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Abstract

Planktonic organisms, despite their passive drift in the ocean, exhibit complex
responses to fluid flow, including escape behaviors and larval settlement detec-
tion. But what flow signals can they perceive? This paper addresses this question
by considering an organism covered with sensitive cilia and immersed in a back-
ground flow. The organism is modeled as a spherical particle in Stokes flow, with
cilia assumed to measure the local shear at the particle surface. This study reveals
that, while these organisms can always measure certain components of the flow
strain, bottom-heaviness is necessary to measure the horizontal component of
vorticity. These findings shed light on flow sensing by plankton, contributing to
a better understanding of their behavior.
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Plankton play a crucial role in marine ecosystems [1]. By definition, they are composed
of microscopic organisms that drift with the flow. But that doesn’t mean that they
are passive. Most of them are active and respond to flow signals [2, 3]. However, little
is known about the signals they can measure.

Among plankton, ciliates form a subgroup of unicellular organisms characterized
by hair-like appendages known as cilia. Much research has delved into the locomotion
of ciliates through the motion of these cilia [4, 5]. However, eukaryotes also use cilia as
a mechano-sensory system [6–9]. Different observations have shown how ciliates and
other plankton use cilia to measure the flow [3, 10, 11], detect prey and predators
[12–14], or find a larval settlement [15, 16].

In this paper, I will consider the hydrodynamics of flow sensing by a ciliated
organism modeled as a passive spherical particle immersed in a Stokes flow.
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Fig. 1 (A) Sketch of the problems and the notations used. A spherical particle of radius a is
immersed in a flow v∞. (B) On its surface, mechano-sensitive cilia are deformed by local shear τ .

1 Problem statement

Let us consider a passive spherical particle of radius a in a background flow (Fig. 1A).
We attach the framework XY Z to this particle and we note X̂, Ŷ , Ẑ the associated
unit vectors. We assume that the particle is not neutrally buoyant, its density being
ρ+∆ρ, with ρ the density of the surrounding fluid.

The background flow is attached to the laboratory framework xyz. The change of
framework from xyz to XY Z is given by the rotation matrix R, such that X = R ·x,
where x is a vector in the framework xyz and X the same vector in the framework
XY Z.

The background flow may be turbulent or generated by a predator. We note its
smallest scale η (the Kolmogorov scale if the flow is turbulent), its associated speed
vη, and its dynamic viscosity µ. We assume that their values are such that the flow
is smooth for the particle (a ≪ η) and the Reynolds number is asymptotically small
(Re = ρavη/µ ≪ 1). The two assumptions are equivalent in a turbulent flow since
Re = a/η in that case. Typical values for the Kolmogorov scale in the ocean are of the
order of 1mm [17], meaning that our study applies to unicellular organisms, which are
typically of size below 100µm.

Since the Reynolds number is asymptotically small, the flow obeys the Stokes
equations for incompressible fluid

−∇p+ µ∆u = 0, (1)

∇ · u = 0, (2)

with u the velocity field and p the pressure. The total flow u can be decomposed into
a sum of the background flow v∞ and a perturbation v due to the presence of the
particle. Locally, around the particle, the background flow v∞ can be linearized

v∞(r) ≈ V∞ +∇v∞ · r, (3)

≈ V∞ +Ω∞ × r + S∞ · r, (4)

where V∞ = v∞(0) is the mean flow, S∞ = 1
2

(
∇v∞ +∇vT

∞
)
is the second-order

rate-of-strain tensor (the symmetric part of the gradient tensor), and Ω∞ = 1
2ω∞ the

angular velocity (associated with the antisymmetric part of the gradient tensor), with
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ω∞ = ∇× v∞ the vorticity . These quantities are all evaluated at the particle center
r = 0, taken to the be the origin of the framework without loss of generality.

1.1 Decomposition into two problems: gravity and strain

We assume that the particle surface is partially covered by sensors that can perceive
the local shear (Fig. 1B). For ciliated unicellular organisms, these sensors are sensitive
cilia. This shear is a vector field on the particle’s spherical surface. The question now
is to relate this field with the information on the background flow and the gravity
orientation.

We can decompose our general problem into two independent problems:

1. Finding the flow ug associated with the externally forced motion (here gravity) in
a linear flow without strain v∞ = V∞ +Ω∞ × r;

2. Finding the flow u∞ associated to a pure strain flow S∞ ·r in the absence of external
force.

By virtue of the linearity of Stokes equations, the total flow u solution of the general
problem is

u = ug + u∞. (5)

Each of these terms is associated with a velocity shear on the sphere surface, which
we aim to calculate. This is this shear that the organism is susceptible to sense. The
total shear can be decomposed in the same manner as the velocity field

τ =
∂u∥

∂r

∣∣∣∣
r=a

= τg + τ∞, (6)

where u∥ is the projection onto the direction tangential to the spherical surface of the
relative velocity field between the flow and the particle.

2 Continuous flow sensing

We shall now calculate the flow u and shear τ associated to the two problems: ug

and τg for a buoyant particle in a linear flow with zero strain; u∞ and τ∞ for a non-
buoyant particle in a pure strain. In this section, we will consider that the particle has
a perfect knowledge of the shear field τ over its whole surface and we will examine
how this information is related to the background flow and orientation of gravity.

2.1 First problem: shear due to gravity

We consider the first problem of a spherical particle in a linear flow V∞ + Ω∞ × r.
The particle is subject to the gravitational force and torque

Fg =
4

3
πa3∆ρ g, Tg =

4

3
πa3ρ δ × g, (7)

with g the acceleration of the gravity. The torque Tg is the bottom-heavy torque due
to the offset δ between the center of gravity and the center of buoyancy (Fig. 2).
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Fd = − 6πμa(V − V∞)
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Fig. 2 (A) The balance between the weight Fg and the viscous drag gives a settling velocity Vsink.
(B) The balance between the bottom-heavy torque Tg and the viscous torque gives a title angle.

In the Stokes limit, the particle is force- and torque-free. This means that the
gravitational force Fg is compensated by a viscous drag force, which is proportional
to the relative velocity between the particle and the fluid. Similarly, the gravitational
torque Tg is compensated by a viscous torque proportional to the relative angular
velocity between the particle and the flow. It yields the following mobility equations
[18]

V − V∞ =
1

6πµa
Fg = −Vsink ẑ, (8)

Ω−Ω∞ =
1

8πµa3
Tg =

1

2τ
Ẑ × ẑ, (9)

with V and Ω the translational and angular velocities of the particle, Vsink =
2a2∆ρg/(9µ) the sinking velocity, and τ = 3µ/(ρδg) the typical bottom-heavy tilting
time, with δ = δẐ the offset. Equation (9) can be rewritten as a first-order differential
equation for Ẑ

dẐ

dt
= Ω× Ẑ =

(
Ω∞ +

1

2τ
Ẑ × ẑ

)
× Ẑ. (10)

This equation admits a fixed point Ẑ0 (Fig. 3), that satisfies

Ẑ0 · ŷ = −
1 + α2 −

√
(α2 + 1)2 − 4α2

⊥
2α⊥

= −α⊥ +O
(
α3

)
, (11a)

Ẑ0 · ẑ =

√
1− α2 +

√
(α2 + 1)2 − 4α2

⊥
2

= 1− α2
⊥
2

+O
(
α4

)
, (11b)

with x̂ aligned with the horizontal component of the rotation vector (Ω∞)⊥ = (I −
ẑẑ) ·Ω∞ (without loss of generality), α = 2τ∥Ω∞∥, and α⊥ = 2τ∥(Ω∞)⊥∥ ≤ α. The
third component of Ẑ0 can be found by enforcing ∥Ẑ0∥ = 1, with Ẑ0 · x̂ of same sign
as Ω∞ · ẑ.

The flow velocity corresponding to the translational and angular velocities, V and
Ω, is a classical result [19]: the rotation of the sphere is associated with a rotlet and
the translation with a combination of a stokeslet and a doublet. The resulting flow is
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Fig. 3 Sketch showing that there exists an equilibrium position Z0 when the particle is immersed in
a rotation rate Ω∞ that includes a horizontal component (Ω∞)⊥ along x and a vertical component
(Ω∞)∥ along z. The associated viscous torques (in red) are compensated by the bottom-heavy torque
Tg (in blue).

u = uV + uΩ with

uV = V∞ +
3

4

(
a

r3
− a3

r5

)
r̂r̂ · (V − V∞) +

(
3a

4r
+

a3

4r3

)
(V − V∞), (12)

uΩ = rΩ∞ × r̂ +
a3

r3
(Ω−Ω∞)× r̂, (13)

which corresponds to tangential velocities relative to the particle respectively of

(uV )∥ =

(
3a

4r
+

a3

4r3
− 1

)
(I− r̂r̂) · (V − V∞), (14)

(uΩ)∥ =

(
a3

r2
− r

)
(Ω−Ω∞)× r̂, (15)

with (ug)∥ = (uV )∥ + (uΩ)∥ and r = rr̂. We can now calculate the associated shear

τg =
∂ (ug)∥

∂r

∣∣∣∣∣
r=a

, (16)

= − 3

2a
(I− r̂r̂) · (V − V∞)− 3(Ω−Ω∞)× r̂, (17)

=
a∆ρg

3µ
(I− r̂r̂) · ẑ +

3

2τ

(
ẑ × Ẑ0

)
× r̂. (18)

Here, the first term corresponds to the sinking of the particle, and the second term
to the bottom-heaviness. The sinking component of the shear is independent of the
background flow, as expected. Sensing this shear only informs the particle on the ori-
entation ẑ of the vertical. The bottom-heaviness component of the shear corresponds
to a rotation vector proportional to ẑ×Ẑ0. In the general case, this information is not
easy to link to the flow because Ẑ0 · ẑ, given by Eq. (11b), is a nonlinear combination
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of the different components of Ω∞. The particular case of rapid bottom-heavy tilting
compared to the typical time of the flow 1/∥Ω∞∥ corresponds to the limit α ≪ 1 in
Eqs (11a,b). In that case ẑ × Ẑ0 ≈ 2τ(Ω∞)⊥ and the bottom-heavy shear allows the
particle to directly sense the horizontal component of the vorticity.

For a non-buoyant bottom-heavy particle with rapid tilting time, the information
about the shear τg due to gravity allows the particle to measure ẑ the vertical direction
and (Ω∞)⊥ the horizontal component of the background flow rotation rate (i.e., twice
the vorticity).

2.2 Second problem: shear due to strain

The second problem is to determine the flow and the associated shear when the spher-
ical particle is immersed in a pure strain flow S∞ · r. The solution of the Stokes
equations with boundary condition v = −S∞ · r in |r| = a is classical [20]

v = −a5

r5
S∞ · x− 5

2

(
a3

r5
− a5

r7

)
(x · S∞ · x)x, (19)

with the associated pressure p = 5µa3 (x · S∞ · x) /r5. The total flow is

u∞ =

(
r − a5

r4

)
S∞ · r̂ − 5

2

(
a3

r2
− a5

r4

)
(r̂ · S∞ · r̂) r̂, (20)

and the associated shear is

τ∞ =
∂u∞

∂r

∣∣∣∣
r=a

, (21)

= 5S∞ · r̂ − 5 (r̂ · S∞ · r̂) r̂, (22)

= 5 (I− r̂r̂) · S∞ · r̂, (23)

which is simply (up to a factor 5), the projection onto the sphere surface of the pure
strain S∞. So, in principle, knowing the shear field τ∞, the particle has information
on the 5 independent components of the trace-free symmetric second-order tensor S∞.

3 Discrete and noisy flow sensing

So far, we have examined the information about the flow that a particle can gather
by measuring the complete shear field on its surface. In practice, however, there is a
finite number of sensors, and their measurements may be noisy. We shall now examine
this case of discrete and noisy flow sensing.

3.1 Inverse problem

We assume that there is a linear relationship between the total shear τ and an infor-
mation vector X. In general, the vector X has 10 dimensions: the 5 independent
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components of S∞, the orientation of gravity with respect to the particle orienta-
tion (2 components), and the horizontal component of the vorticity (3 components).
Formally, this can be written as

τθ(θ, ϕ) = Mθ(θ, ϕ) ·X, (24)

τϕ(θ, ϕ) = Mϕ(θ, ϕ) ·X, (25)

where τθ and τϕ represents the two components of the shear in the (r, θ, ϕ) spherical
coordinate system of the particle attached to XY Z. Note that the particle measures
the strain tensor SXY Z and the horizontal rotation rate ΩXY Z in its framework XY Z.
These quantities can be obtained from the corresponding tensor S∞ and horizontal
component of the vector (Ω∞)⊥ in the framework xyz using the rotation matrix R

SXY Z = R · S∞ · RT , ΩXY Z = R · (Ω∞)⊥ , (26)

where R can conveniently be written using the coordinates [Zx, Zy, Zz] of Ẑ in the
framework xyz

R =

 −Zy/Z⊥ Zx/Z⊥ 0
−ZxZz/Z⊥ −ZyZz/Z⊥ Z⊥

Zx Zy Zz

 , with Z⊥ =
√

1− Z2
z . (27)

When there is a discrete number of sensors, the sensing information can be gathered
in a vector s such that

s = [τ∗(θ1, ϕ1), · · · τ∗(θm, ϕm)], (28)

where τ∗ represent either τθ or τϕ and (a, θi, ϕi) represents the spherical coordinates
of the ith sensor. Using (24) and (25), we can thus write the inverse problem as

s = M ·X + ξ, (29)

where ξ represents an additive noise and M is the m×n tensor obtained by assembling
the m vectors M∗(θi, ϕi) of length n = 10. The goal is to find the best approximation
of X given s.

3.2 Singular value decomposition

To solve the inverse problem (29), we use the singular value decomposition of M, which
can be written as

M = U · D · VT , (30)

where

• U is a m×m matrix, its columns ui being the eigenvectors of M ·MT

• D is a m× n rectangular diagonal matrix with, on its diagonal, λi the square roots
of the eigenvalues of MT ·M

• V is a n× n matrix, its column vi being the eigenvectors of MT ·M
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An alternative notation is

M =

m∑
i=1

λiuiv
T
i , (31)

where λi are the positive singular values of M in decreasing order, ui are the left-
singular vector in the sensing space, and vi are the right-singular vector in the flow
information space of X.

Coming back to the inverse problem (29), the decomposition (31) can be used to
write the pseudo inverse of M such that, if y was the sensing information without noise

y = M ·X, (32)

then best approximation of X could be written as

X+ =

rank M∑
i=1

(
uT
i · y
λi

)
· vi, (33)

whereX+ is a vector in the vectorial space of dimension rankM, whose basis is formed
of the first vi vectors (for rank M ≤ n). If rank M > n, then X+ represents the best
least-square approximation of X.

When we use the same pseudo-inverse with noise, we see that we obtain an
approximate X, noted X̃, that can be written as

X̃ =

rank M∑
i=1

(
uT
i · s
λi

)
· vi = X+ +

rank M∑
i=1

(
uT
i · ξ
λi

)
· vi. (34)

From this expression, we see that 1/λi gives an idea of how the noise ξ associated
to a given eigenvector vi may be amplified when trying to inverse the problem. This
is why it is best to concentrate on the singular modes for which λi is over a certain
threshold λc.

3.3 Example 1: buoyant particle with 2 sensors

Let us consider a simple case with two sensors located in r̂ = +Ẑ and r̂ = −Ẑ. We
assume that the particle is buoyant and that its bottom-heaviness is strong such that
the tilting time is short compared to the background flow vorticity [α ≪ 1 in Eqs
(11a,b)]. In the XYZ framework, the particle will measure two shear vectors τ+ and
τ−. Using Eqs (18) and (23), it is easy to show that these vectors satisfy

τ+ + τ− = −2a∆ρ

3µ

(
gXX̂ + gY Ŷ

)
, (35)

τ+ − τ− = (10SXZ + 6ΩY ) X̂ + (10SY Z − 6ΩX) Ŷ , (36)

such that the sum of the two signals informs about the direction of gravity g and the
difference informs some components of the strain SXY Z and the rotation rate ΩXY Z .
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Note that the gradient tensor G of the background flow field has two components that
share the same ones as those measured by the difference of shears: GXZ = SXZ +ΩY

and GY Z = SY Z − ΩX .

3.4 Example 2: non-buoyant particle with 4 sensors

We now consider the case of 4 sensors measuring only the polar component of the
shear τθ, these sensors being regularly arranged along an circle of constant polar angle
θ0 (θ0 ∈ [0, π

2 ] without loss of generality)

θi = θ0, ϕi =
i− 1

n
2π, (37)

with n = 4.
For simplicity, we also consider that the particle is neutrally buoyant and has no

bottomheaviness. In that case, the particle can only measure the strain and we reduce
the unknown X to a 5-component vector

X = [SZZ , SXX − SY Y , SXY , SXZ , SY Z ]. (38)

Using the expression of τ∞ given by Eq. (23), the matrix M defined in Eq. (32) can
be written as

M =


− 15

4 sin 2θ0
5
4 sin 2θ0 0 5 cos 2θ0 0

− 15
4 sin 2θ0 − 5

4 sin 2θ0 0 0 5 cos 2θ0

− 15
4 sin 2θ0

5
4 sin 2θ0 0 −5 cos 2θ0 0

− 15
4 sin 2θ0 − 5

4 sin 2θ0 0 0 −5 cos 2θ0

 . (39)

Performing a singular value decomposition of this matrix, we find four singular
values and four singular vectors:

λ1 = 15
2 sin 2θ0, v1 = SZZ , (40)

λ2 = 5
2 sin 2θ0, v2 = SXX − SY Y , (41)

λ3 = 5
√
2| cos 2θ0|, v3 = SXZ , (42)

λ4 = 5
√
2| cos 2θ0|, v3 = SY Z . (43)

We see that, depending on the value of θ0, the order of the singular values is different,
but in general the four sensors allow to recover all independent components of the
strain execept SXY .

For sensors near the pole or near the equator, such that sin 2θ0 is small, the organ-
ism is only sensitive to the third and fourth singular vectors v3 and v4, which are the
off-diagonal terms of the strain. On the contrary, if the sensors are far from the pole
and the equator such that θ0 = π

4 , the above expressions simplify into

λ1 = 15
2 , v1 = SZZ , (44)

9



λ2 = 5
2 , v2 = SXX − SY Y , (45)

which means that the organism will be only sensitive to the diagonal terms of the
strain. When we add noise, the meaningful signal will be dominated by v1 = SZZ . The
other component v2 = SXX − SY Y will be likely harder to distinguish from noise, its
singular value being 3 times smaller.

4 Discussion

In this paper, I showed how a planktonic organism can use flow sensing to measure
certain components of the flow gradient. For simplicity, I modeled the organism as a
spherical particle equipped with small sensitive hairs on its surface, capable of measur-
ing the local shear without perturbing the flow. A sufficient number of such sensitive
hairs enables the organism to measure the flow strain (the symmetric component of
the flow gradient). However, to measure the flow vorticity (the antisymmetric compo-
nent), the organism must be bottom-heavy. Even with bottom-heaviness, the organism
can only measure the horizontal component of the vorticity when the bottom-heavy
tilting time is short compared to the vorticity timescale.

Extending this study to swimming organisms is possible. For that, we need to
account for the flow induced by the swimming motion. Subtracting the associated
shear from the measurements allows for a direct comparison with the passive organism
scenario, demonstrating the universality of the findings.

The potential extension of this research to organisms with ellipsoidal shapes intro-
duces complexities in the mobility equations as shown by Jeffery [21]. Unlike spherical
shapes, strain components of the background flow influence the rotation of ellipsoidal
particles, rendering it more challenging to divide the general problem into distinct
problems. Moreover, the expression for shear flow at the surface of an ellipsoidal shape
is notably more intricate.

In presenting this work, the primary goal was to better understand the organism’s
capabilities in flow sensing, outlining what it can and cannot measure. I leave for
future studies to explore how organisms could optimize their behavior based on this
information [22].
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