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Abstract

In this paper, the dynamics of a �uid in a precessing cylinder is addressed theoretically. We show that the base �ow

is a superposition of a shear �ow and an in�nite sum of Kelvin modes. The shear �ow entering in this decomposition

has either a radial or an axial direction and its normal velocity at the cylinder boundaries is compensated by the

forced Kelvin modes. When the precessing angle is large enough, the base �ow may become unstable. Previous

studies have shown that for particular precessional frequencies, this instability is due to a triadic interaction

between a resonant forced Kelvin mode and two free modes. Here we show that the same mechanism takes place

when the base �ow is forced at an o�-resonance frequency. From symmetry properties, we show that a necessary

condition for the instability to develop is to couple free Kelvin modes with di�erent axial parities. We then derive

the amplitude equations of the free Kelvin modes and obtain an expression of the instability threshold and growth

rate. To cite this article: R. Lagrange, P. Meunier, C. Eloy, C. R. Mecanique ?(2015).

Résumé

Instabilité triadique des écoulements de cisaillement dans un cylindre en précession.
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1. Introduction

Knowing the �ow forced by precessional motion is of critical importance in several domains. In aero-
nautics, the liquid propellant contained in a �ying object can become resonant for speci�c geometries of
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the container. The resulting �ow can create a destabilizing torque on the object and dangerously modify
its trajectory [1, 2, 3, 4, 5, 6, 7, 8, 9]. Understanding the �ow inside a precessing cylinder is thus extremely
important in order to adapt the geometry of the �ying objects to avoid these resonances.
In geophysics, most planets have a motion of slow precession, which is governed by the aspect ratio

of the planet. In the presence of a liquid core, this precessional motion creates a weak forcing that can
drastically modify the �ow inside the core due to the presence of resonances and critical layers. Flows
inside liquid planet cores are of primordial interest to understand the generation of magnetic �eld by
dynamo e�ect. For the present-day Earth, the magnetic �eld is likely due to the convection between the
hot solid inner core and the colder mantle [10, 11, 12, 13]. However, the magnetic �eld was at play on
the early Earth although a solid inner core was not yet present. At that time, other mechanisms might
have generated and sustained the Earth's magnetic �eld. Tides (leading to elliptic streamlines) were
often thought to be a source of energy su�cient for geodynamo [10, 14], but it has recently been shown
numerically that precession could also generate a magnetic �eld [15, 16] although this was not clearly
proven for the case of the Earth. Moreover, there is still some debate as to whether the production of
kinetic energy due to precession is su�cient to balance the Ohmic energy loss induiced by the magnetic
�eld [17, 18, 19, 20, 21, 22, 23, 24]. However, even if precession is not the cause of magnetic �eld production
on Earth, it may be di�erent on other telluric planets.
To study the �ow driven by a precessional motion, the cylindrical geometry o�ers a good alternative to

a planet-like spheroidal geometry because of its simplicity. In a precessing cylinder, the base �ow is a sum
of a shear �ow and an in�nite set of Kelvin modes [25, 26]. For particular precessional frequencies, a Kelvin
mode may become resonant when the height of the cylinder equals an odd number of half wavelengths
[27, 28, 29, 30]. In the framework of an inviscid and linear theory, this resonance leads to a divergence
of the Kelvin mode amplitude. Viscous e�ects however may saturate this amplitude to a value scaling
as the inverse square root of the Ekman number (due to Ekman layers) [22]. Nonlinear e�ects can also
saturate the amplitude at a value scaling as the cubic root of the forcing [30]. This nonlinear saturation
is due to the presence of a strong axisymmetric zonal �ow (also called geostrophic �ow), which tends to
decrease the solid body rotation and thus detune the resonance of the Kelvin mode [31].
When the Ekman number is decreased or the precessing angle is increased above a critical value, a

resonant Kelvin mode can become unstable [28, 32, 33, 34, 35, 36]. For small tilt angles, we have shown
that this instability is due to a triadic resonance between the (forced) resonant mode and two (free) Kelvin
modes [37, 38, 39]. However, outside of resonances, the forced Kelvin modes have a small amplitude and
the base �ow is not made of a single mode anymore. Our principal objective is to perform an analysis
of stability of the complete base �ow (made of a shear part and a sum of forced Kelvin modes) in the
case of a non-resonant precessing �uid cylinder. We will consider the triadic interaction of the base �ow
with two free Kelvin modes to determine the conditions of an instability and derive an expression for the
growth rate.
This paper is organized as follows. Section 2 presents the problem of a precessing cylinder by introducing

the governing equations. In this section we determine the o�-resonance base �ow and discuss about the
symmetry properties of the Euler equations. In � 3 we develop a linear analysis of stability of the complete
base �ow, based on a mechanism of triadic resonance. We discuss the conditions of resonance, derive the
amplitude equations of the instability modes and provide an analytical expression of the growth rate
and the instability threshold. In � 4 we provide a numerical application from which a stability diagram
is plotted out. Finally, some conclusions are drawn and discussed in the context of the transition to
turbulence in precessing �ows.
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Figure 1. Sketch of a precessing cylinder of radius R and height H (left). The cylinder is rotating around its own axis with
angular velocity Ω1, and this axis itself rotates around a second axis with angular velocity Ω2. The precession forces a shear
�ow which can be taken vertical (middle) or horizontal (right), but which does not respect the boundary conditions.

2. Formulation of the problem

Consider a cylinder of radius R, height H, axis of revolution along k̂, entirely �lled with an inviscid
Newtonian �uid. The cylinder rotates at the angular speed Ω1 about k̂, which also rotates at the angular
speed Ω2 about the vertical axis and we denote by θ the precession angle, i.e. the angle between these
two axes of rotation (Fig. 1).
To make the problem dimensionless, we introduce three numbers: the aspect ratio h = H/R, the

frequency ratio ω = Ω1/Ω, with Ω = Ω1 + Ω2 cos θ, and the Rossby number Ro = Ω2 sin θ/Ω, which
will be assumed asymptotically small, i.e. Ro � 1 (weak precession). The dimensionless �ow velocity in
the cylinder's frame of reference (O, �̂, �̂, k̂) is denoted by u = U/ (RΩ). The dimensionless cylindrical
coordinates are (r, ϕ, z), where z = 0 corresponds to the mid-height section of the cylinder and we note
r the position vector of a �uid particle. In the cylinder's frame of reference, the dimensionless Euler
equations are [30, 39]

∂ u

∂ t
+ 2

(
k̂+ Ro δ

)
× u + ∇p = −2Ro ωr cos(ωt+ ϕ) k̂+ u× (∇× u), (1a)

∇ · u = 0, (1b)

with δ = cos(ωt) �̂ − sin(ωt) �̂. On the left hand side (LHS) of (1a), the �rst term is inertia, the second
term is the Coriolis force and p is the dimensionless pressure �eld de�ned as

p =
P

ρΩ2R2
− 1

2
r2 + Ro|1− ω|rz cos(ωt+ ϕ) + γO · r−

1

2
Ro2[z2 + r2 sin2(ωt+ ϕ)] +

1

2
u2, (2)

where γO = ΓO/RΩ2 is the dimensionless acceleration of the cylinder centroid O. On the right hand side
(RHS) of (1a), the �rst term is the forcing due to precession, the second term is the convective nonlinear
term. At this point, it is convenient to introduce the four components vector v = (u, p)T and recast
equations (1) into a matrix formulation

(
∂

∂t
I +M

)
v = 2Ro F0 cos (ωt+ ϕ) + N(v,v) + Ro (D ei(ωt+ϕ) +c.c.)v, (3)

where operators I,M, D, the forcing vector F0 and the bilinear function N are reported in Appendix A.
The symbol c.c. stands for the complex conjugate.
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2.1. Base �ow

In the limit of small Rossby numbers, the base �ow forced by the precessional motion can be found by
solving the following inhomogeneous linear di�erential equation for v

(
∂

∂t
I +M

)
v = 2Ro F0 cos (ωt+ ϕ) . (4)

Projecting this equation onto k̂ yields

∂vz
∂t

+
∂vp
∂z

= −2Ro rω cos(ωt+ ϕ). (5)

There are two particular solutions of this equation, which can be found by assuming either p = 0 or
uz = 0. The �rst assumption leads to a vertical shear given by

v = Ro vVs ei(ωt+ϕ) + c.c. with vVs =




0

0

ir

0



. (6)

This vertical shear is schematically shown in Fig. 1 (middle) and corresponds to the �ow that would be
found in a cylinder with in�nite height. However, there is an alternative particular solution given by the
second assumption which leads to a horizontal shear �ow

v = Ro vHs ei(ωt+ϕ) + c.c. with vHs =
ωz

2− ω




i

−1

0

r (ω − 2)



. (7)

This horizontal shear is schematically shown in Fig. 1 (right). Unfortunately, none of these particular
solutions satisfy the boundary conditions on the cylinder walls, and they have to be completed with
homogeneous solutions of (4). In the case of the vertical shear vVs , this procedure has been developed
(see e.g. [30]) and the full solution with proper boundary conditions was found to be

v = RovVbase = Ro


vVs +

∞∑

j=1

aVj v
V
j


 ei(ωt+ϕ) + c.c., (8)

where vV
j is a forced mode of azimuthal wavenumber m = 1, frequency ω, and axial wavenumber kVj . The

amplitude aVj and the structure of the forced modes are given in Appendix A. In this case, the forced
modes permit to compensate the normal �ow at the top and bottom of the cylinder. They are chosen
with a zero radial velocity ur = 0 at r = 1 which imposes the value of the axial wavenumber kVj through
the dispersion relation D(1, ω, kVj ) = 0 given in Appendix A. It should be noted that this wavenumber
kVj is not a multiple of π/h since this forced mode does not respect the boundary condition uz = 0 at the
top and bottom.
In the case of a horizontal shear vHs , a similar procedure yields the following base �ow solution

v = RovHbase = Ro


vHs +

∞∑

j=1

aHj v
H
j


 ei(ωt+ϕ) + c.c.. (9)
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2.2. Base flow

Let us now come back to the forced linear partial differential equation (4) whose solution is the base
flow forced by the precessional motion. Projecting this equation onto k̂ yields

@vz

@t
+

@vp

@z
= �Ro r! cos(!t + '). (10)

The family of particular solutions of this equation can be decomposed into 2 groups whether vz = 0 or
vp = 0. This yields the general form of the particular solutions of eqn. (4): v = RovshearV, v = RovshearH,
or any linear combination of these solutions, where

vshearV =

0
BBBBBB@

0

0

�r sin(!t + ')

0

1
CCCCCCA

, vshearH = � !z

2 � !

0
BBBBBB@

sin(!t + ')

cos(!t + ')

0

r(2 � !) cos(!t + ')

1
CCCCCCA

, (11)

and vshearV represents a vertical shear flow, while vshearH is an horizontal shear flow. Unfortunately,
none of these particular solutions satisfy the boundary conditions on the cylinder walls, and they have
to be completed with homogeneous solutions of eqn. (4). In the case of vshearV, this procedure has been
developed and the full particular solution with proper boundary conditions was found to be

vpartV = Ro

2
4vshearV +

1X

j=1

ajv1,!,kj

3
5 , (12)

where v1,!,kj
is a Kelvin mode with amplitude aj , azimuthal wavenumber m = 1, pulsation !, and axial

wavenumber kj . The axial wavenumber kj is related to the pulsation ! through the inviscid boundary
condition u · n = 0 at r = 1 (lateral wall of the cylinder), leading to a dispersion relation of the form
D(1, !, kj) = 0. We refer the reader to [30, 39] for the full expressions of aj , v1,!,kj , D(m,!, k), and the
stability analysis of Kelvin mode triadic resonance. In this paper, we will focus on the stability of the
shear flow vshearV, which can be decoupled from the stability of the forced Kelvin modes since they have
different wavenumbers.

For the second particular solution vshearH, a similar procedure yields the following full particular
solution

vpartH = Ro

2
4vshearH +

1X

j=1

bjv1,!,j

3
5 , (13)

with

j =
(2j � 1)⇡

h
, �j =

p
4 � !2

|!| j , (14)

and

bj = � 4h(�1)j!(2 + !)

⇡2(2j � 1)2(!�jJ 0
1(�j) + 2J1(�j))

. (15)

Such that, in both cases, the forced flow can be written as the sum of a shear flow (either vertical or
horizontal) and a sum of Kelvin modes. Because this problem is well-posed, the two particular solutions
given by eqns. (12) and (13) are equal: vpartV = vpartH (Fig.??).
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Figure 2. Comparisons of the base �ows computed from eqns. (8) and (9) for h = 2, ω = 1.2, t = 0. (a-c) Flow vH
base

obtained from eqn. (9) when the sum of forced modes is truncated to 0, 1, and 5 modes respectively. (d-f) Same thing

for vV
base

from eqn. (8). In both cases, the vectors show the projection on the vector �eld in the plane z = h/3 and the

color-coded map shows the k̂-component of the velocity �eld in the same plane.

The amplitude aHj and the structure of the forced modes vH
j are also given in Appendix A. It should be

noted that in this case, the axial wavenumber kHj is an (odd) multiple of π/h: kHj = (2j − 1)π/h because
the forced modes respect the boundary conditions at the top and bottom but not at the lateral walls
(ur 6= 0 at r = 1). Indeed, these forced modes are added in order to compensate the horizontal shear at
the lateral wall.
In both cases (considering either vVbase or v

H
base), the base �ow can be written as the sum of a shear �ow

and some forced modes. These forced modes are similar to the classical Kelvin modes with trigonometric
function in the axial direction and Bessel functions in the radial direction. However they cannot be
considered as real Kelvin modes since they do not respect the no normal velocity either at the top and
bottom or at the lateral walls. Fig. 2 shows the two solutions with an increasing number of forced modes.
It is clear that both solutions tend to be equal vVbase = vHbase = vbase when a large number of Kelvin
modes are taken into account.

2.2. Symmetry properties

Before starting the analysis of stability of the base �ow, it is worth reminding some symmetry prop-
erties of the solution and of the operators. It can �rst be noted that the vertical shear �ow has only a
vertical velocity component vz which is an even function of z. In contrast, the horizontal �ow has no
vertical component but has radial, azimuthal and pressure components which are odd functions of z.
Both quadrivectors are thus of the type:

v− =




f−(z)g(r, ϕ, t)

f−(z)g(r, ϕ, t)

f+(z)g(r, ϕ, t)

f−(z)g(r, ϕ, t)



, (10)
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where f+(z) (resp. f−(z)) denotes an even (resp. odd) function of z. Equation (A.3) shows that the
forced modes vj also have the same z parity. As a consequence, the linear base �ow is of the type v−.
This is because the �rst order terms of the Navier-Stokes equations only force this symmetry. However,
the operators at higher order can generate a �ow with the opposite symmetry which is of the type

v+ =




f+(z)g(r, ϕ, t)

f+(z)g(r, ϕ, t)

f−(z)g(r, ϕ, t)

f+(z)g(r, ϕ, t)



. (11)

It is easy to show that the operators D, D, and N have the following properties

Dv− ∼ Dv− ∼ v+, (12a)

N (vbase,v
−) ∼ N (vbase,v

−) ∼ v+, (12b)

N (v−,vbase) ∼ N (v−,vbase) ∼ v+, (12c)

where the symbol ∼ means �has the same parity as� and vbase corresponds to either the vertical base �ow
vVbase or the horizontal base �ow vHbase. This means that even if the base �ow is of the type v− at �rst
order, the nonlinear terms may introduce a di�erent symmetry in the �ow. It is actually easy to show
that the previous equations remain valid under the permutation of signs (+,−)→ (−,+).
A direct consequence is that there cannot be a triadic resonance with a perturbation with a single

parity v+ or v−. Indeed, in a mechanism of triadic resonance, the base �ow interacts with two free
Kelvin modes v1 and v2 through the nonlinear operator N. Let's assume that the free Kelvin modes have
the same symmetry v−. The growth of the �rst Kelvin mode is due to the nonlinear interaction of the
second Kelvin mode with the base �ow via the terms N(vbase,v

−
2 ), N(v−2 ,vbase) and Dv−2 which have

the opposite symmetry v+. These forcing terms are thus perpendicular to the �rst Kelvin mode and such
a triadic resonance is nonconstructive. This can be properly shown by de�ning the dot product

〈X,Y〉 =

∫

V

(
XrYr +XϕYϕ +XzYz +XpYp

)
d3V , (13)

where X refers to the conjugate of X and V is the volume of the cylinder. It is then trivial to show using
(12) that the dot products

〈
v−1 ,N(v−2 ,vbase)

〉
,
〈
v−1 ,N(vbase,v

−
2 )
〉
and

〈
v−1 ,Dv−2

〉
vanish because they

only contain terms of the form

〈v+,v−〉 =

h/2∫

−h/2

f+(z)f−(z)dz = 0. (14)

The same reasoning can be done for Kelvin modes with a symmetry v+. The general conclusion is that
the constructive triadic resonances must couple an even Kelvin mode v+ with an odd Kelvin mode v−.
We will now use this property to restrict the number of possible instabilities that may arise in the linear
stability analysis.

3. Linear analysis of stability of the base �ow

To study the stability of the base �ow, we introduce a small perturbation in form of a four-components
vector ṽ = (ũ, p̃)

T
, so that the total �ow is

6



v = Ro vbase + ṽ + o (Ro) , (15)

where vbase is either v
V
base or v

H
base. Inserting this expansion into (3) yields an equation for the pertur-

bation vector(
∂

∂t
I +M

)
ṽ = Ro

[
N(vbase, ṽ) + N(ṽ,vbase) +

(
D ei(ωt+ϕ) +c.c.

)
ṽ
]

+ o (Ro) + o (|ṽ|) , (16)

where |ṽ| =
√
〈ṽ, ṽ〉 is the magnitude of ṽ. The �rst two terms on the RHS of (16) represent the nonlinear

interactions between the base �ow and the perturbation. The third term represents the interaction between
the forcing due to precession and the perturbation. The perturbation vector satis�es the inviscid boundary
condition

ũ · n = 0 at the walls (r = 1 or z = ±h/2) . (17)

To solve (16) and (17), we use a multiscale expansion where t is a rapid time scale and τ = Ro t a slow
time scale. We then expand ṽ as

ṽ = ṽ0 (r, τ, t) + Ro ṽ1 (r, τ, t) + o (Ro) . (18)

Inserting (18) into (16) yields two equations: one of order one and one of order Ro that should be studied
now. The equation at order one gives the form of the free Kelvin modes, and the equation at order Ro
gives their slow time dynamics, hence their stability properties.

3.1. Order one: free Kelvin modes

At �rst order, the equation (16) and the inviscid boundary condition ũ · n write
(
∂I
∂t

+M
)
ṽ0 = 0, (19a)

ũ0 · n = 0 at the walls (r = 1 or z = ±h/2). (19b)

The solution to this homogenous problem is a linear combination of free Kelvin modes with di�erent
z-parities, [39]

ṽ0 =

∞∑

l=1

Al
+v+

l e
i(ωlt+mlϕ) +

∞∑

l=1

Al
−v−l e

i(ωlt+mlϕ) + c.c. (20)

Vectors v+
l (resp. v−l ) have axial wavenumbers k

+
l (resp. k−l ) which are even (resp. odd) multiple of π/h

in order to respect the condition of no normal �ow at the top and bottom (z = ±h/2). This property is
interesting because the wavenumbers are separated into two families, which will restrict the number of
possible triadic resonances. The components of the free Kelvin modes are given in Appendix A. In (20),
A±l , ml, and ωl are the amplitude, azimuthal wavenumber, and angular frequency of the free Kelvin mode
vl
±ei(ωlt+mlϕ). The wavenumbers are connected through the dispersion relation D(ml, ωl, k

±
l ) such that

the radial velocity of the mode vanishes at the cylinder wall r = 1.
To examine the mechanism of triadic resonance, the perturbation ṽ0 is reduced to a combination of two
free Kelvin modes v1 and v2 with unknown amplitudes A1 (τ) and A2 (τ)

ṽ0 = A1v1e
i(ω1t+m1ϕ) +A2v2e

i(ω2t+m2ϕ) + c.c.. (21)

From now on, we attribute index 2 to the mode with the highest azimuthal wavenumber: m2 > m1.

3.2. Triadic resonance

We know from operators properties presented in �2.2 that a triadic resonance between the base �ow and
the two free Kelvin modes is constructive if it involves modes with di�erent z-parities. This induces that
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the wavenumbers k1 and k2 must be multiple of π/h with di�erent parities. It follows that the di�erence
between the two wavenumbers must be an odd multiple of π/h:

k2 − k1 = (2p− 1)π/h, (22)

with p an integer.
In addition, the base �ow will resonate with the free Kelvin modes if the operatorN appropriately couple

their time and azimuthal Fourier components. To do so, the coupling term N (vbase, ṽ0) + N (ṽ0,vbase)
in (16) must have the same Fourier components as vle

i(ωlt+mlϕ), l = 1, 2. Since these terms have the
following time and azimuthal Fourier components

vle
i(ωlt+mlϕ) → (ml, ωl) , (23a)

N (vbase, ṽ0) + N (ṽ0,vbase)→ (ml + 1, ωl + ω) , (ml − 1, ωl − ω) , (23b)

the base �ow will resonate with the two free Kelvin modes if

m2 −m1 = 1, (24a)

ω2 − ω1 = ω. (24b)

We recognize on the RHS the azimuthal wavenumber mbase = 1 and the angular frequency ωbase = ω of
the base �ow. The conditions (24) are characteristic of triadic resonances occurring in various domains
(surface waves, plate vibrations, etc.), which are key ingredient of weak (or wave) turbulence theory.

To �nd a pair of free Kelvin modes which ful�ll the conditions of resonance (24), we proceed as shown
in Fig 3. In the plane (k2, ω2) we plot the dispersion relation for modes (m2, ω2, k2) and the dispersion
relation for modes (m1, ω1, k1) translated horizontally by (2p − 1)π/h (p arbitrary) and vertically by ω.
The intersection points correspond to Kelvin modes satisfying the conditions of resonance (24) and the
condition induced from parity (22). However, these intersection points are only valid if the free Kelvin
modes have axial wavenumbers which are multiple of π/h, i.e. if the intersection point lies on a vertical
dotted line. Such a tuned triadic resonance only occurs if the aspect ratio is well chosen (for a given
forcing frequency ω) in order to have the three curves intersecting at the same point. Figure 3 shows an
example of a tuned triadic resonance for h = 2.3, ω = 1.34 with m1 = 2 and m2 = 3. The label for these
points is (m2, l1, l2), where l1,2 is the branch number of the dispersion relations. There are an in�nity of
possible triadic resonances and they should all be studied in the inviscid case. However, it is well known
that viscous e�ects damp the highest wavenumbers, such that in practice only the lowest axial, azimuthal
and radial wavenumbers may be treated. Once the wavenumbers have been found, the theory is expanded
at next order to calculate the slow temporal evolution of the Kelvin modes.

3.3. Order Ro: the slow time equations

At order Ro, the equation (16) becomes
(
∂I
∂t

+M
)
ṽ1 = N (vbase, ṽ0) + N (ṽ0,vbase) +

[(
Dei(ωt+ϕ) + c.c.

)
− ∂I
∂τ

]
ṽ0. (25)

This O(Ro) problem is linear, with a forcing term given by the RHS of (25). To avoid secular terms in the
solution ṽ1, the RHS must be orthogonal to the kernel of the LHS operator. This kernel being spanned
by the free Kelvin modes, themselves given by the O(1) problem solved above, a solvability condition is
obtained by taking the dot product of (25) with vle

i(ωlt+mlϕ), l = 1, 2. Since the problem is self-adjoint,
i.e.
〈
vle

i(ωlt+mlϕ), (∂I/∂t+M) ṽ1

〉
= 0, we show in Appendix B that the slow time equations for A1 and

A2 are
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Figure 3. Dispersion relations of the free Kelvin modes with azimuthal wavenumbers m1 = 2 (dashed lines) and m2 = 3
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ordinate. Vertical dotted lines indicate the discretisation of the axial wavenumber as a multiple of π/h imposed by the inviscid
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relations and a vertical line corresponds to a pair of resonant free Kelvin modes. The combination (m2 = 3, l1 = 1, l2 = 1)

(marked with a black circle) is an example of resonant free Kelvin modes. Coordinates for this point are k2 = 2π/h and
ω2 = 0.874.

dA1

dτ
= c1A2 with c1 =

d12 + n1s +
∞∑
j=1

ajn1j

〈v1, Iv1〉
, (26a)

dA2

dτ
= c2A1 with c2 =

d21 + n2s +
∞∑
j=1

ajn2j

〈v2, Iv2〉
. (26b)

The terms dAl/dτ come from the dot products
〈
vle

i(ωlt+mlϕ), ∂I∂τ ṽ0

〉
.

The terms d12 and d21 represent the interaction between the resonant free Kelvin modes and the forcing
due to precession. They come from the dot products〈

vle
i(ωlt+mlϕ),

(
Dei(ωt+ϕ) + c.c.

)
ṽ0

〉
. (27)

The terms n1s and n2s represent the nonlinear interactions between the resonant free Kelvin modes and
the shear part of the base �ow. They come from the dot products

nls =
〈
vle

i(ωlt+mlϕ),N
(
vse

i(ωt+ϕ) + c.c., ṽ0

)
+ N

(
ṽ0,vse

i(ωt+ϕ) + c.c.
)〉

. (28)

where vs may be the vertical shear given by (6) or the horizontal shear given by (7).
Finally, the terms n1j and n2j represent the nonlinear interactions between the resonant free Kelvin

modes and the j-th forced mode of the base �ow. They come from the dot products

nlj =
〈
vle

i(ωlt+mlϕ),N
(
vje

i(ωt+ϕ) + c.c., ṽ0

)
+ N

(
ṽ0,vje

i(ωt+ϕ) + c.c.
)〉

. (29)

Simpli�ed expressions for all these terms are given in Appendix B.
Seeking solutions to the amplitude equations (26) as growing exponentials Aj ∼ eσt, yields an analytical

prediction for the complex growth rate σ of the instability

σ = |Ro|√c1c2. (30)
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The temporal growth rate σr is then obtained by taking the real part of σ, i.e. σr = |Ro|Re
(√
c1c2

)
.

A resonant combination of free Kelvin modes is unstable if σr is positive. This is always the case for
combinations issued from the intersection of dispersion relations with opposite slopes, [40].

3.4. Amplitude equations using the horizontal shear decomposition

Amplitude equations (26) apply to any decomposition vVbase or vHbase of the base �ow. If the vertical

shear decomposition vVbase is chosen for the base �ow, the formula for the growth rate contains an in�nite
sum of terms (corresponding to n1j and n2j). Indeed, in this case, the axial wavenumber kVj is not a
multiple of π/h such that the integral from z = −π/h to z = π/h in the dot product does not impose
any condition on the wavenumbers of the free Kelvin modes k1 and k2. This is very di�erent from the
classical case of triadic resonance where the condition k2 − k1 = kj is usually necessary.
However, if the horizontal decomposition vHbase is chosen, it is possible to recover a resonance condition

on the axial wavenumbers. Indeed, the horizontal decomposition presents the advantage that its forced
Kelvin modes have an axial wavenumber kHj which is an odd multiple of π/h. These forced modes will

resonate with the free Kelvin modes if the dot product betweenN
(
vH
j e

i(ωt+ϕ) + c.c., ṽ0

)
and vle

i(ωlt+mlϕ)

lead to a non-zero integral over z. Since these terms have the following z-Fourier components

vl → kl,−kl, (31a)

N
(
vH
j e

i(ωt+ϕ) + c.c., ṽ0

)
→ kHj + kl, k

H
j − kl,−kHj + kl,−kHj − kl, (31b)

and since k1 and k2 have di�erent parities and k
H
j is an odd multiple of π/h, the axial wavenumber of the

dot product only contains even multiple of π/h, i.e. multiple of 2π/h. As a consequence, the integral over
z is non-zero only if the axial wavenumber of the dot product is equal to zero. Note that there wouldn't
be this resonance condition if the dot product had contained odd multiple of π/h. It follows that only
two forced modes of vHbase will resonate with the free Kelvin modes with axial wavenumbers

kHj = kj1 = |k2 − k1| and kHj = kj2 = |k2 + k1| . (32)

It means that there are only two forced modes j1 and j2 which give non zero coe�cients n1j and n2j such
that the summations in (26) can be truncated to only two terms. The coe�cients c1 and c2 simplify into

c1 =
d12 + n1s + aHj1n1j1

+ aHj2n1j2

〈v1, Iv1〉
, (33a)

c2 =
d21 + n2s + aH

j1
n2j1

+ aH
j2
n2j2

〈v2, Iv2〉
. (33b)

3.5. Back to the case of a resonant precessing �uid cylinder

Deriving the amplitude equations when the precession forces a Kelvin mode at a resonance has been
the topic of our previous work, [39]. Here we explain how to recover them from the amplitude equations
(26) of a non-resonant precessing �uid cylinder.
When a forced Kelvin mode is resonant, its amplitude aj predicted by the linear theory diverges. As

shown by the equation (A.6), it happens when the dispersion relation D(1, ω, kj) = 0 holds for an axial
wavenumber kj which is an odd multiple of π/h. For low Reynolds numbers, the viscous e�ects saturate

the amplitude of the resonant Kelvin mode to an order Re1/2 larger than the amplitudes of the shear �ow
and the others modes, see [22, 30]. Thus, at main order the base �ow vbase is a single Kelvin mode with

amplitude |ε| = O(RoRe1/2). It follows that the summations in (26) are truncated to the index of that
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mode and the amplitude aj must be replaced by ε/Ro. Since the terms d12, n1s, d21 and n2s are of order
O(1), they are negligible compared to ε/Ro and so can be dropped in (26). The amplitude equations
when the j − th forced Kelvin mode is resonant thus write

dA1

dτ
= A2

εn1j

〈v1, Iv1〉
= n1εA2, (34a)

dA2

dτ
= A1

εn2j

〈v2, Iv2〉
= n2εA1. (34b)

As explained in �3.4, terms n1 and n2 are non-zeros if the conditions of resonance |k2 − k1| = kj =
(2j − 1)π/h or |k2 + k1| = kj = (2j − 1)π/h are satis�ed (in addition to m2 −m1 = 1 and ω2 − ω1 = ω).
Seeking solutions to the amplitude equations (34) as growing exponentials Aj ∼ eσt, yields an expression

for the growth rate

σ = |ε|√n1n2, (35)

similar to the one obtained in [39]. As expected (based on similarities with the elliptic instability), the
growth rate scales as the amplitude of the forced Kelvin mode. For small Reynolds number, the growth
rate of a resonant precessing �uid cylinder is thus an order Re1/2 larger than the growth rate of the
non-resonant case.
For h = 1.62 and ω = 1.18 the �rst Kelvin mode is forced at its �rst resonance and we recover (see

Table 3 in [39]) that the resonant combination (6, 1, 1) has n1 = −1.672, n2 = −2.456, leading to a growth
rate σ = 2.026|ε|.

3.6. Introduction of viscous e�ects

Amplitude equations (26) have been derived under the assumption of an inviscid �uid. Accounting for
viscosity, they modify to [see 39]

dA1

dτ
= c1A2 − α1A1, (36a)

dA2

dτ
= c2A1 − α2A2, (36b)

with αl = sl/
√
Re + vl/Re. The coe�cients sl represent the surface viscous damping of the free Kelvin

modes due to Ekman layers. They come from the rest of the dot product
〈
vle

i(ωlt+mlϕ), (∂I/∂t+M) ṽ1

〉

which is non-zero for a viscous �uid. The coe�cients sl are complex numbers with a positive real part
and are fully calculated in [39]. The coe�cients vl are real and represent the volume viscous damping of
the free Kelvin modes. They come from the dot product of vle

i(ωlt+mlϕ) with the Laplace operator of
the Navier-Stokes equations. These terms are proportional to k2l + δ2l , so that they strongly attenuate the
amplitude of the free Kelvin modes with complex axial and radial structures, [see 39].
We determine the critical Rossby number at which the instability appears from the condition of a

vanishing growth rate, leading to

|Rocrit| =
{
αr

1α
r
2

c1c2

[
1 +

(
αi

1 − αi
2

αr
1 + αr

2

)2
]}1/2

, (37)

where αr
l and α

i
l are respectively the real and imaginary parts of αl. It comes that for low Re numbers,

the volume viscous e�ects (which scale as Re−1) are larger than the surface viscous e�ects (which scale

as Re−1/2), so that the critical Ro number scales as Re−3/2. Contrarily, for large Re numbers, surface
viscous e�ects are dominant and the critical Ro number scales as Re−1.
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Figure 5. Theoretical axial vorticity �elds of the free Kelvin modes m1 = 2 (a) and m2 = 3 (b) which are expected to grow
for h = 2.3 and ω = 1.34.

4. Numerical application far from a resonance

In this section we compute the inviscid growth rate (30) of the precessing instability when the forced
Kelvin modes are non-resonant. To do so, we determine an aspect ratio h and a frequency ratio ω to
stay far away from the resonances of the forced Kelvin modes and such that the combination (m2 =
3, l1 = 1, l2 = 1) is resonant. These two conditions are shown on Fig. 4 where are represented the �rst �ve
resonances of the �rst four forced Kelvin modes. These resonances are noted ωj,n (n-th resonance of the
j-th forced Kelvin mode) and are solutions to the dispersion relation

D

(
mj, ωj,n,

(4− ωj,n2)1/2

|ωj,n|
(2n− 1)

π

h

)
= 0. (38)
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〈v1, Iv1〉 d12 n1s n1j1 n1j2 c1 s1 v1

27.1230 6.8448 1.1623 −12.7524 3.6628 −0.3940 1.22− 0.15i 34.37

〈v2, Iv2〉 d21 n2s n2j1 n2j2 c2 s2 v2

35.2671 −6.8448 21.8624 −23.9177 6.8697 −0.5683 1.50 + 0.027i 39.08

Table 1
Values of the parameters appearing in the amplitude equations. The aspect ratio and the frequency ratio are h = 2.30

and ω = 1.34. For these values, the combination (m2 = 3, l1 = 1, l2 = 1) is resonant and corresponds to a pair of free
Kelvin modes (m1 = 2, ω1 = −0.466, k1 = π/h) and (m2 = 3, ω2 = 0.874, k2 = 2π/h). The forced Kelvin modes are those
with indices j1 = 1, j2 = 2 and have axial wavenumbers kj1 = π/h and kj2 = 3π/h. Their amplitudes are aHj1 = 1.4983 and

aHj2 = 0.1130.

The thick blue curve on Fig. 4 gives the aspect ratio and the frequency ratio for which the combination
(3, 1, 1) is resonant. This curve is the solution to the equation

ω2(k2 = 2π/h, l2 = 1) = ω1(k1 = π/h, l1 = 1) + ωi,n, (39)

where ω2(k2 = 2π/h, l2 = 1) means: the value of ω2 for k2 = 2π/h and l2 = 1 (�rst branch of the dispersion
relation m2 = 3). For our numerical investigations we pick h = 2.3 and ω = 1.34 and we do verify on
Fig. 3 that (3, 1, 1) is a resonant point. The theoretical axial vorticity �elds of the free Kelvin modes
m1 = 2 and m2 = 3 are shown in Fig. 5. Since these modes have l1 = l2 = 1, their vorticity �elds show
only one ring of 4 and 6 counter-rotating vortices.
The values needed to compute the inviscid growth rate given by (30) are listed in Table 1. For h = 2.3

and ω = 1.34, we obtain σr = |Ro|
(√
c1c2

)
= 0.4732|Ro|. Since the combination (3, 1, 1) corresponds

to free Kelvin modes with simple radial and axial structures, the volume viscous e�ects (which scale as
k2l + δ2l ) poorly attenuate their growth, which make them the perfect candidates for an instability. The
stability diagram of the resonant combination (3, 1, 1) is shown in Fig. 6. The prediction from (37) is
represented by a solid line which splits the plane (Re − Ro) to a stable and an unstable domain.
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5. Conclusion

In this paper, the instability of a �uid inside a precessing cylinder has been addressed theoretically.
First, we have shown that the base �ow can be written as a superposition of a vertical or an horizontal
shear �ow and a sum of Kelvin modes. Then we have studied the stability of this base �ow forced at an
o�-resonance frequency, thus completing the study by [37, 39] carried out for the resonant case. We have
shown that the non-resonant base �ow can trigger a triadic instability with two free Kelvin modes only
if these modes have di�erent axial parities. From the amplitude equations of the modes we then have
obtained an analytical prediction of the instability growth rate. The inviscid growth rate is proportional to
the Rossby number and an order Re1/2 smaller than the growth rate obtained at a resonance frequency.
Introducing the viscous e�ects in our theory, we have obtained an analytical prediction of the critical
Rossby number as a function of the Reynolds number. For low (resp. large) Re numbers, the critical Ro

number scales as Re−3/2 (resp. Re−1).
The predictions provided in this theoretical paper should foster future experimental and numerical

studies performed at arbitrary precessing frequencies. We shall note however that our computation relies
on the assumption of a small Rossby number, i.e. a small precession angle. For a strong forcing, very dif-
ferent phenomena (Kelvin-Helmholtz instabilites, centrifugal instabilities, boundary layer destabilisation)
might appear due to the generation of powerful zonal �ows.
In closing, the precessional instability is typical of transition to turbulence in rotating �ows. The pres-

ence of rotation ensures that energy is continuously provided to the �ow. It also supports the existence
of inertial waves that can lead to several instabilities (elliptic instability, libration instability, etc.). The
structure of turbulence is also modi�ed by the presence of the rotation because of the anisotropy induced.
There is much more work to be done on this fascinating topic if we want to understand the mechanisms
at play in turbulent rotating �ows.

This study was carried out under CEA-CNRS contract No. 012171.

Appendix A. Operators of the Euler equations, forced Kelvin mode vector v1,ω,kFj ,

amplitudes aVj and aHj , free Kelvin modes vectors v+

l
and v−

l

Operators used for the matrix formulation (3) of the Euler equations are

I =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



,D =




0 0 −i 0

0 0 1 0

i −1 0 0

0 0 0 0



,M =




0 −2 0
∂

∂r

2 0 0
1

r

∂

∂ϕ

0 0 0
∂

∂z
∂

∂r
+

1

r

1

r

∂

∂ϕ

∂

∂z
0




, (A.1)

and

F0 =




0

0

−rω
0



,N (v1,v2) =


 u1 × (∇× u2)

0


 . (A.2)
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The forced modes quadri-vector vV
j and vH

j are given by the same expression

vV
j = vH

j = 2




(
w1,ω,kj

)
r
i sin (kjz)

(
w1,ω,kj

)
ϕ
i sin (kjz)

(
w1,ω,kj

)
z

cos (kjz)
(
w1,ω,kj

)
p
i sin (kjz)



, (A.3)

with

wm,ω,k =




−1

4− ω2

(
ωδJ

′

m (δr) + 2
m

r
Jm (δr)

)

−i

4− ω2

(
2δJ

′

m (δr) +
ωm

r
Jm (δr)

)

i
k

ω
Jm (δr)

−iJm (δr)



, (A.4)

and where Jm is the Bessel function of the �rst kind, J
′

m its derivative and δ =
√

4− ω2k/|ω|. However,
they have been named di�erently since they have di�erent boundary conditions and thus di�erent axial
wavenumbers kVj or kHj . For the vertical shear, the radial wavenumber δ is imposed by the boundary
conditions and k is deduced from the dispersion relation whereas for the horizontal shear, the axial
wavenumber is imposed by the boundary conditions and δ is given again by δ =

√
4− ω2k/|ω|.

The dispersion relation is
D(m,ω, k) = ωδJ

′

m (δ) + 2mJm (δ). (A.5)

The amplitudes of the forced Kelvin modes are

aVj =
ω2

(ω − 2)(k2j + 1)kjJ1(δj) cos(kjh/2)
, (A.6a)

aHj = − 2h(−1)jω(2 + ω)

π2(2j − 1)2(ωδjJ ′1(δj) + 2J1(δj))
. (A.6b)

Vectors v+
l and v−l appearing in (20) are

v+

l = 2




(
wml,ωl,k

+
l

)
r

cos (k+

l z)(
wml,ωl,k

+
l

)
ϕ

cos (k+

l z)(
wml,ωl,k

+
l

)
z
i sin (k+

l z)(
wml,ωl,k

+
l

)
p

cos (k+

l z)



, v−l = 2




(
wml,ωl,k

−
l

)
r
i sin (k−l z)(

wml,ωl,k
−
l

)
ϕ
i sin (k−l z)(

wml,ωl,k
−
l

)
z

cos (k−l z)(
wml,ωl,k

−
l

)
p
i sin (k−l z)



. (A.7)
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Appendix B. Derivation of amplitude equations

In this Appendix, we derive the amplitude equations (26), starting from the order Ro equation (25)
that we report here

(
∂I
∂t

+M
)
ṽ1 = N (vbase, ṽ0) + N (ṽ0,vbase) +

[(
Dei(ωt+ϕ) + c.c.

)
− ∂I
∂τ

]
ṽ0. (B.1)

As explained in the core of the manuscript, a solvability condition is obtained by taking the dot product of
this equation with vle

i(ωlt+mjϕ), l = 1, 2. The problem being self adjoint, we have
〈
vle

i(ωlt+mlϕ), (∂I/∂t+M) ṽ1

〉
=

0, so that, we are left with
〈
vle

i(ωlt+mlϕ),
∂I
∂τ

ṽ0

〉
=
〈
vle

i(ωlt+mlϕ),
(
Dei(ωt+ϕ) + c.c.

)
ṽ0

〉
+
〈
vle

i(ωlt+mlϕ),N (vbase, ṽ0)
〉

+
〈
vle

i(ωlt+mlϕ),N (ṽ0,vbase)
〉
.

(B.2a)

The computation of the LHS term is straightforward and follows from the linearity of the dot product
and the orthogonality of the Kelvin modes. Introducing the expression of ṽ0 given by (21) gives a LHS
term equal to
〈
vle

i(ωlt+mlϕ),

2∑

l=1

dAj

dτ
I
(
vje

i(ωjt+mjϕ)
)〉

+

〈
vle

i(ωlt+mlϕ),

2∑

j=1

dAj

dτ
I
(
vje
−i(ωjt+mjϕ)

)〉
, (B.3a)

=

2∑

j=1

dAj

dτ

〈
vle

i(ωlt+mlϕ), ei(ωjt+mjϕ)Ivj
〉

+

2∑

j=1

dAj

dτ

〈
vle

i(ωlt+mlϕ), e−i(ωjt+mjϕ)Ivj
〉
, (B.3b)

=

2∑

j=1

dAj

dτ

〈
vl, e

i[(−ωl+ωj)t+(−ml+mj)ϕ]Ivj
〉

︸ ︷︷ ︸
6=0 if j=l

+

2∑

j=1

dAj

dτ

〈
vl, e

i[(−ωl−ωj)t+(−ml−mj)ϕ]Ivj
〉

︸ ︷︷ ︸
0 because ∝

2π∫
0

e−i(ml+mj)ϕdϕ

, (B.3c)

=
dAl

dτ
〈vl, Ivl〉 . (B.3d)

Eq. (B.3c) shows that it is not necessary to take into account the c.c. part of Ajvje
i(ωjt+mjϕ) in (B.2)

since it leads to 0 integral terms. This observation still holds for computations with operators D, D and
N since they do not change the wavenumbers in the exponential when applied to vle

i(ωlt+mlϕ). Therefore,
the c.c. part of Ajvje

i(ωjt+mjϕ) will be omitted in the next computations.
Plugging (B.3d) into (B.2) yields the amplitude equations

dAl

dτ
=

〈
vle

i(ωlt+mlϕ),
(
Dei(ωt+ϕ) + c.c.

)
ṽ0

〉
+
〈
vle

i(ωlt+mlϕ),N (vbase, ṽ0) + N (ṽ0,vbase)
〉

〈vl, Ivl〉
. (B.4)

We now proceed with the calculation of the RHS terms of (B.4). Computations are performed with l = 1
so that results for l = 2 will follow from the permutation of indices (1, 2)→ (2, 1). Also, from the operators
properties presented in �2.2, we know that the free Kelvin modes v1e

i(ω1t+m1ϕ) and v2e
i(ω2t+m2ϕ) must

have di�erent z-parities to give nonzero coupling terms. Thus, for l = 1 we can directly substitute in
(B.4) vector ṽ0 by v2e

i(ω2t+m2ϕ) and (B.4) writes
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dA1

dτ
=

〈
v1e

i(ω1t+m1ϕ),
(
Dei(ωt+ϕ) + c.c.

)
v2e

i(ω2t+m2ϕ)
〉

〈v1, Iv1〉
+

〈
v1e

i(ω1t+m1ϕ),N
(
vbase,v2e

i(ω2t+m2ϕ)
)〉

〈v1, Iv1〉

+

〈
v1e

i(ω1t+m1ϕ),N
(
v2e

i(ω2t+m2ϕ),vbase
)〉

〈v1, Iv1〉
. (B.5a)

In what follows we compute each of the terms in the RHS of (B.5a) and we assume that the resonance
conditions (24) are ful�lled in order to drop the exponential terms.

B.1. Computation of
〈
v1e

i(ω1t+m1ϕ),
(
Dei(ωt+ϕ) + c.c.

) (
v2e

i(ω2t+m2ϕ)
)〉

Expanding the complex conjugate leads to 2 terms:
〈
v1e

i(ω1t+m1ϕ), ei(ωt+ϕ)ei(ω2t+m2ϕ)Dv2

〉
+
〈
v1e

i(ω1t+m1ϕ), e−i(ωt+ϕ)ei(ω2t+m2ϕ)Dv2

〉
,

The �rst term vanishes because the azimuthal Fourier components are di�erent on each side of the dot
product such that the integral over ϕ gives zero. In contrast, in the second term, the azimuthal Fourier
components are equal and can thus be dropped. This term can thus be written as

d12 =
〈
v1,Dv2

〉
. (B.6)
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B.2. Computation of
〈
v1e

i(ω1t+m1ϕ),N
(
vbase,v2e

i(ω2t+m2ϕ)
)〉

Here vbase = vbe
i(ωt+ϕ) + c.c. is the base �ow given either by (8) or (9) depending on which decompo-

sition (vertical or horizontal shear) is used to express the base �ow. We have
〈
v1e

i(ω1t+m1ϕ),N
(
vbase,v2e

i(ω2t+m2ϕ)
)〉

(B.7a)

=
〈
v1e

i(ω1t+m1ϕ),N
(
vbe

i(ωt+ϕ) + c.c.,v2e
i(ω2t+m2ϕ)

)〉
, (B.7b)

=
〈
v1e

i(ω1t+m1ϕ),N
(
vbe

i(ωt+ϕ),v2e
i(ω2t+m2ϕ)

)〉
+
〈
v1e

i(ω1t+m1ϕ),N
(
vbe
−i(ωt+ϕ),v2e

i(ω2t+m2ϕ)
)〉

,

(B.7c)

=
〈
v1e

i(ω1t+m1ϕ), ei(ωt+ϕ)ei(ω2t+m2ϕ)Nim2
(vb,v2)

〉

+
〈
v1e

i(ω1t+m1ϕ), e−i(ωt+ϕ)ei(ω2t+m2ϕ)Nim2
(vb,v2)

〉
, (B.7d)

(B.7e)

where Nim2
corresponds to operator N where d/dϕ has been replaced by im2. As previously, the �rst

term vanishes and the exponential can be dropped from the second term. Introducing the expression of
vb makes this whole term equal to

〈
v1,Nim2


vs +

∞∑

j=1

ajvj ,v2



〉

= n1s2 +

∞∑

j=1

ajn1j2, (B.8a)

with n1s2 = 〈v1,Nim2
(vs,v2)〉 and n1j2 = 〈v1,Nim2

(vj,v2)〉 , (B.8b)
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B.3. Computation of
〈
v1e

i(ω1t+m1ϕ),N
(
v2e

i(ω2t+m2ϕ),vbase.

)〉

We have〈
v1e

i(ω1t+m1ϕ),N
(
v2e

i(ω2t+m2ϕ),vbase

)〉
(B.9a)

=
〈
v1e

i(ω1t+m1ϕ),N
(
v2e

i(ω2t+m2ϕ),vbe
i(ωt+ϕ) + c.c.

)〉
, (B.9b)

=
〈
v1e

i(ω1t+m1ϕ),N
(
v2e

i(ω2t+m2ϕ),vbe
i(ωt+ϕ)

)〉
+
〈
v1e

i(ω1t+m1ϕ),N
(
v2e

i(ω2t+m2ϕ),vbe
−i(ωt+ϕ)

)〉
,

(B.9c)

=
〈
v1e

i(ω1t+m1ϕ), ei(ω2t+m2ϕ)ei(ωt+ϕ)Ni (v2,vb)
〉

+
〈
v1e

i(ω1t+m1ϕ), ei(ω2t+m2ϕ)e−i(ωt+ϕ)N−i (v2,vb)
〉
,

(B.9d)

(B.9e)

where Ni and N−i correspond to operator N where d/dϕ has been replaced by i and −i, respectively. As
previously, the �rst term vanishes and the exponentials can be dropped from the second term. Introducing
the expression of vb makes this whole term equal to

〈
v1,N−i


v2,vs +

∞∑

j=1

ajv1,ω,j



〉

= n12s +

∞∑

j=1

ajn12kj
(B.10a)

with n12s = 〈v1,N−i (v2,vs)〉 and n12j = 〈v1,N−i (v2,vj)〉 (B.10b)
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B.4. Conditions of resonance and amplitude equations

Collecting (B.6), (B.8b) and (B.10b) together, the amplitude equations (B.4) rewrite

dA1

dτ
= A2

d12 + n1s +
∞∑
j=1

ajn1j

〈v1, Iv1〉
, (B.11a)

dA2

dτ
= A1

d21 + n2s +
∞∑
j=1

ajn2j

〈v2, Iv2〉
, (B.11b)

where coe�cients in (B.11a) are

d12 =
〈
v1,Dv2

〉
, (B.12a)

n1s = n1s2 + n12s = 〈v1,Nim2
(vs,v2)〉+ 〈v1,N−i (v2,vs)〉, (B.12b)

n1j = n1j2 + n12j = 〈v1,Nim2
(vj ,v2)〉+ 〈v1,N−i (v2,vj)〉. (B.12c)

Coe�cients in (B.11b) are

d21 = 〈v2,Dv1〉 = −d12, (B.13a)

n2s = n2s1 + n21s = 〈v2,Nim1
(vs,v1)〉+ 〈v2,Ni (v1,vs)〉, (B.13b)

n2j = n2j1 + n21j = 〈v2,Nim1
(vj ,v1)〉+ 〈v2,Ni (v1,vj)〉. (B.13c)

References

[1] K. Stewartson, On the stability of a spinning top containing liquid, J. Fluid Mech. 5 (1958) 577�592.
[2] B. G. Karpov, Ballistic Research Labs. Maryland, U. S., Report BRL R 1302 (1965).
[3] R. F. Gans, Dynamics of a near-resonant �uid-�lled gyroscope, AIAA J. 22 (1984) 1465�1471.
[4] S. C. Garg, N. Furunoto, J. P. Vanyo, Spacecraft nutational instability prediction by energy dissi-

pation measurments, J. Guid. 9 (1986) 357�361.
[5] T. Herbert, Viscous �uid motion in a spinning and nutating cylinder, J. Fluid Mech. 167 (1986)

181�198.
[6] J. J. Pocha, An experimental investigation of spacecraft sloshing, Space Commun. Broadcasting 5

(1987) 323�332.
[7] B. N. Agrawal, Dynamics characteristics of liquid motion in partially �lled tanks of a spinning

spacecraft, J. Guid. Control Dynam. 16 (1993) 636�640.
[8] G. W. Bao, M. Pascal, Stability of a spinning liquid �lled spacecraft, Appl. Mech. 67 (1997) 407�421.
[9] J. P. Lambelin, F. Nadal, R. Lagrange, A. Sarthou, Non-resonant viscous theory for the stability of

a �uid-�lled gyroscope, Journal of Fluid Mechanics 639 (2009) 167�194.
[10] W. V. R. Malkus, An experimental study of global instabilities due to tidal (elliptical) distortion of

a rotating elastic cylinder, Geophys. Astrophys. Fluid Dynamics 48 (1989) 123�134.
[11] F. Grote, H. Busse, A. Tilgner, Convection driven quadrupolar dynamos in rotating spherical shells,

Phys. Rev. E 60 (1999) R5025.
[12] F. Grote, H. Busse, A. Tilgner, Regular and chaotic spherical dynamos, Phys. Earth Planet. Inter.

117 (2000) 259.
[13] F. Grote, H. Busse, Dynamics of convection and dynamos in rotating spherical �uid shells, Fluid

Dyn. Res. 28 (2001) 349�368.

20



[14] D. Cébron, M. L. Bars, P. Maubert, Magnetohydrodynamic simulations of the elliptical instability
in triaxial ellipsoids, Geophys. and Astrophys. Fluid Dyn. 106 (2011) 524�546.

[15] A. Tilgner, Precession driven dynamos, Phys. Fluids 17 (2005) 034104.
[16] C. Nore, J. Léorat, J. Guermond, F. Luddens, Nonlinear dynamo action in a precessing cylindrical

container, Phys. Rev. E 84 (2011) 016317.
[17] M. G. Rochester, J. A. Jacobs, D. E. Smylie, K. F. Chong, Can precession power the geomagnetic

dynamo?, Geophys. J. R. Astron. Soc. 43 (1975) 661.
[18] D. E. Loper, Torque balance and energy budget for the precesionally driven dynamo, Phys. Earth

Planet. Inter. 43 (1975) 43.
[19] P. H. Roberts, D. Gubbins, Origin of the main �eld: Kinematics, Geomagnetism, Ed. J. A. Jacobs,

Academic Press 2 (1987) 185�249.
[20] J. P. Vanyo, P. Wilde, P. Cardin, Experiments on precessing �ows in the earth's liquid core, Geophys.

J. Int. 121 (1995) 136�142.
[21] R. R. Kerswell, Upper bounds on the energy dissipation in turbulent precession� J. Fluid Mech. 321

(1996) 335�370.
[22] R. F. Gans, On the precession of a resonant cylinder, J. Fluid Mech. 476 (1970) 865�872.
[23] A. Tilgner, Oscillatory shear layer in source driven �ows in an unbounded rotating �uid, Phys.

Fluids 12 (2000) 1101�1111.
[24] A. Gailitis, O. Lielaussis, E. Platacis, F. Stefani, G. Gerbeth, Laboratory experiments on hydromag-

netic dynamos, Rev. Mod. Phys. 74 (2002) 973.
[25] L. Kelvin, Vibrations of a columnar vortex, Phil. Mag. 10 (1880) 155�168.
[26] H. P. Greenspan, The theory of rotating �uids, Cambridge University Press, 1968.
[27] D. Fultz, A note on overstability and elastoid-inertia oscillations of kelvin, solberg and bjerknes, J.

Meteorol. 16 (1959) 199�208.
[28] A. D. McEwan, Inertial oscillations in a rotating �uid cylinder, J. Fluid Mech. 40 (1970) 603�640.
[29] R. R. Kerswell, C. F. Barenghi, On the viscous decay rates of inertial waves in a rotating cylinder,

J. Fluid Mech. 285 (1995) 203�214.
[30] P. Meunier, C. Eloy, R. Lagrange, F. Nadal, A rotating �uid cylinder subject to weak precession, J.

Fluid Mech. 599 (2008) 405�440.
[31] D. Kong, Z. Cui, X. Liao, K. Zhang, On the transition from the laminar to disordered �ow in a

precessing spherical-like cylinder, Geophys. Astrophys. Fluid Dyn. 109 (2015) 62�83.
[32] R. Thompson, Diurnal tides and shear instabilities in a rotating cylinder, J. Fluid Mech. 40 (1970)

737�751.
[33] R. Manasseh, Breakdown regimes of inertia waves in a precessing cylinder, J. Fluid Mech. 243 (1992)

261�296.
[34] R. Manasseh, Distorsions of inertia waves in a precessing cylinder forced near its fundamental mode

resonance, J. Fluid Mech. 265 (1994) 345�370.
[35] J. J. Kobine, Inertial wave dynamics in a rotating and precessing cylinder, J. Fluid Mech. 303 (1995)

233�252.
[36] R. Manasseh, Nonlinear behaviour of contained inertia waves, J. Fluid Mech. 315 (1996) 151�173.
[37] R. Lagrange, C. Eloy, F. Nadal, P. Meunier, Instability of a �uid inside a precessing cylinder, Physics

of Fluids. 20(8) (2008) 081701.
[38] R. Lagrange, P. Meunier, C. Eloy, F. Nadal, Dynamics of a �uid inside a precessing cylinder,

Mechanics and Industry. 10 (2009) 187�194.
[39] R. Lagrange, P. Meunier, F. Nadal, C. Eloy, Precessional instability of a �uid cylinder, Journal of

Fluid Mechanics 666 (2011) 104�145.
[40] Y. Fukumoto, The three dimensional instability of a strained vortex tube revisited, J. Fluid Mech.

493 (2003) 287�318.

21


