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1IRPHE, CNRS & Aix-Marseille Université, 49 rue Joliot-Curie, 13013 Marseille, France
2Department of Mechanical and Aerospace Engineering, University of California San Diego,

La Jolla, CA 92093, USA

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

The flapping flag instability occurs when a flexible cantilevered plate is immersed in a
uniform airflow. To this day, the nonlinear aspects of this aeroelastic instability are largely
unknown. In particular, experiments in the literature all report a large hysteresis loop,
while the bifurcation in numerical simulations is either supercritical or subcritical with a
small hysteresis loop. In this paper, this discrepancy is addressed. First weakly nonlinear
stability analyses are conducted in the slender-body and two-dimensional limits, and
second new experiments are performed with flat and curved plates. The discrepancy is
attributed to inevitable planeity defects of the plates in the experiments.

1. Introduction
The scientific interest in the flapping flag instability dates back to Lord Rayleigh (1878).

As a side remark in his famous paper on the stability of jets, he showed that an infinite
membrane placed in an airflow is always unstable. Of course, the problem becomes more
complex when bending rigidity and finite plate dimensions are taken into account (see
Päıdoussis 2004; Shelley & Zhang 2011, for recent reviews)

Theoretical models of this instability can be divided into two categories according to
the plate aspect ratio. For large aspect ratios, a two-dimensional analysis is relevant,
and Kornecki et al. (1976) were the first to show that the flow around the plate can
be modelled using unsteady airfoil theory. When the plate aspect ratio is asymptotically
small however, the aerodynamic forces can be modelled using slender-body theory (Datta
& Gottenberg 1975; Lemaitre et al. 2005). The studies in these two asymptotic limits have
been recently generalised by Eloy et al. (2007) and Doaré et al. (2011) who considered
intermediate aspect ratios and confinement effects.

The aforementioned stability analyses are all linear though and, to our knowledge, the
nonlinear dynamics has never been addressed theoretically. This is one of the goals of this
paper, the other being to compare these new weakly nonlinear analyses to experiments.

Since the pioneering study of Taneda (1968), different groups have performed exper-
iments on the flag instability either for small aspect ratios (Datta & Gottenberg 1975;
Lemaitre et al. 2005) or for moderate to large aspect ratios (Zhang et al. 2000; Tang et al.
2003; Eloy et al. 2008, among others). In this latter case, a large hysteresis is always ob-
served at threshold or, said differently, the motionless state and the flapping state coexist
and are both stable over a large range of airflow velocities. To quantify the importance
of this hysteresis, we will refer to the hysteresis loop, (Uc − Ud)/Uc, where [Ud Uc] is
the velocity range of bistability. In large aspect ratio experiments, this hysteresis loop is
typically of 20%. For aspect ratios smaller than one however, hysteresis can disappear
(Eloy et al. 2008).

† Email address for correspondence: eloy@irphe.univ-mrs.fr
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Parameter Symbol Value Unit

Plate length L 3–30 cm
Plate height H 1–20 cm
Plate surface density m 0.25 kg m−2

Plate bending rigidity D 3.0× 10−3 N m
Fluid damping ν 0.044 kg m−2 s−1

Internal damping µ 1.7× 10−6 kg m2 s−1

Wind velocity U 0–65 m s−1

Air density ρ 1.20 kg m−3

Table 1. Characteristics of the experiments.

For small aspect ratios, and negecting the nonlinearities of the aerodynamical forces,
Yadykin et al. (2001) showed that elastic and inertial nonlinearities yield no hysteresis.
In the two-dimensional limit, most numerical simulations have exhibited bistability, both
for inviscid flows modelled with vortex methods (Alben & Shelley 2008; Michelin et al.
2008) or for viscous flows modelled with Navier Stokes solvers (Zhu & Peskin 2002;
Connell & Yue 2007). The only exceptions are the studies of Tang et al. (2003) who did
not consider aerodynamical nonlinearities and Tang & Päıdoussis (2007) who considered
relatively short and heavy plates. Even when bistability is present, the hysteresis loop is
much smaller than in the experiments: Alben & Shelley (2008) and Michelin et al. (2008)
report an hysteresis loop of 2.5–4% and 4.5% while experiments in the same range of
parameters exhibit loops of 20% or more. Several effects have been advanced to account
for this discrepancy: blockage and confinement effects (Tang & Päıdoussis 2007), planeity
defects of the plate (Tang & Päıdoussis 2007; Eloy et al. 2008), or damping effects (Alben
& Shelley 2008). But, until now, none of these hypotheses have been tested.

This paper is organised as follows: in § 2 the experimental setup is briefly described;
in § 3 the physical model is introduced and the weakly nonlinear analyses are carried out;
in § 4 the experimental results are presented and compared to the theoretical predictions;
and finally in § 5 these results are discussed.

2. Experiments
The experimental set-up is illustrated in figure 1a. Experiments are performed in a

horizontal low-turbulence wind tunnel of 80× 80 cm2 cross section. The flexible rectan-
gular plates are cut from Mylar sheets whose physical characteristics are given in table 1.
The bending rigidity D has been measured through deflection tests under gravity, and
the fluid and material damping coefficients ν and µ have been evaluated by measuring
the damping of clamped plates in air at rest.

The same protocol has been followed in all experiments and will be briefly described.
Once the plate is clamped into the mast, the flow velocity is gradually increased. At
small velocities the plate is motionless. Eventually, for a critical flow velocity Uc, the
plate starts to flutter with a large amplitude and a well-defined frequency. When the
flow velocity is decreased, the plate returns to its stable state again at a different critical
velocity Ud 6 Uc, thus leading to a hysteretic cycle.

The motion of the plate is recorded with a CCD laser displacement sensor of spatial
and frequencies accuracies of 1µm and 10 000 Hz. In the present study, the deflection was
measured at the plate center. At this point and near threshold the deflection is always
harmonic in time, and the amplitude A will refer to the peak amplitude of the deflection.
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Figure 1. (a) Sketch of the experimental setup; (b) definition of the coordinates and plate
dimensions; and (c) view of the one dimensional plate motion x(s, t) = (x, y).

3. Modelling
Consider a flexible plate of length L and span H clamped into a mast parallel to the

vertical axis 0z and immersed in a uniform flow of velocity U (figure 1b). Assuming the
motion is independent of z, this plate obeys the Euler-Bernoulli beam equation

m∂2
t x +D∂4

sx− ∂s(〈T 〉∂sx) + ν∂tx + µ∂t∂
4
sx + 〈p〉n̂ = 0, (3.1)

with s the curvilinear coordinate, x(s, t) = (x, y) the plate position, m its mass per
unit area, D its bending rigidity, T the generalised tension in the plate that enforces
inextensibility (i.e. ‖∂sx‖2 = 1), and the chevrons 〈.〉 denote the average along the span.
The terms proportional to ν and µ in (3.1) model the dissipation due to the fluid viscosity
and the Kelvin-Voigt structural damping respectively (Päıdoussis 2004). The last term
in (3.1) is due to the pressure jump across the plate, p(s, z, t), and n̂ is the unit vector
normal to the plate (figure 1c). In addition the deflection y(s, t) satisfies clamped-free
boundary conditions: y = ∂sy = 0 in s = 0, and ∂2

sy = ∂3
sy = T = 0 in s = L.

The Reynolds number being large, we will further assume that the flow is potential
such that the total flow velocity is given by u = U + ∇φ, with U the imposed airflow
and φ the perturbation potential. The potential φ can be found by solving a Laplace
problem with Neumann boundary conditions ensuring the impermeability of the plate

∆φ = 0, with ∇φ · n̂ = (∂tx−U) · n̂ on S, (3.2)

where S is the moving plate surface. From φ the pressure jump can be calculated using
the unsteady Bernoulli equation.

Using L and L/U as characteristic length and time, the control parameters are reduced
to three dimensionless numbers noted with asterisks: the reduced velocity U∗, the mass
ratio M∗, and the aspect ratio H∗

U∗ = UL
√
m/D, M∗ = ρL/m, H∗ = H/L, (3.3a–c)

and the dissipative properties are characterised by two coefficients

ν∗ = νρ−2m
3
2D−

1
2 , µ∗ = µρ2m−

5
2D−

1
2 , (3.4a, b)

where ρ is the fluid density. With this non-dimensionalisation the damping coefficients
depend neither on the plate dimensions H and L nor on the flow velocity U and thus are
constant in the present study : ν∗ = 0.071± 0.001 and µ∗ = 0.0014± 0.0003 (with 95%
confidence intervals).

Equations (3.1–3.2) describe the nonlinear, fully coupled, fluid-structure interaction.
We will now consider three approximations of these equations: the linear limit to address
the instability threshold, and the weakly nonlinear limit both for an elongated plate and
for an infinite plate, to study the nature of the bifurcation.
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3.1. Linear model
Assuming small lateral deflection (y � L and ∂xy � 1), the system (3.1–3.2) is linearised

m∂2
t y +D∂4

xy + ν∂ty + µ∂t∂
4
xy + 〈p〉 = 0, (3.5a)

∆φ = 0, with ∂yφ = ∂ty + U∂xy for y = 0 and 0 < x < L. (3.5b)

This system is solved by the same method as in our previous papers (Eloy et al. 2007,
2008), except that dissipative terms are retained in the analysis. The main steps of this
linear stability analysis are as follow. First, a complex angular frequency ω is assumed and
the deflection y is expanded on Galerkin modes that satisfy the clamped-free boundary
conditions. Second, the Laplace problem (3.5b) for the perturbation potential is solved
for each Galerkin mode in three dimensions, and the associated average pressure jump
〈p〉 is calculated. Finally, the eigenvalue problem obtained from the equation of motion
(3.5a) is solved to obtain the global modes and their complex frequencies. If one of these
complex frequencies has a negative imaginary part, the plate is unstable.

This linear stability analysis allows to predict the critical velocity U∗c , above which the
system is unstable, as a function of the dimensionless parameters M∗, H∗, ν∗, µ∗.

3.2. Slender-body nonlinear model
In the slender body limit (i.e. H � L), the aerodynamic force on the plate can be
decomposed into two terms: a reactive force originating from the added mass of air
accelerated when the plate moves, and a resistive force modelling the drag on the plate due
to crossflow. As a result, the average pressure jump is decomposed as 〈p〉 = preac. +presis.,
where preac. is the reactive part and has been calculated by Lighthill (1971) in the context
of fish locomotion, and presis. is the resistive part

preac. = M
(
ẇ − (uw)′ + 1

2w
2κ
)
, presis. = 1

2ρCd|w|w, (3.6a, b)

where dots and primes denote differentiation with respect to t and s, u and w are the
longitudinal and normal component of the plate velocity relative to the uniform airflow
(such that ẋ−U = ut̂ + wn̂)

u = −Ux′ + ẋx′ + ẏy′, w = Uy′ − ẋy′ + ẏx′, (3.7a, b)

M = πρH/4 is the added mass of air, κ = y′′/(1− y′2)1/2 is the plate curvature and Cd

is a drag coefficient taken to be Cd = 1.8 for a plate (see Buchak et al. 2010).
Inserting (3.6–3.7) into (3.1) and projecting onto x̂ and ŷ give two coupled dynamical

equations for x(s, t) and y(s, t). Following Yadykin et al. (2001), these equations are
decoupled by first using the x-projection to eliminate the average tension 〈T 〉. Then
x(s, t) and its derivatives are eliminated by using the inextensibility condition. Finally
the terms of order larger than y3 are discarded yielding a weakly nonlinear dynamical
equation for y(s, t) that can be expressed as

L(y) +mfm(y) +DfD(y) +Mfreac.(y) + ρCdfresis.(y) = 0, (3.8)

where L is a linear differential operator on y

L(y) = mÿ +Dy′′′′ +M
(
U2y′′ + 2Uẏ′ + ÿ

)
, (3.9)

and the other terms are O(y3) nonlinear terms

fm(y) = y′
∫ s

0

(
ẏ′2 + y′ÿ′

)
ds− y′′

∫ L

s

∫ s

0

(
ẏ′2 + y′ÿ′

)
dsds, (3.10a)

fD(y) = y′′′′y′2 + 4 y′y′′y′′′ + y′′3, (3.10b)
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freac.(y) = −1
2
U2y′′y′2 + U(ẏ′y′2 − 3y′′y′ẏ)− 2ẏ′y′ẏ − 1

2
y′′ẏ2 + y′

∫ s

0

(
ẏ′2 + y′ÿ′

)
ds+

2(Uy′′ + ẏ′)
∫ s

0

ẏ′y′ds− y′′
∫ L

s

y′
(
U2y′′ + 2Uẏ′ + ÿ

)
ds, (3.10c)

fresis.(y) =
1
2
|Uy′ + ẏ|(Uy′ + ẏ), (3.10d)

except fresis. which is of order y2. For the sake of brevity dissipative terms have been
omitted in this analysis (we have checked that they were indeed negligible).

The deflection y is now assumed to be of the form

y(s, t) = (Ah0(s) + h1(s))eiωt + c.c. (3.11)

where A is a small complex amplitude (|A| � L), h0 is the solution of the linear problem
L(h0eiωt) = 0 with clamped-free boundary conditions and the proper normalisation to
allow comparison with experiments (i.e. h0(L/2) = 1/2, such that y(L/2, t) = A cosωt),
h1 gathers the terms of order greater than A, and ‘c.c.’ stands for ‘complex conjugate’.

Using standard methods of perturbation theory, the weakly nonlinear amplitude equa-
tion for A is found. It consists in finding and solving the linear adjoint problem, inserting
the decomposition (3.11) into (3.8), and forming the scalar product with the adjoint solu-
tion. It yields the following amplitude equation given in dimensionless form for A∗ = A/L

−ω∗2A∗ + iω∗U∗c1A∗+
(
U∗2c2 + c3

)
A∗ + (U∗2c4 + iω∗U∗c5)|A∗|A∗ +(

U∗2c6 + iω∗U∗c7 − ω∗2c8 + c9

)
|A∗|2A∗ = 0, (3.12)

where ω∗ = ωL2
√
mD, and the complex coefficients ci depend on the control parameters

M∗ and H∗. Once the ci’s are calculated, the solutions of the second degree equation
(3.12) for ω∗ can be obtained. Then, values of |A∗| such that the imaginary part of ω∗ is
zero give the saturated amplitude A∗(U∗).

The first nonlinear effect comes from the resistive force (3.10 d) and gives the term
proportional to |A∗|A∗ in (3.12). As a result, A∗ is proportional to (U∗ − U∗c ) close to
threshold (see figure 2a). This behaviour has to be contrasted with the usual pitchfork
bifurcation for which A∗ is proportional to (U − U∗c )1/2. In any case, the bifurcation is
not subcritical, and one therefore expect no hysteresis in the slender body limit.

3.3. Two-dimensional nonlinear model
For plates of large aspect ratios (H � L), substantial assumptions have to be made
to solve the weakly nonlinear problem analytically. First the plate span and length are
assumed infinite. The problem then becomes two-dimensional, and it is further assumed
that the deflection is a propagating wave of amplitude A

y = A cos(kx− ωt). (3.13)

To calculate the flow around the plate, the perturbation potential is expanded in powers
of A (i.e. φ = Aφ1 + A2φ2 + A3φ3 + · · ·), similarly to the methods used for the weakly
nonlinear analysis of the Rayleigh–Taylor instability (Nayfeh 1969). Inserting this ex-
pansion into (3.2) and using a Taylor expansion to evaluate φ on the plate, the Laplace
problem is solved for the first three orders yielding

φ±1 = ∓(V − U) sin(kx− ωt) e∓ky, (3.14a)
φ±2 = − 1

2k(V − U) sin(2kx− 2ωt) e∓2ky, (3.14b)

φ±3 = ∓ 1
8k

2(V − U) sin (kx− ωt) e∓ky + h.o.t., (3.14c)
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where V = ω/k is the wave speed of the deformation, the superscript ± corresponds to
the upper and lower parts of the flow and ‘h.o.t.’ stands for ‘higher order terms’.

The pressure field is deduced from the potential φ using the unsteady Bernoulli equa-
tion. The y-component of the pressure force FP is then calculated by evaluating the
pressure jump using a Taylor expansion and projecting it onto the vertical axis. Keeping
only the first harmonics and the terms up to order A3 yields

FP = F1

(
1− 5

8 A
2k2
)
, with F1 = 2ρ(V − U)2Ak cos(kx− ωt). (3.15)

The nonlinearities originating from the inertial and elastic terms can be evaluated
by using the expressions (3.10 a,b). Note that derivatives with respect to s have to be
transformed into derivatives with respect to x using the chain rule. Note also that, when
calculating (3.10 a), boundary terms arising from the integrations are neglected because
y(x, t), as given by (3.13), do not satisfy the clamped-free boundary condition.

Neglecting the dissipative terms, the different nonlinearities can now be gathered to
obtain a weakly nonlinear dispersion relation in dimensionless form (with A∗ = A/L and
k∗ = kL)

−ω∗2
(

1 +
1
8
A∗2k∗2

)
+ k∗4

(
1− 1

2
A∗2k∗2

)
− 2

M∗

|k∗|
(ω∗ − U∗k)2

(
1− 5

8
A∗2k∗2

)
= 0,

(3.16)
where the first term corresponds to inertia, the second to the bending force, and the last
to the pressure force. Solving this second degree equation for ω∗ and finding the values
of A∗ for which the imaginary part of ω∗ is zero gives the saturated amplitude A∗(U∗).

When the mass ratio and the wavenumber are the same as in the experiments (M∗ =
0.6, k∗ ≈ 3π/2), the weakly nonlinear dispersion relation (3.16) predicts a subcritical
bifurcation, with a hysteresis loop of approximately 0.1% (see figure 2b). The bifurcation
is always subcritical, except for small values of the mass ratio, M∗ < k∗/10, for which it is
supercritical. This prediction should be considered with caution however because several
approximations have been made to obtain the dispersion relation (3.16): in particular,
the plate has been assumed infinite to calculate the pressure forces and we know from
the linear stability analysis that finite size effects can be important.

Yet, a comparison with the inviscid numerical simulations found in the literature give
good qualitative agreement. For M∗ = 0.2, k∗ = 3π/2, the bifurcation is found to
be supercritical (since M∗ < k∗/10) as in Tang & Päıdoussis (2007); for M∗ = 3.3,
k∗ = 5π/2, the hysteresis loop is equal to 5.2% which compares well with the 3.4%
reported by Alben & Shelley (2008); finally for M∗ = 10, k∗ = 7π/2, the hysteresis loop
is found to be 12.8% while Michelin et al. (2008) found 4.5%.

4. Results
To examine the dynamics near threshold, two sets of experiments have been carried

out, either with flat plates, or curved plates (see the inset of figure 2a). Flat plates were
cut from unused Mylar sheets and clamped into the mast, whereas curved plates were
first heated on a curved surface for 10 s. In this latter case, an intrinsic curvature of the
order of 0.1/L in the vertical direction subsisted (this curvature is exaggerated in the
inset of figure 2a). For both flat and curved plates, each experiments was reproduced five
to ten times to assess the repeatability and to extract statistics.

Experimental values of the flutter amplitude A∗, measured for M∗ = 0.6 and three
different values of H∗, are plotted in figure 2. It first shows that the deflection A∗(U∗)
does not depend on the intrinsic curvature of the plate and that the repeatability on
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Figure 2. Flutter amplitude as a function of the velocity U∗ for a mass ratio M∗ = 0.6 and
aspect ratios: H∗ = 0.5 (a), H∗ = 1.5 (b), and H∗ = 1.0 (c). Open and filled symbols correspond
to experiments with flat plates and curved plates (see the inset in (a)). The corresponding
average thresholds U∗

d and U∗
c are represented with the same convention (exact values are given

in table 2). The lines in (a–c) represent the predictions of the weakly nonlinear analyses in the
slender-body (–) and two-dimensional limits (- -), as calculated from (3.12) and (3.16). Finally
the square of the amplitude is plotted in (d) for three experiments with different aspect ratios
as labelled (lines are best linear fits near threshold).

this measurement is excellent. These plots also show that the weakly nonlinear analyses
developed in § 3 give good predictions of the saturated flutter amplitude. In the elongated
plate limit (figure 2a), the analysis predicts a supercritical bifurcation with A∗ propor-
tional to (U∗ − U∗c ) near threshold. However, as illustrated in figure 2d, A∗ can always
be reasonably fitted as A∗ ∼ (U∗ − U∗c )1/2 for all aspect ratios, which indicates that the
resistive force modelled by (3.10 d) may not be valid for small flutter amplitudes. Since
this drag force is caused by vorticity shed from the top and bottom edges of the plate, it
probably means that this shedding occurs only when the flutter amplitude is sufficiently
large.

Experimental data for H∗ = 1.5 are plotted in figure 2b together with results of the
two-dimensional analysis. In the inset of the figure, the scale of U∗ has been expanded to
emphasize the subcritical nature of the bifurcation. This subcriticality does not appear
on experimental data (see figure 2d), but this could be due to the moderate value of the
aspect ratio. For H∗ = 1.0 (figure 2c), the measured flutter amplitudes lie between the
predictions of the slender-body and two-dimensional approximations.

Statistics on the the critical velocities have also been performed and the results are
reproduced in table 2 (see also the arrows in figure 2 indicating the mean values of U∗c and
U∗d ). These statistics show that U∗d exhibits a good repeatability and has indistinguishable
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H∗ = 0.5 H∗ = 1.0 H∗ = 1.5

U∗
d U∗

c U∗
d U∗

c U∗
d U∗

c

Flat plates 11.7± 0.2 12.3± 0.3 9.4± 0.1 12.0± 1.8 9.0± 0.4 15.4± 4.9
Curved plates 11.5± 0.1 19.9± 3.7 9.5± 0.1 20.8± 2.9 8.7± 0.4 12.8± 1.5

Table 2. Statistics of the measured critical velocities U∗
d and U∗

c for M∗ = 0.6 and three
aspect ratios H∗ = 0.5, 1.0, and 1.5. For each case, the first figure is the mean and the second
the standard deviation measured on 5 to 10 similar experiments.

values whether the plate is curved or flat. On the contrary, the mean value of U∗c changed
drastically between flat and curved plates. In addition, the standard deviation for U∗c is
consistently larger than for U∗d , showing a relatively poor repeatability.

These results show that U∗c is extremely sensitive to curvature. As it was shown by
Peake (1997), the plate curvature can be taken into account in the linear regime by
adding a spring foundation term to the equation of motion (3.1), with spring rate per
unit surface, Ehκ2, with E = 1.5 GPa the plate Young’s modulus, h = 280µm the plate
thickness, and κ ≈ 0.1 m−1 the curvature. In dimensionless terms, this corresponds to
adding a constant term of order δ2/h2 to the dispersion relation (3.16), where δ is the
typical deflection due to curvature. For the curved plates used here, this dimensionless
spring rate is approximately 200 and leads to a 20% increase of the instability thresh-
old, in qualitative agreement with the experimental observations (this term is only an
approximation because nonlinearities should be considered when δ & 0(h), Audoly &
Pomeau 2010). As soon as planeity defects are of the order of the plate thickness, and
this is almost impossible to avoid in practice, one then expects a stiffening effect and a
delayed instability.

When the plate starts to flutter however, one expects this curvature to be ‘ironed out’,
as originally hypothesised by Tang & Päıdoussis (2007). This ironing out is due to the
prohibitive cost of having a non-zero Gauss curvature that would introduce stretching
energy in addition to bending energy.

In brief, we propose the following scenario. Because of curvature or planeity defects, the
plate is stiffer and the instability is delayed. Once the plate flutters however, these defects
are ironed out and the decreasing threshold U∗d is the one predicted by the analyses. This
scenario is coherent with all the experimental observations. It explains why A∗ and U∗d are
unchanged when curvature is added, why U∗c has poor repeatability and can be increased
by curvature. It also explains why the hysteresis loop tends to increase with the aspect
ratio for flat plates (curvature defects should also have a zero Gauss curvature and thus
are more likely to be in the vertical direction when H∗ > 1). Note that for the largest
aspect ratio, H∗ = 1.5, the curved plates have a lower mean threshold U∗c than flat plates,
but this is not statistically significant because of insufficient data.

The present stiffening scenario might not be the only cause of hysteresis: in particular,
it cannot explain the bistability observed in the soap film experiments of Zhang et al.
(2000). However, the alternative explanations found in the literature are ruled out by the
present set of experiments: both blockage and damping effects would not lead to poor
repeatability of U∗c and a drastic increase of U∗c when curvature is introduced.

Finally, it should be noted that no amplitude smaller than A∗ ≈ 0.06 could be mea-
sured, for all aspect ratios and despite the care taken. It is thus difficult to give a definite
answer on the nature of the bifurcation. Nevertheless, the amplitude clearly behaves as
A∗ ∼ (U∗ − U∗c )1/2 near threshold (figure 2d) and we have shown that the hysteresis
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Figure 3. Instability threshold as a function of H∗ for fixed M∗ = 0.6 (a) and as a function
of M∗ for fixed H∗ = 0.5 (b) for flat plates. Open and filled triangles correspond to U∗

d and U∗
c

respectively. The thick line is the result of the linear stability analysis detailed in §3.1 and, the
thin line is the same analysis without dissipative terms (i.e. for ν = µ = 0). The filled circles in
(b) mark the departure from periodic motion and the dotted line indicates the location where
the second and third eigenmodes have the same frequency.

is mainly caused by planeity defects. Without these defects, we would thus expect a
supercritical bifurcation, in agreement with the theory (the bifurcation could become
subcritical for larger H∗ or larger M∗, but then, plates may sag under their own weight).

Figure 3 shows how the thresholds U∗d and U∗c vary with aspect ratio for constant mass
ratio, or vary with mass ratio for constant aspect ratio. This measurement is compared
with the predictions of the linear stability analysis and the agreement is excellent for U∗d ,
confirming the proposed scenario. It also shows that taking into account the internal and
viscous damping gives a better prediction of the instability threshold.

Figure 3b also shows that, for sufficiently large airflow velocities, the flutter is no longer
periodic. This departure from periodic motion occurs apparently when the unstable mode
(with wavenumber k∗ ≈ 3π/2) has the same frequency as the next eigenmode (with
k∗ ≈ 5π/2). A nonlinear interaction between these modes is thus likely to be the cause
of this secondary bifurcation, which is currently being investigated.

5. Conclusion
In this paper, we addressed theoretically and experimentally the nonlinear dynamics

of the flag instability near its threshold. Weakly nonlinear analyses have been carried out
both in the slender body limit and in the two-dimensional limit. In the former case, the
bifurcation is always supercritical, while it can be subcritical in the latter case for large
enough mass ratios (in agreement with numerical simulations of Tang & Päıdoussis 2007;
Alben & Shelley 2008; Michelin et al. 2008).

In the experiments, the dynamics near threshold is complicated by inherent planeity
defects, which usually lead to large hysteresis. These defects are likely to be the main
cause of discrepancies between numerical simulations and experiments. They are also
responsible for the poor repeatability of the measured instability threshold when airflow
velocity is increased. However, the threshold measured for decreasing velocity is both
repeatable and in excellent agreement with the predictions of the linear stability analysis.
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funded by the French ANR (ANR-06-JCJC-0087). C. E. also acknowledges support from
the European Commission (PIOF-GA-2009-252542).
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