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Abstract

Navigating in a fluid flow while being carried by it, using only information acces-
sible from on-board sensors, is a problem commonly faced by small planktonic
organisms. It is also directly relevant to autonomous robots deployed in the
oceans. In the last ten years, the fluid mechanics community has widely adopted
reinforcement learning, often in the form of its simplest implementations, to
address this challenge. But it is unclear how good are the strategies learned by
these algorithms. In this paper, we perform a quantitative assessment of reinforce-
ment learning methods applied to navigation in partially observable flows. We
first introduce a well-posed problem of directional navigation for which a quasi-
optimal policy is known analytically. We then report on the poor performance and
robustness of commonly used algorithms (Q-Learning, Advantage Actor Critic)
in flows regularly encountered in the literature: Taylor-Green vortices, Arnold-
Beltrami-Childress flow, and two-dimensional turbulence. We show that they are
vastly surpassed by PPO (Proximal Policy Optimization), a more advanced algo-
rithm that has established dominance across a wide range of benchmarks in the
reinforcement learning community. In particular, our custom implementation of
PPO matches the theoretical quasi-optimal performance in turbulent flow and
does so in a robust manner. Reaching this result required the use of several addi-
tional techniques, such as vectorized environments and generalized advantage
estimation, as well as hyperparameter optimization. This study demonstrates the
importance of algorithm selection, implementation details, and fine-tuning for
discovering truly smart autonomous navigation strategies in complex flows.

Keywords: reinforcement learning, optimal navigation, partial observability, active
particle, complex flow, POMDP

1



1 Introduction

The development of artificial microswimmers with navigation capabilities has been an
intense topic of research in recent years [1–3]. When such robots with limited self-
propulsion abilities are carried by a fluid flow, navigation becomes notoriously harder.
This is the kind of challenge faced by robots deployed in the oceans for environmental
monitoring purposes. Ideally, these drifting robots would be able to exploit background
currents to travel more efficiently while relying only on data from their on-board
sensors. The very same problem is also faced by plankton: these small organisms that
drift with currents may be able to exploit hydrodynamic cues to migrate efficiently
over long distances [4–6].

If the agent had global information about the flow, optimal control theory could be
used to find optimal trajectories (a problem known as Zermelo’s navigation problem
[7]). But when the agent can only sense the flow locally (that is, has only access to
a partial observation), optimal control theory can no longer be used. This problem
becomes a model-free partially observable Markov decision process (POMDP). Such
problems are usually well-suited for reinforcement learning, a data-driven alternative
to optimal control that allows an agent to be trained at solving a task through repeated
interactions with its environment.

In the last ten years, navigation in partially observable flows has attracted consid-
erable attention in the fluid mechanics community [8–26], who adopted reinforcement
learning techniques to develop ”smart” navigation strategies. A variety of problems
have been addressed, often inspired by biology. They include exploiting the flow to
travel more efficiently [9, 11–13, 19], maintaining stable collective formations [8, 10, 15],
catching a passive target [16], reducing chaotic dispersion [21], or targeting specific
regions of the flow [14, 24, 25]. In parallel, various physical models of the agent have
been used, ranging from simple self-propelled point particles to deformable bodies
with fluid-structure interactions (e.g., [15, 22]).

A significant part of recent studies still use tabular Q-Learning, a classic learning
algorithm [27] that has long been superseded by ”deep” methods in the reinforce-
ment learning community. A recent paper highlighted the limitations of such ‘vanilla’1

learning algorithms for discovering good strategies in complex flows, by showing that
none of them could match the performance of a simple heuristic strategy obtained
from physical intuition [22]. Therefore, the quality (with respect to optimality) of the
learned strategies obtained so far in various navigation problems is uncertain. Previ-
ous work has shown that vanilla algorithms can find a solution to various navigation
problems. But what does it take to find a good solution (close to optimality)?

In this paper, we provide a rigorous assessment of reinforcement learning as a
tool to discover navigation strategies for microswimmers in complex flows. We com-
pare three algorithms: two are representative of those used in prior work on smart
microswimmers (Q-Learning [27] and Advantage Actor-Critic [28]), the last one is
one the best modern algorithms for reinforcement learning and has demonstrated
its capabilities across a wide range of domains (Proximal Policy Optimization [29]).

1‘vanilla’ refers to the most basic, textbook implementation of an algorithm, without the use of any extra
technique to improve on its performance
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We benchmark these algorithms on a simple navigation problem in three differ-
ent flows that are representative of those used in prior work: Taylor-Green vortices,
Arnold-Beltrami-Childress flow, and two-dimensional unsteady turbulence.

Our study reveals that Q-Learning and A2C (Advantage Actor Critic) algorithms,
despite being still routinely used for this purpose, actually perform rather poorly on
navigation in partially observable flows. In contrast, we show that a custom implemen-
tation of PPO (Proximal Policy Optimization ) allows learning a policy that matches
the near-optimal performance. This work demonstrates that deep reinforcement learn-
ing is indeed a promising path toward autonomous navigation in flows, but only at
the price of careful algorithm selection, implementation, and tuning.

The paper is organized as follows. We start in Section 2 by defining a well-posed
benchmark navigation problem for which a near-optimal policy is known analytically,
and introduce the three flow environments. In Section 3, we present the reinforcement
learning algorithms used in this paper. In Section 4, we report on the performance
and robustness of these algorithms in the three different flows. We conclude with a
summary and discussion in Section 5.

2 Navigation in complex flows

2.1 Statement of the problem

We consider a swimming agent trying to go as far as possible in the upward ẑ direc-
tion. This task is representative of the diel vertical migration of plankton, and more
generally of long-distance navigation to a target point (here moved to infinity) without
the additional difficulties associated with sparse rewards.

The agent is modeled as an inertialess point-like particle swimming at a constant
swimming speed v while being advected by the surrounding flow u(x, t). For simplicity,
we assume that the agent does not modify the background flow (one-way coupling), an
approximation valid in the dilute limit as the agent perturbation to the flow is decreas-
ing as an inverse power law. The agent can only control its swimming direction p̂(t),
a unit vector, every ∆t (decision time). The readjustment of its swimming direction
is instantaneous (no reorientation delay). Under these assumptions, the agent motion
is governed by the following equation:

X(tn+1) = X(tn) +

∫ tn+1

tn

(u(X, t) + vp̂(tn)) dt, X(t0) = X0 (1)

where X(t) is the position of the agent at time t, u(x, t) is the flow velocity field
(incompressible and with zero mean flow), and ∆t = tn+1 − tn. The agent initial
position X0 is randomly initialized in the flow, and the starting time t0 is also chosen
randomly (when the flow is unsteady). The agent’s swimming speed v is chosen as
roughly half the typical flow speed (cf. Section 2.4). This choice ensures that the agent
significantly drifts with the flow, while keeping learning computationally inexpensive
for the purpose of this systematic benchmark.

In order to choose its swimming direction p̂(t) at best, the agent has access to
local flow information G(X(t), t). This observable is chosen to be the local velocity
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gradient tensor ∇u(X(t), t) (or a related quantity, depending on the flow considered,
cf. Section 2.4). Indeed only flow gradients, rather than the flow itself, can be measured
by an agent drifting with the flow.

The goal of the agent is to maximize the total distance traveled along the target
direction ẑ over an episode of duration T = tf − t0, and averaged over all random
initial conditions. We denote this metric Z, formally defined as

Z =< (X(tf )−X0) · ẑ > (2)

where the brackets indicate the average. To summarize, we are looking for the control
(called policy in reinforcement learning) p̂(G) that maximizes the objective function
Z under the dynamics given by Eq. (1).

This problem is simple enough to have a known analytical approximate solution
(cf. next section) while retaining the complexity inherent to plankton-like navigation.
For these reasons, it provides a well-posed benchmark problem for evaluating the
capabilities of reinforcement learning applied to autonomous navigation in flows.

2.2 Analytical baselines

Two heuristic policies are considered as baselines: the naive policy and the surfing
policy.

The naive policy consists in always swimming upward:

p̂ = ẑ, (3)

resulting in average travelled distance Z = vT . This naive policy is a weak baseline,
representative of baselines used in prior work applying vanilla reinforcement learning
algorithms for navigation in flows.

The surfing policy is a recently proposed policy that has been shown to significantly
improve upon the naive policy [6]. It reads

p̂ = λ/∥λ∥, λ = [exp (τ∗G)] · ẑ (4)

where exp is the matrix exponential. The parameter τ∗ has a physical meaning: it
quantifies the mean correlation time of G as observed by the agent along its trajectory.
For all practical purposes τ∗ can be seen as a free parameter of the surfing policy that
can be manually optimized for each flow (cf. Fig. A1). The surfing policy provides
a strong baseline that reinforcement learning should at least match in order to be
considered, in our view, as a suitable method for autonomous navigation in flows.
Its name comes from its physical interpretation [6], as the agent ‘surfs’ on beneficial
upward currents.

These two heuristics are, respectively, zeroth- and first-order analytical approx-
imations of the optimal control for this problem, as obtained from Pontryagin’s
maximum principle. Indeed, our optimization problem can be reformulated as an
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ordinary differential equation for the adjoint λ:

dλ(t)

dt
= −∇u(X(t), t) · λ(t), λ(tf ) = ẑ (5)

which solution is

λ(t) =

[
exp

(∫ tf−t

0

∇u(X(t+ τ), t+ τ)dτ

)]
· ẑ (6)

where X(t) is the solution of Eq. (1). In fluid flows, ∇u is generally time-correlated
over a finite time τ∗. This allows us to approximate the integral in Eq. (6) by
τ∗∇u(X, t). The surfing policy, given by Eq. (4), immediately follows after replacing
∇u by G. Note that neglecting the existence of correlations in the flow amounts to
setting τ∗ = 0, which gives the naive policy.

2.3 Flows

We consider three different carrier flows, which are canonical flows commonly used in
fluid mechanics: Taylor-Green vortices (TGV), Arnold-Beltrami-Childress flow (ABC),
and two-dimensional unsteady turbulence (TURB). These flows provide training envi-
ronments of increasing difficulty and realism, as they exhibit an increasing number
of the key features of real flows: coherent structures (TGV, ABC, TURB), chaotic
dynamics (ABC, TURB), and unsteadiness (TURB). In the following we define these
flows using standard Cartesian coordinates (x,y,z), with z the coordinate of the target
direction.

The TGV flow, illustrated in Fig. 1 (top left), consists of a lattice of counter-
rotating vortices. It is an analytical steady solution to the 2D Navier-Stokes equations.
It reads:

ux = −U cos(x) sin(z),

uz = U sin(x) cos(z)

where we set U = 0.5. This flow has been used in, e.g., Refs [11, 19, 22].
The ABC flow, illustrated in Fig. 2 (top left), is a 3D steady flow characterized by

coherent tube-like structures separated by a chaotic region. It is a steady solution to
the three-dimensional Euler equations (a particular case of the Navier-Stokes equations
with zero viscosity). It reads

ux = A sin(z) + C cos(y),

uy = B sin(x) +A cos(z),

uz = C sin(y) +B cos(x),

where we set A =
√
3, B =

√
2 and C = 1. Similar ABC flows have been used in Refs

[12, 14].
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The TURB flow, illustrated in Fig. 3 (top left), is an unsteady, statistically
stationary two-dimensional turbulent flow obtained by numerical simulation of the
Navier-Stokes equations [30]. This multiscale chaotic flow features moving vortical
structures that have a finite lifetime: they unpredictably appear, evolve and vanish.
We simulated the flow evolution in the direct cascade regime using a standard pseudo-
spectral solver on 2562 collocation points and a large scale stochastic forcing. The
characteristic flow velocity is urms = 3.78 and the characteristic time scale of the flow
(eddy turn-over time) is τω = ω−1

rms = 0.11 with ω = ∇ × u the vorticity. Similar 2D
turbulent flows have been used in Refs [16, 31].

All these flows are 2π-periodic in all directions: when the agent is at position X(t),
the flow at this location is given by u(X(t) mod 2π, t).

2.4 Environment parameters

The three flows, together with the agent swimming speed v, the size of the time step
∆t, the episode duration T , and the observable G, define our three environments. The
parameters used are summarized in Table 1.

In TGV, we set v = umax/2 and an episode consists of 4000 time steps. The
observable is G = ∇u. Due to symmetries, only two components of the velocity
gradient are independent: these two components form the observation given to the
agent, making the observation space two-dimensional.

In ABC, we set v = umax/2 and an episode consists of 2000 time steps. The
observable is the anti-symmetric part of the velocity gradient: G = 1

2

(
∇u−∇uT

)
,

which three independent components are proportional to the components of vorticity
ω = ∇ × u. The observation space is therefore three-dimensional. This choice of
observable is motivated by consistency with prior work on ABC flow where vorticity
was chosen [12]. Note that in ABC flow, ω and u are equal up to a constant. The same
observable G, rather than full velocity gradient tensor, is also used for the surfing
policy in this environment.

In TURB, the agent speed is set to v ≈ urms/2, and an episode consists of 500
time steps (the typical time scale of the flow τω is roughly 11 time steps). Turbulent
simulation data has been generated for a total duration of 5000 time steps, split into
4000 for training and 1000 for testing. The initial time step that defines the start of
an episode is chosen randomly in [0, 3500] for training and [4000, 4500] for testing.
The observable is G = ∇u. Due to flow incompressibility, only three components are
independent, making the observation space three-dimensional.

Note that reducing the observation space to independent components is not key:
using all the components of G yields identical results to those presented hereinafter.

3 Reinforcement learning methods

In the language of reinforcement learning and related domains, our navigation problem
is a partially observable Markov decision process (POMDP). The agent has only access
to an observation o (G at its position) of the underlying state s of the environment (the
entire flow and the agent’s position). The action a is the agent’s swimming direction p̂,
and the reward r is the distance traveled in the target direction between two successive
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environment v u ∆t T G τ∗

TGV 0.25 0.50 0.01 40.0 {∂xux, ∂xuz} 2.0
ABC 1.5 3.0 0.01 20.0 {ωx, ωy , ωz} 0.72
TURB 2.0 3.78 0.01 5.0 {∂xux, ∂xuz , ∂zux} 0.23

Table 1 Parameters of the three environments: agent speed v,
characteristic flow velocity u (max value for TGV and ABC, root-mean-
square value for TURB), decision time step ∆t, duration of an episode
T , observable G, optimal value of the parameter τ∗ of the surfing policy.

Table 2 POMDP framework applied to
autonomous navigation.

POMDP variable navigation variable

sn {X(tn),u(X, t)∀t}
an p̂(tn)
on G(X(tn), tn)
rn [X(tn+1)−X(tn)] · ẑ

time steps. Table 2 maps standard POMDP variables to the corresponding navigation
variables. As is usual in reinforcement learning, we apply learning algorithms designed
for MDP to our POMDP, assimilating the state to the observable, although there is
no guarantee anymore that these algorithms will converge to the optimum policy. In
the following, we introduce the three algorithms considered in this work: Q-Learning,
A2C (Advantage Actor Critic), and PPO (Proximal Policy Optimization).

Q-Learning is a value-based method, where the state-action value function (or ‘Q-
function’) is estimated and the policy is derived directly from it. It is an off-policy
algorithm: the policy used to sample the environment is different from the learned
policy (in practice, an ϵ-greedy version of the learned policy is used for sampling).
In classical Q-Learning, the Q-function is a table, meaning that observations and
actions must be discrete. To use this algorithm, we discretize every component of the
observation vector o by categorizing each of them into three possible bins such that
one third of the data sampled from each environment belongs to each bin. The actions
are discretized into the four (six) Cartesian directions in 2D (3D), that is, ±ẑ and the
two (four) orthogonal directions. Using finer or coarser discretizations may affect the
results, but our Q-Learning experiments are only intended to reproduce prior work,
and similar discretizations were used in [11, 12, 16, 19–21]. We use an optimistic
initialization of the Q-matrix to enhance exploration, this significantly improved the
results compared to an initialization with zeros.

A2C is an actor-critic method: it combines policy-based methods (actor) and value-
based methods (critic). Its name stems from the fact that the critic estimates the
advantage function, rather than the state-action value function. It is an on-policy
algorithm: the learned policy is used to sample the environment. The actor and critic
are feedforward neural networks (see Table A1), which enable us to use continuous
observation and action spaces. The output of the actor is not a Gaussian distribution
as in most implementations, but a von Mises-Fisher distribution to appropriately

7



Table 3 Performance of the best learned policies (with 95% confidence intervals) in the three flow
environments. The performance is defined as the average vertical distance traveled in an episode,
normalized by the same quantity for the naive agent.

PPO A2C QL Surfing Discrete Surfing Naive

TGV 1.62 ± 0.01 1.13 ± 0.01 1.22 ± 0.01 1.48 ± 0.01 1.47 ± 0.01 1.00 ± 0.01
ABC 2.35 ± 0.03 2.32 ± 0.03 1.9 ± 0.03 2.08 ± 0.03 2.01 ± 0.03 1.00 ± 0.03
TURB 1.51 ± 0.01 1.20 ± 0.01 1.17 ± 0.01 1.51 ± 0.01 1.39 ± 0.01 1.00 ± 0.01

represent the orientation of the agent (in 2D or 3D). The actor network is initialized
such that initially, the output distribution is close to uniform. The main reference used
in the implementation of A2C is the classical book of Sutton and Barto [32].

PPO also belongs to the actor-critic on-policy family of algorithms. Compared
to A2C, it comes with multiple additional techniques to improve sample efficiency,
learning stability, and thereby overall performance. In our implementation, which is
inspired by implementations in Refs [33–35], we use policy loss clipping, vectorized
architecture, generalized advantage estimation, advantage normalization, observation
normalization, and training on fixed-length trajectory segments. The actor and critic
networks are identical to those used for A2C.

For each environment and algorithm, we train ten times (ten random seeds) over
106 episodes. In the TURB environment, we use 80% of the simulation time for train-
ing, and the remaining 20% for testing (assessing the performance of the agent in
unseen flow). Hyperparameters for each algorithm were tuned manually to achieve
best performance. This tuning is essential as performance is highly sensitive to some
of these hyperparameters. This is the case, for example, of the learning rates but also
of the parameters related to generalized advantage estimation [36] (used in PPO). The
hyperparameters we used are reported in Table A2.

4 Results

The agent’s goal is to travel as far as possible in the vertical direction, by taking
advantage of the partially observed carrier flow. Its performance is measured by Z, the
vertical distance travelled over the course of an episode, averaged over all possible ran-
dom initial conditions (Eq. 2). In the following, we will present the agent performance
rescaled by the naive performance: Z/Znaive = Z/(vT ).

4.1 Robustness over training trials

Figure 4 shows the beginning of the learning curves (over 105 episodes) of ten trials
for each environment and algorithm. These learning curves allow us to assess the
robustness of each algorithm. By robustness, we refer here to how repeatable are the
training experiments.

Q-Learning has the largest variance across training trials. In both ABC and TURB,
a single trial outperformed all the other ones. Therefore, the performance of the best
agent is not easily reproducible, and strongly depends on a ‘lucky’ random seed. In
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Fig. 1 Navigation in Taylor-Green vortices (TGV). The flow is represented in the upper left corner
by showing the (out-of-plane component of the) vorticity (ω = ∇× u), along with streamlines. The
dashed line represents the initialization of particles whose trajectories are shown in the bottom panel,
for particles following the naive strategy (left) and the learned PPO strategy (right). Unlike naive
agents which can be trapped on periodic orbits, PPO agents have learned to escape such trapping
and all converge to a single trajectory that yields the largest vertical displacement, independently of
their initial location. The PPO policy is compared to the surfing policy in the upper right corner.
While both tend to diverge from downflow regions (violet) and converge to upflow regions (orange),
PPO does it more aggressively, with steeper changes of direction.

general, Q-Learning learns fast, but it is very unstable. It often unlearns good strategies
as shown by sudden decreases in performance.

A2C is found to be robust in TURB, but results were less reproducible in the other
environments. While final performances are similar (with the exception of one trial in
TGV where the agent did not learn anything), learning curves deviate strongly from
one another. A2C tends to converge much more slowly than the other algorithms. This
is due to the fact that both the actor and critic networks need to have small learning
rates to ensure stability for this algorithm. The learning rates we used (cf. Table A2)
are the largest ones allowing stable convergence.

In all the flows considered, PPO robustly reaches the same performance with very
little variance across trials, compared to the other algorithms. In general, PPO con-
verges quickly to the final solution. This is because PPO can handle high learning rates
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Fig. 2 Navigation in Arnold-Beltrami-Childress flow (ABC). The ABC flow is represented in the
upper left corner by showing the total distance travelled by passive tracers advected by the flow
(image generated with LDflow based on the LDDS package [37]). Such quantity, called Lagrangian
descriptor [38], highlights flow regions with qualitatively different dynamics. This flow contains many
coherent tube-like structure (light yellow) where tracers tend to cover large distances, these areas are
also associated with preferential directions. They are separated by a chaotic region (dark red). In the
bottom panels where trajectories are shown, agents are initialized at the z = 0 plane, following the
naive strategy (left) and the PPO strategy (right). PPO agents have learned to converge to a particular
flow structure, characterized by large upward transport. In the upper right corner, the surfing and
PPO policies are projected onto a horizontal plane. The beneficial (detrimental) coherent structures
are visible in the background: the orange (purple) one is associated to large upward (downward)
displacement of passive tracers. Compared to surfing, PPO orients more aggressively toward the
orange structure, which explains its overall superior performance.

for both the actor and the critic networks, as well as training over multiple epochs
because the updated policy is guaranteed not to differ too much from the original one.

4.2 Performance of trained agents

Table 3 shows the performance of each algorithm in each environment. It is used to
assess the ability of algorithms to discover good strategies in various flows. We selected
the best agent for evaluation, that is, the one that achieved the highest performance
at any point during training. Therefore, performance collapse during training does
not affect this evaluation. In the TURB environment, we use the 20% portion of the
simulation that was not used in learning to evaluate the performance.
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Fig. 3 Navigation in a two-dimensional turbulent flow (TURB). A snapshot of the time-dependent
turbulence simulation is represented in the upper left: the (out-of-plane) vorticity is shown in the
background, along with the streamlines. The snapshot corresponds to a randomly chosen time t = t0
at which agents are initialized on the dashed line, their trajectories are shown in the bottom panel.
Compared to the naive strategy (bottom left), the PPO strategy (bottom right) yields trajectories
that tend to clump together to benefit from upward flow. This is visible in the policy representation
(top right), where PPO is compared to surfing: both tend to diverge from downflow regions (violet)
and converge to upflow regions (orange). While not strictly identical, these two policies are very
similar to each other.

The evaluation was done using the deterministic version of the policies. For Q-
Learning, the action chosen is the one corresponding to the highest Q-value. For A2C
and PPO, instead of sampling from the von Mises-Fisher distribution that the network
has converged to, we choose the action corresponding to the mean value of the dis-
tribution. Although not justified theoretically, this is common practice, and we found
that the deterministic versions of the policies yield slightly better performance than
the stochastic versions. Note that with PPO, the policies have essentially converged
to deterministic ones, while this is not the case for A2C.

PPO is unambiguously the best-performing algorithm in all flow environments. It is
the only algorithm able to outperform or match the performance of the surfing policy,
our challenging baseline derived analytically, in all flows. In contrast, the strategies
learned by A2C are far from optimal, except in ABC flow. As both PPO and A2C are
actor-critic algorithms with identical networks, this performance gap illustrates the

11



0 20k 40k 60k 80k 100k
−0.5

0

0.5

1

1.5

0 20k 40k 60k 80k 100k
−0.5

0

0.5

1

1.5

0 20k 40k 60k 80k 100k
−0.5

0

0.5

1

1.5

0 20k 40k 60k 80k 100k

0

0.5

1

1.5

2

0 20k 40k 60k 80k 100k

0

0.5

1

1.5

2

0 20k 40k 60k 80k 100k

0

0.5

1

1.5

2

0 20k 40k 60k 80k 100k
−0.5

0

0.5

1

1.5

0 20k 40k 60k 80k 100k
−0.5

0

0.5

1

1.5

0 20k 40k 60k 80k 100k
−0.5

0

0.5

1

1.5

Trial_1

Trial_2

Trial_3

Trial_4

Trial_5

Trial_6

Trial_7

Trial_8

Trial_9

Trial_10

Naive

Episode Episode Episode

Av
er

ag
e 

Pe
rf

or
m

an
ce

Av
er

ag
e 

Pe
rf

or
m

an
ce

Av
er

ag
e 

Pe
rf

or
m

an
ce

QL A2C PPO

TG
V

ABC
TU

RB

Fig. 4 Learning curves for each algorithm (columns) in each environment (rows): performance
(distance traveled in the vertical direction normalized by vT ) as a function of the number of episodes
used for training. The performance of the naive policy is shown by a black line. To smooth out large
episode-to-episode fluctuations and enhance readability, we use a moving averaging window of 1000
episodes. Only the first 105 episodes are shown, training is continued over a total of 106 episodes
before evaluating performance in Table 3.

importance of using additional techniques (as in PPO) on top of vanilla algorithms
(like A2C).

Q-Learning manages to learn better-than-naive strategies, as reported in most prior
studies on microswimmer navigation. However, we are able to show here that these
learned strategies are vastly suboptimal. Since Q-Learning requires discrete sets of
observations and actions, we evaluated the surfing policy constrained to the same set
of discrete actions (while keeping continuous observations, as discretizing observations
would not make sense). Results are reported under ‘Discrete Surfing’ in Table 3, and
show that, in all flows, Q-Learning is unable to learn a policy that matches this discrete
version of the quasi-optimal strategy.
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4.3 Interpretation of the strategies learned with PPO

We now comment on the best strategies learned for each flow, which have been
obtained with the PPO algorithm.

In TGV (Fig. 1), naive swimmers can be trapped on periodic orbits. The occur-
rence of trapping, and therefore the performance of the naive agent in a given episode,
is entirely determined by its initial position in the flow. In contrast, PPO agents for-
get their initial positions: they all converge to a single trajectory, the one that yields
the largest vertical displacement by the background flow. This behaviour also pre-
vents them from being trapped. The PPO policy and the surfing policy are similar:
both diverge from downflow regions and converge to upflow regions. PPO does it more
aggressively, with steeper changes of direction, resulting its slightly higher perfor-
mance. We remark that, unlike surfing, the PPO policy is not symmetric with respect
to symmetric inputs; this is common in reinforcement learning when no additional
technique is used to enforce symmetries.

In ABC (Fig. 2), there exists a tube-like structure where passive tracers are trapped
and are transported upward at a rapid rate (this structure is essentially an ‘elevator’
[12]). Therefore, the best strategy is to get into this structure as quickly as possible
from the initial position, and then get essentially carried by the upward flow. This is
exactly what the PPO agent has learned to do, and its higher performance compared
to other agents is directly related to its ability to reach this structure faster than all
the other strategies, on average.

In TURB (Fig. 3), the agent needs to find and stay in regions with upward flow,
without overfitting to the specific flow used for training since flow structures are ran-
dom and transient. The policy learned by PPO is very similar to the analytically
derived one (surfing), though not identical. To interpret this difference, we trained an
agent acting according to a generalized version of the surfing policy, where the param-
eter τ∗ is an unknown function (represented by a neural network) of the input G,
rather than a constant. The learned τ∗(G) varies significantly with the input values,
yet the performance of this agent at the task is identical to that of the original surf-
ing policy (and that of the PPO agent). Furthermore, we found that the policy of this
generalized-surfing agent is essentially identical to that of the PPO agent. In conclu-
sion, PPO has learned a generalized version of surfing, with a variable parameter τ∗.
We speculate that there is a family of functions τ∗(G) that perform as well as surfing
in turbulent flows.

5 Conclusions

We have introduced a POMDP that models a navigation task relevant to robotic
microswimmers and planktonic organisms. Despite its apparent simplicity, this task
is challenging because it combines complex (possibly chaotic) state dynamics with
partial observability. It is nevertheless well-posed mathematically and comes with a
near-optimal analytical solution. It is therefore particularly well suited as a benchmark
problem for a quantitative evaluation of reinforcement learning algorithms applied to
navigation in partially observable flows.
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We have implemented A2C and Q-Learning with similar features as in prior stud-
ies on navigation in flows, and shown that these algorithms perform poorly on this
benchmark. In contrast, our custom implementation of PPO robustly achieves near-
optimal theoretical performance. The satisfactory performance obtained with PPO
is encouraging regarding the ability of reinforcement learning to discover and fully
exploit flow features without having direct knowledge of them. We expect this version
of PPO to be a good starting point for solving more challenging navigation tasks in
partially observable flows (e.g., agents with memory).

These results highlight the importance of algorithm selection and implementa-
tion details when applying reinforcement learning to such navigation problems. We
hope that these choices will be discussed more in the future, and that our study will
encourage more quantitative assessments and comparisons. This could be done by com-
paring the performance obtained with various algorithms or by developing challenging
heuristics as baselines.

The turbulent flow simulation considered here was modest to make this systematic
benchmark feasible. Learning in very turbulent 2D flows and in 3D turbulent flows
remains an open challenge. Analytical heuristics such as the surfing policy [6] or its
recent generalizations [39, 40] provide strong baselines to which learned strategies
should be compared to. As the cost of running the environment increases, PPO may
become inefficient. Off-policy algorithms, such as SAC (Soft Actor Critic [41]) and
TD3 (Twin-Delayed Deep Deterministic policy gradient [42]) should be considered
and benchmarked for such problems where sample efficiency is likely to be of critical
importance.

Partial observability is sometimes counteracted by providing the agent with some
form of memory. While memory is unnecessary for the navigation task considered here,
it is crucial to other navigation problems such as olfactory search in turbulent flows
[43–47], a much harder problem on which reinforcement learning has started to be
used [48–50]. It remains to be shown whether model-free, deep reinforcement learning
is a viable tool for discovering good strategies in such memory-based navigation tasks
in the presence of a realistic turbulent flow.

Acknowledgments. We thank Rémi Monthiller for fruitful discussions on optimal
planktonic navigation, Jérémie Bec for his help with early developments of the DNS
code for turbulent flow simulations, and Vladimı́r Krajňák for his help with visu-
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Appendix A Parameters used for the surfing policy,
the actor-critic neural networks, and
the reinforcement learning algorithms

Fig. A1 Surfing policy: optimization over τ in the different flows. In TGV τ∗ = 2.0, in ABC
τ∗ = 0.72, and in TURB τ∗ = 0.23

Table A1 Parameters of the actor and critic neural networks,
used in both A2C and PPO. The two networks are independent (no
shared layer).

Actor network

Number of hidden layers 2
Neurons per hidden layer 40
Type of layers Dense
Initialization Glorot-uniform
Activation ELU
Use feature normalization True
Optimizer Adam
Output distribution von Mises-Fisher

Critic network

Number of hidden layers 2
Neurons per hidden layer 100
Type of layers Dense
Initialization Glorot-uniform
Activation ELU
Use feature normalization True
Optimizer Adam
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Table A2 Hyperparameters used for the learning algorithms.

Hyperparameter of QL TGV ABC TURB

Learning rate 0.8 0.8 0.8
Anneal learning rates True True True
Epsilon (for ϵ-greedy exploration) 0.1 0.1 0.1
Discount factor 0.95 0.95 0.99

Hyperparameter of A2C TGV ABC TURB

Learning rate actor 10−6 10−6 10−6

Learning rate critic 10−4 10−4 10−4

Anneal learning rates False False False
Discount factor 0.95 0.99 0.99

Hyperparameter of PPO TGV ABC TURB

Learning rate actor 10−4 10−4 10−4

Learning rate critic 10−3 10−3 10−3

Anneal learning rates True True True
Discount factor 0.99 0.99 0.99
Number of parallel environments 100 10 10
Rollout length 10 10 100
GAE lambda 1.0 1.0 1.0
Number of minibatches 5 5 5
Epochs 4 4 4
Clip coefficient 0.1 0.1 0.1
Entropy coefficient 0.0 0.0 0.0
Target KL divergence 0.02 0.02 0.02
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