled with Bernoulli equation (6) through
the pressure p. We note that assumption (ii) cannot be made in
the absence of fluid. The case of the impact on a free membrane
has been addressed before [16-18].

It is instructive to consider the case of a constant and
uniform tension Ny. The fluid pressure is related to the shape
of the membrane through

d sin
p+M(l+ f):a (16)

ds

which is precisely Laplace’s law. Therefore the analogy
with surface-tension-driven flows [20] is straightforward. In
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particular, dimensional analysis reveals that at time ¢ after
impact the characteristic length scale associated with the
propagation of the transverse wave reads at?/* ~ (N,t*/ ,0)]/ .
Such analogy cannot be used in the general case of a

nonuniform membrane stress.

B. Approximate solution

We first remark that the full system of equations (5), (6),
and (11)-(14), together with mass conservation in the fluid
bulk A¢ = 0, can be written using a self-similar ansatz for
which all the terms balance in the equations, apart from the
boundary condition in r = ;. The ansatz for the transverse
displacement and the two strains are

w(r,) =nryWE), € =E\§), € =Ey), (17)

where & =r/r; and ry = at*3. The use of the same self-
similar ansatz for all the fields is dictated by the fact that the
strain €, has to be a constant in the region of r; in order
for a to be a constant. Using the fact that tany = dw/dr =
nW'(&), the full system of self-similar equations is given in
the Appendix.

This reduction to a self-similar system provides a clue as to
why ascaling 7 = at/? is observed. However, there are a few
difficulties associated with this approach. First, the boundary
conditions atr = r; andr = ct are not self-similar. This means
that a self-similar solution with the scalings (17) will not verify
the boundary conditions, particularly the boundary condition
w(r;,t) = —Vt, which is fundamental in the present problem.
Another difficulty associated with the self-similar approach is
that it does not provide a scaling for the strain. In particular,
the dependence of the strain in » = r; on the impact speed
cannot be determined without computing the full solution of
the problem, which remains a formidable task. We propose in
this section a simplified analysis.

In order to explore the main features of the wave dynamics,
the constant character of the strain in r; and its scaling with
the impact speed, we have solved the quasistatic membrane
equations (11) and (15), using a profile w compatible with
the observed self-similar shape (3). Therefore a solution to the
equation for the transverse position (14) was not sought. We
choose the form

sin(Ar/ry)

w(r,t) =
where A = 4.38, such that the first maximum is located at r =
rr. Apart from the self-similarity, this shape, especially the
behavior w(r,t) ~ /2 for small r, was chosen such that the
boundary condition in r; [Eq. (4)] is satisfied. Our simplified
approach consists of replacing the highly complex coupling
between the membrane and the fluid motion with the feature of
the flow, built in Eq. (18), that the transverse wave propagates
according to r¢(t) = at?*/3.

Equations (11) and (15) were solved with a shooting
technique, imposing the boundary conditions €,(r;) = €y(7;)
and €y(ct) = 0. The solution is shown in Fig. 7. The same
physical parameters as in the experiment presented in Fig. 5
have been used, and the equations were solved for the same
seven times. Figure 7(a) shows the values of ¢ in 7;, ry,
and ct as a function of the rescaled time Vt/r;. To a good
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FIG. 7. (a) Longitudinal strains €, (triangles, disks, and squares)
measured in r = r;, 7y, and ct, when solving equations (15) and (11),
as a function of the dimensionless time V¢ /r;. The crosses correspond
to the hoop strain €, in ry. The parameters used in the simulation
are similar to those of Fig. 5. Note that the strain €, in r; varies
slowly with time and its value shows quantitative agreement with the
value 9.0 x 102 expected from the experiment. (b) Longitudinal strain
along the membrane as a function of r/r; for times corresponding
to Fig. 5.

approximation, the strain €,(7;) is linear in time, and €,(r¢) is
constant. Moreover, rescaling the strain €; by V¢/r; leads to
the collapse of curves for different times, as seen in Fig. 8. In
light of these results and seeking an ansatz with constant €
inr = ry, compatible with Eq. (17), we choose the following
representation for the strain field:

Y
e(rit) = ﬂ?(f) , (19)

i i

where B is a numerical constant, with €, admitting a similar
form (with a different prefactor). The scaling in (r/r;)~3/?
agrees with the results in Figs. 7(b) and 8 and with the
measurements presented in Fig. 6. It is also compatible with
the self-similar scaling of Eq. (17): taking ¢ = (r;/a)*/? in

10

107
10° 10! 10% 10°

FIG. 8. Longitudinal strain along the membrane, rescaled accord-
ing to Vt/r;, as a function of r/r;, when solving equations (15) and
(11). The dashed line corresponds to the function B(r/r;)~3/?, where
B has been deduced from experimental measurements.
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Eq. (19) yields

VA2 o\
G‘Y(r’t):'BW(E) ; (20)

which agrees with the form (17).
Moreover, we can use Eq. (20) together with Eq. (1) to

obtain
o 1/3
q:(—) We!/3, 1)
X o

which is compatible not only with the experimental fit € ; =
§We!/? as a scaling law (as seen in Fig. 4) but also in a
quantitative manner through the prefactor. This fact is clearly
confirmed in Fig. 8, where the prefactor 8 has been determined
as ff = M, where a = 6.1 and § = 0.22 are inferred from
the experiments (see Fig. 4). Equation (19) with this value for
B fits well the numerical values of the strain as a function of
r/r; in a wide region including 7 ;.

The form (19) is valid in a large domain including r; but
not near the impactor (» 2 r;), as seen in Fig. 8. Looking for a
generalization of Eq. (19), we postulate that the strains behave
like €,(r,t) = (Vt/r)E(r/r;) and €4(r,t) = (Vi /r))Ee(r/ri).
We recall that these time and space dependencies are compati-
ble with the self-similarity observed experimentally, provided
the functions & and & scale like Eq. (19) in a region enclosing
rr. These observations are consistent with the fact that the
strain is constant in time in the vicinity of r;.

To conclude this section, we recall the main results. The
transverse wave front observed in the experiments travels
with a well-defined law r /(1) = (@Yet*/p)'/3, where « is
a constant and the strain € = €,(ry) depends on the impact
velocity through the scaling law € ; = § We!/3. The prefactor 8
and the power 1/3 are experimental observations but are also
consistent with a quasistatic membrane solution. This solution
of the simplified problem is obtained by imposing a vertical
displacement of the impactor — V¢ and a self-similar profile
(18) compatible with the experiments. Using this analysis of
the strain field, we now investigate the wrinkles observed in
the experiments.

V. WRINKLING OF THE MEMBRANE

As seen in Fig. 1, as the waves extend, the membrane
presents an instability, and wrinkles appear in two distinct
domains, for r < ry, where the membrane is out of its plane
and is curved, and for » > r,, where the membrane is roughly
flat (in its nominal state, i.e., before the instability) but
stretched. We treat these domains independently.

A. Wrinkling instability in the flat domain r > r

The wrinkles that appear outside the cone are also observed
in the absence of a liquid substrate [18]. They result from a
buckling instability that is caused by the motion of material
points towards the impactor in the domain delimited by the
longitudinal wave front located in ct and the transverse wave
front located in ry. As a result of the radial motion of
the material points, a compressive hoop stress €, develops,
triggering a buckling instability that gives rise to radial
wrinkles. This instability has been described by Vermorel
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et al. [18] in the absence of the liquid substrate, and we
adapt the analysis to describe the present case. As discussed in
Sec. IV, the strain near 7 is roughly constant, with the scaling
€y ~ €, ~ We!/? (Fig. 4). We consider the simple problem
of a beam of unit lateral length experiencing a compressive
stress og = E’€g < 0: the beam here represents the unfolded
(i.e., uncurved) annulus near the radius » 2 r. The dispersion
relation for a transverse perturbation on the beam [24] (not
accounting for added mass) is
1,3

phw? = oghk® + %k“, (22)
and the critical wave number is thus given by hk. ~
(log]/E")'/?, leading to a wave number of the instability

A
. We™1/6. (23)

This result agrees with our observations, as seen in Fig. 9(c).
We note also that, as in the absence of substrate, the wrinkling
instability selects a wavelength, rather than a number of
wrinkles. Thus as the waves propagate, new wrinkles appear
(Figs. 1 and 9).

B. Wrinkling instability in the cavity r < ry

Wrinkles are also observed inside the cavity, unlike in the
absence of a liquid substrate, a case for which they are not
observed, at least for moderate impact speed (compared to
the speed of sound waves in the material) [18,21]. During an
experiment the number of wrinkles n observed in the cavity
tends to decrease as waves propagate. The number of wrinkles
is smaller inside the cavity than outside the cavity: in the
last frame of Fig. 9(a), the estimated number of wrinkles
is 24 inside the cavity and 42 outside (near rs). Moreover,
the variations of n with the Weber number and with the
thickness 4 do not agree with the scaling law (23). In particular,
the variation of the wavelength with the thickness of the
membrane shows a much weaker variation with the thickness
h, if any. Such behavior, in particular the weak dependence
of wavelength on thickness, is observed for patterns selected
far above the threshold of buckling in stressed membranes
[25]. We propose here an analysis of the pattern for a finite
amplitude of the modulation of the transverse displacement.
We write the transverse displacement (at a given time)

w(r,0) = wo(r) + f(r)cos(nd). 24)

We consider that the transverse displacement relaxes the
orthoradial strain and thus that the length of a perimeter 27 R
is equal to [[(rd0)* + (dw)*]"/?, thus yielding
| n® f3(r)

€| =~ .

¢ 4r2

This is a geometrical relation between the amplitude of the
pattern f and its wave number n. After having experienced
a buckling instability, the membrane is bent. The change in
elastic energies associated with the wrinkling takes the form

of a bending energy for which the strain is (hky), where
ko ~ (1/r?)3>w /367 is the curvature,

102w\’
Ub’\’ Y hr—zw rdrd@, (26)

(25)
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FIG. 9. (a) and (b) Dynamics of waves and wrinkling of an impacted membrane. The experimental parameters are r;, = 2.38 mm and (a)
V =26.4m/s, h =0.15 mm and (b) V = 30 m/s, # = 0.30 mm. Pictures were taken at times (a) t = 0,7 = 0.6, = 1.4, and t = 2.2 ms and
(b)yt =0, =0.6,r = 1.2, and r = 1.8 ms. Radial wrinkles can be seen in the cavity and outside the cavity with different wave numbers. The
wrinkles outside the cavity have a well-defined wavelength, and as the wave propagates, new wrinkles appear (see arrow). (c) The wavelength
of wrinkles outside the cavity decreases with impact speed according to equation (23). (d) The number of wrinkles inside the cavity is different
from the number of wrinkles outside the cavity. It does not exhibit a clear variation with the sheet thickness. (e) The radius r, that has been
reached by the transverse wave front when wrinkles appear in the cavity is proportional to the sheet thickness.

and a stretching energy, where the excess strain in the
radial direction resulting from the nonaxisymmetric motion
is proportional to (dw/dr)?, and thus

U, Nf (Yes)[f’(r)cos(n@)]zrdrdé‘. 27

Denoting F as the scale for the amplitude f, we have U, ~
Yh2F2n4/rj% and U, ~ Ye,F?, where we have assumed that
the radial variations occur with a scale r ;. Using the relation
F? ~ r3leg|/n?, it appears that U, scales like n* and U like
n~2. Thus the elastic energy U, + U; is minimal when

. 2
nt ~ (%) . (28)

The wave number that is observed in the experiment
results from the pattern that develops after the onset of
instability. Wrinkling with a wave number n occurs when
the stretching energy associated with compression in the
orthoradial direction

2
Uy ~/ (Y69)|:r;lf(r) sin(n@)] rdrdf (29)

is of the same order of magnitude as the bending energy (26).
With the scaling Uy ~ Y|es|n® F? one obtains an instability
when r} = r3? ~ h*n*/|eg|. This estimation of the character-
istic time at which the pattern is selected assumes that the

instability growth time is comparable to the time to reach the
threshold of instability. Using r in the scaling (28) yields

¢ 1/4 E1/2
n~<) .oy~ h—. (30)
leo | ‘

€9

The selected number of wrinkles observed in the experiment
actually shows no clear variation with the thickness 4, whereas
the radius at which wrinkles are observed scales linearly with
the thickness, in agreement with the present analysis (Fig. 9).
We note, however, that the model does not capture the weak
dependence of the number of wrinkles with the Weber number:
n increases with the Weber number, and r} shows a variation

weaker than the expected We™!/¢. This discrepancy between
the simplified model and the experimental results may be the
consequence of higher order corrections in the ratio €;/ey.
The quasistatic analysis used in Sec. IV indicates that the ratio
€s/l€g| increases weakly with the Weber number [€;/|€g| =
(1 + s Wel’3), where s < 1 is a number].

VI. DECELERATION OF THE IMPACTOR

The propagation of waves on the membrane and in the fluid
is associated with a transfer of momentum from the impacting
object. As a result, the impactor decelerates. The dynamics of
the membrane as the sphere decelerates is shown in Fig. 10.
For the three impact speeds presented in the figure, the shapes
of the membrane exhibit significant differences: at low impact
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FIG. 10. Deceleration of the impactor. (a)—(c) Images of a
membrane of thickness # = 0.2 mm as a sphere of radius 2.38 mm and
mass m = 0.44 g impacts and decelerates. The interval between each
frame is 1.07 ms. The impact speeds are (a) V = 6.5 m/s, (b) V =
19.3 m/s, and (c) V = 32.0 m/s. (d) Maximal penetration of spheres
of radius 2.25 mm and mass m = 0.37 g (D1, disks), m = 0.72 g (D2,
upward-pointing triangles), and m = 0.18 g (D3, downward-pointing
triangles) for a membrane of thickness # = 0.19 mm and a sphere
of mass m = 0.37 g for a membrane of thickness 7 = 0.29 mm (D4,
crosses). The solid line is a linear fit for data set D1, and the dashed
lines are deduced from the theory (see text) for data sets D2, D3, and
D4. (e) When rescaled, the raw trajectories of the impactor (shown in
the inset, from bottom to top, data set D1 with V = 4.19, 7.80, 15.0,
21.0, 25.4, 33.0 m/s) follow approximately the same dynamics. The
dashed line shows the solution (33).

speeds the angle y remains moderate, while at intermediate and
high impact speeds the angle at the contact with the impactor
(r = r;) reaches /2. At high impact speeds [Fig. 10(c)] the
shape of the cavity is similar to the case of a nonwetting
sphere impacting a water surface (except for the absence of

PHYSICAL REVIEW E 93, 052801 (2016)

pinch-off) [2]. This behavior is characteristic of high Weber
numbers (here We = 3.4). After impact, the sphere decelerates
until it stops and then rebounds. Figure 10(d) shows that the
maximal penetration grows linearly with the impact speed.
For moderate and high speeds, the time at which the maximal
penetration occurs does not change significantly with impact
speed, as seen in the inset of Fig. 10(e), where the vertical
position of the impactor has been plotted as a function of time
for different values of the impact speed.

In order to make a simplified analysis of the motion of the
sphere, we write the equation for the position z of the impactor,

d’z

— 4+ F =0, 31
mozt €19

where m is the mass of the impactor and F; is the force exerted
by the impactor on the membrane. The simplest form for the
force is to assume a quasistatic behavior of the membrane and
to write the force

F; =2nr;Ye siny(r;,t) = 2nYkz(t), (32)

where we have used the results of Sec. IV, €,(r;,t) = kVt/r;,
with V¢ = z(¢) and k = &;(1). We have also made the approxi-
mation sin y (r;,#) = 1, which is valid if the impact speed is not
too small. Most importantly, we have assumed that the pressure
impulse occurring just after impact could be neglected in
comparison with the tension in the membrane. This hypothesis
comes from the fact that the impact force scales like riz,
whereas the tension scales like ;. As a consequence, we expect
F; to be much larger than the impact force as soon as ¢; is
non-negligible.

This simplified model with a Hookean restoring force yields
a solution with initial conditions z(0) = 0 and dz/dt(0) =V,

/1 m 1/2
z(l)=Vrs1n<;>, t:(ank) . (33)

The time scale obtained from the experiments, shown as
the slope of the curves in Fig. 10(d), is in fair agreement
with the time scale deduced from the quasistatic model: for
data set D1, we find T & 1.11 ms from the experiments [solid
line in Fig. 10(d)], which yields k &~ 0.070, in fair agreement
withk = €,(r;,t)r; / Vit = E(1) ~ 0.05, as seen in Fig. 8. With
k ~ 0.070 the other data sets are well approximated by the
lines zmax = V' T [shown as dashed lines in Fig. 10(d)], where
T is computed from Eq. (33) with the corresponding values
of the mass m and thickness /. Solution (33) is in qualitative
agreement with the rescaled experimental curves [Fig. 10(e)],
apart from the position of the maximum. We also note that a
discrepancy is observed for the lower speeds, caused by the
variations of y not accounted for in the simplified model. It
is also worth mentioning that after its deceleration, the sphere
is accelerated by the membrane and finally ejected. Therefore
we can measure a coefficient of restitution. The deceleration
and rebound dynamics is presented in Fig. 11. The coefficient
of restitution increases with impact speed and seems to have
an asymptotic finite value as V — 0. These features are also
observed in the case of impact of nonwetting spheres on a
water surface [26].

It is interesting to compare the dynamics of the floating
membrane to the case of an impacted plate. In the present
case, the stretching at the contact with the impactor, which
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FIG. 11. (a)—(c) z-t diagrams showing the entry at velocity V,
deceleration, and exits at velocity Vi of a sphere corresponding to
the images in Fig. 10. (d) The coefficient of restitution varies with the
impact speed.

will ultimately (for high speeds) be responsible for the
puncturing of the membrane, increases progressively with time
with a time scale r;/V, while the deceleration occurs at a
time scale ~(m/Y)!/2. This is different from the case of an
impacted plate of thickness 4, characterized by its bending
rigidity, where the nominal curvature V/(ch) is reached
very rapidly, within the short time necessary to establish
the Hertzian response of the plate: this time is typically
ty ~ (h/e)e/V)' P h/ri)' P [27].

VII. CONCLUSIONS

We have studied the behavior of a membrane floating on
a liquid pool impacted by a rigid object. The membrane is
initially stress free. Tension in the membrane develops as a
result of the impact, and the dynamics of the transverse wave
is coupled with the tension wave. We have shown that the strain
distribution, and therefore the stress distribution, observed in
the experiments on the membrane is fully consistent with
a simplified theoretical model. This model consists of the
assumptions that the transverse wave front travels in the
radial direction with a %3 law and that the membrane is,
at each instant, in internal equilibrium. This model allowed
us to describe the shape of the membrane in the region of

PHYSICAL REVIEW E 93, 052801 (2016)

the transverse wave as a self-similar function, analogous to
surface-tension-dominated free-surface flows. The equivalent
local surface tension coefficient, derived from the theory, is
constant in time and increases like the Weber number to the
power of 1/3, as observed in the experiments. Moreover, the
theoretical expression for the strain in the transverse wave
region gives a scaling for the wavelength of the wrinkles
observed at long times, which is in agreement with the
experiments. Finally, the model allows us to understand the
deceleration of the impactor: the agreement between the theory
and the experiments is fairly good for this purpose.

We leave here, as a perspective of this work, a deeper
experimental study of the deceleration of the impactor and
the wrinkle growth. In order to conclude on this aspect, we
shall need to change the material properties (thickness of
the membrane and Young’s modulus, although the domain
of variations is limited by the bending response that will
unavoidably affect the wave dynamics for thick or rigid
membranes) and the liquid properties (density, kinematic
viscosity) in order to disentangle this complex long-time
dynamics. One remaining open question that this future work
should address is the amount of energy transfer during the
impact. Indeed, quantifying the energy transferred into kinetic
energy (inside the fluid) and elastic energy (in the membrane)
should have many applications.
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APPENDIX: SELF-SIMILAR SYSTEM OF EQUATIONS

The self-similar ansatz for the velocity potential, the
pressure jump across the membrane, the vertical displacement,
and the two strains are

d(r,z,t) = a*t' PP, 0),
w(r,t) = nat*’>W(§),

p(r,z,t) = pa*t P P(£,0),
e = E\(&), € = Eg(£), (Al

where § =r/ry, { =z/ry, a = (Yes/p)'/. Plugging these
expressions into mass conservation and Egs. (5), (6), and
(11)—(14), we obtain the following set of equations:

AD =0 (A2)
for ¢ < W(§) and

2 2

FIWE) - §nSW/($) =& —nW'(E) D,

1 2 1

3@~ 3EQ: + W E P + quﬂ + P =0,

d Ey E;\
e )] (e 5)

dE 1+ E
L R R = 1,

1+ Ey d& 1+ E;

Eq\ dy E;\ W)
(E”?)E*(E”?) z

+PYTT P WE) = 0

for & = W(§)
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