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Abstract Modeling the flow around a deformable and mov-
ing surface is required to calculate the forces exerted by a
swimming or flying animal on the surrounding fluid. As-
suming that viscosity plays a minor role, linear potential
models can be used. These models derived from unsteady
airfoil theory are usually divided in two categories depend-
ing on the aspect ratio of the moving surface: for small as-
pect ratios, slender-body theory applies while for large as-
pect ratios two-dimensional or lifting-line theory is used.
This paper aims at presenting these models with a unified
approach. These potential models being analytical, they al-
low fast computations and can therefore be used for opti-
mization or control.

Keywords Potential flow · Unsteady airfoil theory ·
Slender-body theory · Lifting-line theory · Lifting-surface
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Introduction

Academic interest in the locomotion of aquatic and aerial
animals has been renewed recently by the development of
nature-inspired robotics. Even if the progress of computa-
tional possibilities now allows to simulate these complex
fluid-structure interactions efficiently, analytical models are
still necessary to bring physical insights into this fascinat-
ing field. The present paper is aimed at giving a short intro-
ductory survey of these analytical models under an unified
approach. Readers interested in this field may want to read
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recent reviews with alternative approaches [5,6,12,18,24,
25].

Animal locomotion in fluids is usually characterized by
the large amplitude flapping of a lifting surface of high flex-
ibility. This propulsion mode which allows for high maneu-
verability and efficiency will be the focus of the present pa-
per. The discussion will be restricted to the fluid mechanics
of locomotion and little will be said about the internal me-
chanics of the animals which can be found elsewhere (see
[3] for instance). We will limit the analysis to animals large
enough so that the Reynolds number is asymptotically large
and the potential flow theory applies. This happens when the
lifting surface is larger than few millimeters with a typical
speed of several body lengths per second. In this case, the
flow can be considered irrotational, meaning that the flow
vorticity is concentrated in thin boundary layers adjacent to
the body surface and in a thin wake behind the body.

In the regime of high Reynolds numbers, the biofluid-
dynamic theories are traditionally divided in two according
to the aspect ratio of the lifting surface. For small aspect ra-
tios (elongated animals like eels for instance) slender-body
theory is used [13,14] while for large aspect ratios (lunate
tails or most wings) a two-dimensional or lifting-line theory
is appropriate [9,26]. We will see in the following that these
theories can be viewed as two asymptotic cases of the more
general lifting-surface theory.

Lifting-Surface Equation

Consider a Cartesian coordinate system (Oxyz) and a uni-
form, incompressible, inviscid flow of velocity U directed
along the Ox-axis. A thin surface S of semi-chord L and
semi-span H is moving in this flow at the angular frequency
ω around the reference plane z = 0 (see Fig. 1). If this lift-
ing surface is assumed to undergo small displacements and
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Fig. 1 Schematic of the lifting-surface problem in the two limiting
cases of (a) large aspect-ratio H� L and (b) small aspect-ratio H� L.

deformations, the problem becomes linear and is equivalent
to small periodic disturbances of the incident flow. Adopt-
ing the complex notation with an implicit factor eiωt for all
quantities, the motion of S prescribes a perturbation w(x,y)
of the flow velocity in the z-direction

w(x,y) = Dz(x,y) on S, with D = (iω +U∂x) , (1)

where D is the material derivative and z(x,y) is the defor-
mation of the plate along the Oz axis. The problem consists
of relating w to the perturbation pressure jump across the
surface S.

The flow is described by the perturbation potential φ

which satisfies the Laplace equation with a Neumann bound-
ary condition on S

∆φ = 0, with ∂zφ = w(x,y) on S, (2)

such that the total flow velocity is U+∇φ . Using the Green’s
representation theorem [16], the perturbation potential can
be related to the jump of φ across the plane z = 0 (the normal
velocity being continuous across the horizontal axis)

φ(R) =
∫

S+Σ

[φ ](r)∂zS G(|R− r|)dS, (3)

where

[φ ](x,y) = φ(x,y,0+)−φ(x,y,0−) (4)

is the potential jump, R is any point of the flow domain, r is
any point on the lifting surface S or its wake Σ and G(r) is
the Green function of the Laplace equation

G(r) =− 1
4πr

. (5)

The kinematic boundary condition (1) is imposed by taking
the z-derivative of the integral equation (3) and taking the
limit as z tends to zero

w(x,y) =×
∫

S+Σ

[φ ](r)F(|x− r|)dS, (6)
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Fig. 2 Typical vorticity lines in the lifting surface and in its wake in
the plane z = 0.

where x = (x,y) is on S,

F(r) =
1

4πr3 , (7)

and the cross on the integral sign implies that the integral is
defined in the finite-part sense as introduced by Hadamard
[10] and summarized in the present context by Mangler [15]
(the finite-part integral can be viewed as a generalization of
the classical Cauchy principal value).

The potential jump [φ ] when derived with respect to x
or y yields the two components of velocity jump across the
plate. These two components are also equal or opposite to
the x- and y-components of the vorticity distribution γx and
γy in the plate and its wake

γx =−∂y[φ ], γy = ∂x[φ ]. (8)

From a physical point of view, the vorticity is formed in the
viscous boundary layers attached to the lifting surface and
is then advected in the wake by the flow velocity U . This
means that, in the wake, [φ ] and its derivatives are x-periodic
with a wavelength λ = 2πU/ω (see Fig. 2).

The pressure jump [p] is obtained through the linearized
Bernoulli equation

[p] =−ρD[φ ]. (9)

Given the x-periodicity of [φ ] in the wake, the pressure jump
is zero on Σ as expected. Note that the Kutta condition on
the trailing edge ([p] = 0) is ensured by Kelvin’s circulation
theorem which implies that the vorticity distribution is con-
tinuous between S and Σ .

However, no particular boundary condition applies on
the leading and side edges of the plates and the least-singular
solution leads to a vorticity distribution γy that goes as x1/2

and y1/2 close to these edges. Using (8) and (9), the pressure
jump is found to be regular at the side edges and singular
at the leading edge with the classical x−1/2 singularity. This
singularity being integrable, it does not lead to infinite forces
on the plate and is therefore physically meaningful. The fi-
nite thickness of the plate could also been taken into account
to smooth out this leading-edge singularity [22].

Equation (6) is known as the lifting-surface integral. In-
tegrating by parts and using the relations (8–9), it can also
be expressed in terms of the pressure jump or the vorticity
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distribution [6,9,21,23]. The lifting-surface integral relates
the prescribed perturbation velocity w (called the downwash
in airfoil theory) to the unknown potential jump [φ ] through
an integral equation. From a mathematical point of view, this
inverse problem is a Fredholm equation of the first kind.

To calculate the pressure forces exerted by the flow on
the moving flexible plate, one needs to invert the lifting-
surface equation (6) and use the relation (9). Because of
the singular nature of the kernel function F(r) defined by
(7), specific numerical methods have to be used to invert
the lifting-surface equation such as the vortex-lattice method
[11,20], the doublet-lattice method [1,17] or the waving plate
method [4]. In the limit of small or large aspect ratios, asymp-
totic methods can also be used [22]. In the limit H � L, it
leads to the slender-body theory and when H � L to the
lifting-line theory as detailed below.

Slender-Body Theory

Consider a lifting surface of small aspect ratio A = H/L� 1
as depicted in Fig. 1b. The lifting surface integral (6) can be
rewritten as

w(x,y) =
1

4π
×
∫ H

−H
I(x,ε)dη , (10)

with

I(x,ε) =
∫

∞

−l
[φ ](ξ ,η)

dξ

[(x−ξ )2 + ε2]3/2 , (11)

where x = −l(η) is the plate leading edge and ε = y−η is
small compared to x.

An expansion of I(x,ε) can be calculated in the limit of
small A using the method of Matched Asymptotic Expan-
sion [22]. The principle of this method is to assume an inter-
mediate length δ such that |ε| � δ � L and separating the
integral (11) in two parts: one for |x− ξ | < δ and the other
for |x−ξ |> δ . After some calculation, it yields

I(x,ε) =
2
ε2 [φ ](x,η)−

(
ln
|ε|
2l

+1
)

∂
2
x [φ ](x,η)

+×
∫

∞

−l
[φ ](ξ ,η)

dξ

|x−ξ |3
+O

(
ε

2 ln
|ε|
l

)
. (12)

Injecting this expansion into (10) gives

w(x,y) =
1

4π
×
∫

S+Σ

[φ ](ξ ,η)FSB(x−ξ ,y−η)dξ dη , (13)

where

FSB(x,y) =
2δ (x)

y2 −
(

ln
|y|
2L

+1
)

δ
′′(x)+

1

|x|3
+ · · · (14)

with δ (x) the Dirac delta function. Equation (13) is the equiv-
alent of the lifting-surface integral (6) in the limit of small
A. The new kernel FSB is now expressed as a generalized
polynomial of |y|.

Assuming that the prescribed velocity w only depend on
x, the first-order solution is obtained by keeping only the
first term of the kernel (14) and inverting (13). It yields

[φ0](x,y) =−2w(x)
√

h2− y2, (15)

where h(x) is the local semi-span. The corresponding pres-
sure jump is found using relation (9)

[p0](x,y) = 2ρD
(

w(x)
√

h2− y2
)

, (16)

and the force exerted on the fluid per unit length is obtained
by integrating the pressure jump between −h and h

F0(x) = D
(
ρπh2(x)w(x)

)
. (17)

This classical expression of the slender-body force was found
by Lighthill [13] with a different approach. Considering that
m(x) = ρπh2 is the added mass of fluid per unit length (the
fluid contained in a circle whose diameter is the local plate
span), the product mw is the momentum given to the fluid by
the lifting surface. Equation (17) simply expresses that the
force on the fluid is the rate of change of this momentum in
the fluid reference frame, i.e. F0 = D(mw).

The advantage of the present approach is that it can be
carried out up to any order in A without difficulty by expand-
ing the potential jump in even powers of A. Injecting such an
expansion into (13) and inverting the integral equation gives
the expression of the corrective potential jump [φ1] at order
A2 smaller than [φ0]. Note that the logarithmic term of order
(x−3 lny) appearing in (14) has to be treated together with
the O(x−3) term as it is routinely the case when using per-
turbation methods [22]. The corrective force is calculated by
integrating [φ1] between−h and h and applying the operator
D. It yields

F1 = D

(
ρπ

h4

4

[(
ln

4
A
− 3

4

)
w′′(x)+×

∫
∞

−L

w(ξ )dξ

|x−ξ |3

])
,(18)

where a periodic velocity is assumed in the wake such that
w(x) = w(L)exp[iω(L− x)/U ] for x > L. The total force on
the fluid is

F(x) = F0 +F1 +O
(
ρh2wA4 lnA

)
. (19)

It can be noted that the corrective force F1 is (A2 lnA) smaller
than F0 as expected. When the imposed velocity w(x) is
known, this correction can be computed easily.

To our knowledge, perturbation methods have never been
applied to the problem of slender-body swimming and the
result above is therefore new. In the limit of large aspect
ratio however, this approach have been used to justify and
generalize the lifting-line theory as exposed below [9,26].

Lifting-Line Theory

Consider now a lifting surface of large aspect ratio A = H/L
as depicted in Fig. 1a. We shall assume that the reduced fre-
quency k = Lω/U is of order unity which prevents the use
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of any quasi-steady approximation. Note that the Strouhal
number based on the chord 2L is St = Lω/(πU) = k/π and
therefore k ≈ 1 corresponds to St ≈ 0.3, close to the values
observed in animal locomotion.

Following the procedure used in the slender-body theory
but inverting x and y, the lifting-surface integral reduces to

w(x,y) =
1

4π
×
∫

S+Σ

[φ ](ξ ,η)FLL(x−ξ ,y−η)dξ dη , (20)

where the kernel in the limit of large A is

FLL(x,y) =
2δ (y)

x2 −
(

ln
|x|
2H

+1
)

δ
′′(y)+

1

|y|3
+ · · · (21)

Keeping only the first-order term in (21) and integrating
by parts (20) yields the classical two-dimensional integral
equation

w(x,y) =−
∫

∞

−l(y)

γy(ξ ,y)dξ

2π(ξ − x)
, (22)

where the integrand expresses the azimuthal velocity induced
in x by a point-vortex of circulation γy dξ located in ξ . Note
that the boundary terms disappear from the integration by
parts because they are infinite at the leading edge and van-
ishing as x→ ∞ (this is a particular property of the finite-
part integrals [15]). Here the finite-part integral reduces to
the Cauchy principal value (noted with a bar on the integral
sign). The integral equation (22) is two-dimensional in the
sense that, for each value of y, it can be treated indepen-
dently as a local two-dimensional problem.

The inverse problem (22) is a classical problem of un-
steady airfoil theory [2,12,26]. Its solution in terms of the
pressure jump is found by inverting (22) and using the rela-
tions (8, 9)

[p2D](x,y) =
2ρU
πl

√
l− x
l + x

−
∫ l(y)

−l(y)
Λ(x,ξ )w(ξ ,y)dξ , (23)

where x =±l(y) correspond to the leading and trailing edges
of the lifting surface,

Λ(x,ξ ) =

√
l +ξ

l−ξ

[
C
(

kl
L

)
−1+

l
ξ − x

]

+
ik
2

ln

(
l2− xξ +

√
l2−ξ 2

√
l2− x2

l2− xξ −
√

l2−ξ 2
√

l2− x2

)
, (24)

and C(k) is the Theodorsen function [19]

C(k) =
H(2)

1 (k)

H(2)
1 (k)+ iH(2)

0 (k)
, (25)

with H(2)
n the Hankel function of the second kind. Examin-

ing the kernel given in (21), the two-dimensional pressure
jump (23) appears to be valid up to a O(A−2 lnA) corrective
term. It is out of the scope of the present paper to calculate
this correction in details but the readers have to bear in mind
that its order is strongly dependent on the hypothesis made.

One important point is that the kernel (21) is not perti-
nent in general because x cannot be considered small com-
pared to H in the far wake. It can be shown [9] that, for small
frequencies (i.e. k� 1), the two-dimensional approach (23)
is valid up to a correction of order A−1 like in steady lifting-
line theory. If the reduced frequency k is of order unity or
higher as it is the case in animal locomotion in general, the
potential jump in the wake is a fast oscillating function with
a period λ = o(H). Thus, under this particular hypothesis,
the far wake do not contribute to the integral (20) and the
kernel given by (21) is relevant.

The other limitation of the present asymptotic approach
is that the angle between the leading edge and the Oy-axis
must remain small everywhere (at most O(A−1)). This is
because the leading edge x = −l(y) have to be a function
varying on the typical length of order H in order to avoid
boundary terms when integrating by parts (20). This restricts
the analysis to surfaces with cusped tips as discussed by
Van Dyke [21] in the steady case. For rounded tips (semi-
elliptical wings for instance) or if the leading-edge is in-
clined to the flow, the two-dimensional theory is valid up
to a O(A−1 lnA) term as proved by Guermond and Sellier
[9]. Note that, in the particular case of a rectangular lifting
surface, the problem can be simplified by taking its Fourier
transform along x as it has been shown in [7,8].

Discussion

In this paper, potential flow models derived from unsteady
airfoil theory have been presented with an unified approach
in the context of aquatic and aerial locomotion. It has been
shown that, in the general case, the lifting-surface equation
applies whose inherently singular nature imposes specific
numerical methods to be inverted. However, the lifting-surface
equation can be simplified in two asymptotic cases: in the
limit of a lifting surface of small aspect ratio, it leads to the
slender-body theory while in the large aspect ratio limit, a
two-dimensional or lifting-line theory is appropriate.

For the sake of simplicity, the lifting-surface theory has
been presented in the linear limit, i.e. for small displace-
ments and deformations of the plate. Equation (3) being valid
for large displacements when the surface of integration is
taken on the moving surface, the present formulation could
be generalized to arbitrarily large displacements using the
same steps. In the slender-body and two-dimensional limits,
this large-amplitude theory have been developed by Lighthill
[14] and Wu [25] respectively.

We have demonstrated that the slender-body and the two-
dimensional theories are valid up to an order (A2 lnA) and
(A−2 lnA) respectively, where A is the aspect ratio of the lift-
ing surface. In the two-dimensional case, this scaling is valid
only for surfaces with cusped tips and a leading edge almost
perpendicular to the flow. For curved or swept surfaces or
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for surfaces with rounded tips, the correction is larger, of
order (A−1 lnA).

The lifting surface has been assumed infinitely thin here,
whereas, in natural locomotion, the surface thickness is usu-
ally non-negligible. This can be taken into account by using
the linear property of the potential flow theory. The potential
of a thick lifting surface is simply the sum of the potential
due to the thickness alone (the surface being motionless and
aligned to the flow) and the potential due to motion alone
(calculated in the present paper for an infinitely thin sur-
face). Since the pressure jump is linearly dependent on the
potential jump, the forces exerted on the lifting surface by
the fluid can also be decomposed in the same manner.

The analytical models introduced here are restricted to
small displacements and deformations (linearity), inviscid
flow and asymptotically large or small aspect ratios. These
limitations can be viewed as weaknesses but the inherent
simplicity of these models allows to gain physical insights
into the fundamental fluid mechanics of animal locomotion.
Besides, the analytical character of these models make them
perfect candidates for optimization or control procedures as
they allow for fast calculations. The additional effects of
viscosity, non-linearity and aspect-ratio can be treated sepa-
rately with experiments or detailed numerical calculations.
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