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Abstract

The propulsion performance of a flexible plate undergoing an arbitrary harmonic motion in a two-dimensional and inviscid fluid is
addressed. This plate being free of external forces, heaving and pitching cannot be imposed and are the results of recoil conditions
on the body. Linear unsteady airfoil theory is first used to calculate the average thrust and power required for swimming. The
propulsive performance is then discussed in terms of hydrodynamic efficiency, energy consumption and average swimming speed
and two different asymptotic regimes are identified: the low-velocity regime and the high-velocity regime. The optimal swimming
gaits are calculated in the different regimes as a function of the plate mass ratio and leading-edge suction. Finally an empirical non-
linear model is proposed to complement the linear model and the optimal swimming modes are calculated and discussed within this
framework. For a fixed number of degrees of freedom, it is found that the Strouhal number of the optimal mode is almost constant,
independently of the swimming regime.
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1. Introduction

Aquatic animals have developed different highly efficient
propulsion systems. Customarily, a propulsive force is gen-
erated by a curvature wave propagating backwards along the
swimmer’s body. Depending on the envelope of this bending
wave, different swimming modes can be distinguished [1–3].
When the amplitude of the undulations is confined to the pos-
terior part of the body the swimming is said to be carangiform
and ultimately, the thunniform swimmers, as sharks or tunas,
use only the flapping of their caudal fin to be propelled. This
swimming mode has been widely studied theoretically [4–8]
and experimentally [9–11] as an efficient alternative to the con-
ventional screw propeller . On the contrary, the purely undu-
latory swimming, referred to as anguilliform, where the am-
plitude is significant along the whole body has been much less
studied except in the limit of very elongated animals [5, 12, 13].

When considering the flapping of a rigid foil, only few pa-
rameters control the propulsion, namely the geometric charac-
teristics of the foil (its chord, span and thickness), the flapping
frequency, the amplitudes of heaving and pitching and their rel-
ative phase difference. Using unsteady airfoil theory [14, 15],
the two-dimensional inviscid flow around the foil can be cal-
culated in the limit of small flapping amplitudes. This flow
depends on the vorticity formed in the viscous boundary lay-
ers attached to the surface of the foil and advected in its wake.
Once this flow is known, the pressure difference across the foil
can be worked out and this yields the total power required for
the motion, the wasted power and the power of the thrust force
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(which is simply equal to the difference of the two previous
powers) [4, 5].

The optimal flapping of a rigid foil has been addressed by
Lighthill [5] and Wu [7] independently. They both showed that
maximal hydrodynamic efficiency is reached when the phase
angle between heave and pitch is close to π/2. The optimal am-
plitude ratio (pitching/heaving) and the efficiency are both in-
creasing function of the flapping frequency converging towards
one. These predictions have been confirmed by experimental
measurements made on oscillating foils towed in a tank [9–11].

Both Lighthill [5] and Wu [7] pointed out that an important
contribution to the thrust may originate from the leading-edge
suction. This localized force, which is due to the singularity of
the pressure field at the leading-edge, may be difficult to real-
ize in practice because it promotes dynamic stall. When stall
occurs, vorticity is detached at the leading edge, and a leading-
edge vortex is formed. This phenomenon can be dramatic in
terms of performance as it has been recognized in experiments
[11].

In the present paper, we will address the more general prob-
lem of a thin flexible plate undergoing an arbitrary harmonic
motion in two dimensions. Heaving and pitching amplitudes
will not be prescribed and will arise from the recoil conditions
on the body (Newton’s second law). This anguilliform swim-
ming mode is relevant to elongated animals like eels (for which
an elongated-body theory [5] is also appropriate), rays or in the
prospect of developing highly efficient bio-inspired propulsion
systems [16, 17].

The structure of the paper is the following. We will first re-
produce the main results of unsteady airfoil theory applied to
the present swimming problem by following Wu [7] to deduce
the dimensionless thrust, power required and power wasted
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as a function of the parameters of the problem. The optimal
swimming motions will then be calculated and discussed in the
framework of this linear model. We will then introduce an em-
pirical non-linear model and show how the optimal swimming
gaits are modified. Finally, we will discuss these results in the
context of fish swimming.

2. Formulation of the problem

2.1. Plate deformation
Consider the harmonic deformation with angular frequency

Ω of a flexible plate of length 2L and zero thickness in a two-
dimensional inviscid and incompressible fluid (Fig. 1). The
transverse deformation of the plate produces a longitudinal in-
stantaneous thrust force T . In the cruising regime, when this
force is averaged over one period, it is equilibrated by the aver-
age drag D and yield an average swimming velocity U .

Choosing the frame of reference moving with the plate at ve-
locity U and using the half-chord L and the angular frequency
Ω as characteristic length and frequency to formulate the prob-
lem in dimensionless form (with lowercase letters), the plate
deformation may be prescribed by

y(x, t) = h(x) eit (−1 < x < 1), (1)

where h(x) is a continuous function assumed to be small at this
point, i.e. h � 1 and ∂h/∂x � 1. In this dimensionless form,
the flow velocity is now u = U/(ΩL). Note that the reduced
frequency k, commonly used in aerodynamics, is the inverse of
the dimensionless velocity: k = 1/u = ΩL/U.

The plate motion is expanded onto the eingenmodes of an
elastic beam in vacuo with free-free boundary conditions

h(x) =

N∑
n=1

anhn(x), (2)

with h1(x) = 1, h2(x) = x, and hn(x), the n-th eigenmode given
explicitly in the Appendix. This expansion ensures that no in-
ternal force or torque have to be applied at the free ends of the
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Figure 1: Sketch of the swimming flexible plate: (a) in dimensional units and
(b) in dimensionless units and in the frame of reference moving at velocity U.

plate. The first two eigenmodes h1(x) and h2(x) correspond to
heave and pitch motions and play a particular role as it will be
shown below. Note also that these eigenmodes form a com-
plete orthogonal set of the functions with free-free boundary
conditions. In the following, the number N of eigenmodes used
in the expansion will be an adjustable parameter. This expan-
sion is therefore compatible with an actuated elastic plate with
a small number of degrees of freedom. However, the way the
plate would have to be actuated will not be discussed in this
paper and its motion will be prescribed.

Following Wu [4, 6, 7] with slightly different notations, the
swimming performances are evaluated by expanding the plate
motion as

h(x) =
b1

2
+

∞∑
n=1

bn+1 cos nθ (x = cos θ), (3)

where 0 < θ < π (see Eq. (2) in Wu [7]). It correspond to a
decomposition of h(x) onto the Chebyshev polynomials of the
first kind. For small deformations, the transverse flow velocity
on the plate is

v(x) =
∂y
∂t

+ u
∂y
∂x

= u
(
ikh +

∂h
∂x

)
eit, (4)

which is also expanded onto the Chebyshev polynomials of the
first kind such that

ikh +
∂h
∂x

=
c1

2
+

∞∑
n=1

cn+1 cos nθ, (5)

(see Eq. (4) in Wu [7])
The link between the expansion onto the beam eigenmodes

given by Eq. (2) and the expansion onto the Chebyshev poly-
nomials of Eqs. (3) and (5) can be expressed vectorially

b = B · a, c = C · a (6)

where the matrix coefficients of B and C are given by

Bi j =
2
π

∫ π

0
h j(x) cos(i − 1)θ dθ, (7)

Ci j =
2
π

∫ π

0

(
ikh j +

∂h j

∂x

)
cos(i − 1)θ dθ, (8)

and a, b and c are the column vectors containing the different
an, bn and cn respectively. As it will appear below (see also the
discussion in Wu [7]), only the first four components of b and
c are needed to evaluate the swimming performance. Hence, B
and C will be 4 × N matrices in the following.

2.2. Perturbation flow
When the flow around the plate is assumed to be potential,

the perturbation flow is found by solving the Laplace equation
for the perturbation velocity potential with a prescribed trans-
verse velocity given by Eq. (4) on the plate (which is a Neu-
mann boundary for the velocity potential). This calculation is
classical in unsteady aerodynamics [14, 15, 18, 19] and has also
been used in the context of flapping foils [4–7].
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When the problem is linearized, the distribution of vortic-
ity in the plate depends linearly of the transverse flow velocity
imposed on the plate. The flow being potential, the vorticity
can only be generated in the viscous boundary layers attached
to the plate surface. This vorticity is then shed in the wake at
the trailing edge. In the linear limit, the vorticity is advected
in the x-direction at the velocity u. The problem being time-
periodic with a period 2π in dimensionless form, it results a
space-periodic wake formed of vortex sheet along the Ox-axis
with a wavelength λ = 2πu.

It is interesting to note that in swimming experiments, the
wake behind the swimmer is a von Kármán wake when drag
dominates and a reverse von Kármán wake when thrust dom-
inates [20]. At the transition between these two regimes, the
wake is formed of aligned vortices of alternate signs, very sim-
ilar to the wake of the present linear potential theory.

For the sake of brevity and clarity, the calculation of the per-
turbation flow and perturbation pressure will not be detailed
here and the readers interested in these details are referred to
the above references.

2.3. Recoil conditions
If the flexible plate propels itself without external agencies,

Newton’s second law apply. This recoil condition require that
the hydrodynamic lift and moment must be equal to the rate of
change of the lateral and angular momentum of the body [6, 7].
Expressed vectorially, it follows that

l(k) · c =
k2

π
L · a, (9)

m(k) · c = −
2k2

π
M · a, (10)

where the row vectors l and m only depend on the reduced fre-
quency k and are given in the Appendix (see Eqs. (15–16) in
Wu [7]).

The row vectors L and M are given by

Li =

∫ 1

−1
m(x)hi(x) dx, (11)

Mi =

∫ 1

−1
xm(x)hi(x) dx, (12)

where m(x) is the dimensionless mass per unit length of the
plate (using ρL as the reference mass per unit length, with ρ the
fluid density). We will assume that m(x) is semi-elliptic in this
paper

m(x) = µ
√

1 − x2, (13)

and µ will be called the mass ratio. For a swimmer with same
density as water, the maximum thickness-to-length ratio is µ/2.
In the following the value µ = 0.3 will be used, corresponding
to an aspect ratio of 6.7, close to the values measured in most
fish and cetacean species. The specific distribution of mass
(semi-elliptic here) is not an important aspect of the problem:
other distributions have been tested without affecting the results
qualitatively.

The Eqs. (9) and (10) expressing Newton’s second law al-
lows to calculate the amplitudes a1 and a2 corresponding to

heaving and pitching respectively as a functions of the other
amplitudes an. In other words, when the swimmer prescribes a
certain bending along its length, its transverse motion (heave)
and rotation (pitch) are the result of the recoil conditions. It
can thus be concluded that the number of degrees of freedom is
N − 2, where N is the number of eigenmodes in Eq. (2).

2.4. Propulsion performance
The time averages of thrust 〈T 〉, energy loss 〈E〉 and power

required 〈P〉 can be put in dimensionless form following Wu
again [4, 6, 7]

CE = 〈E〉/
(

1
4πρU3L

)
= a∗ · E(k) · a, (14)

CP = 〈P〉/
(

1
4πρU3L

)
= a∗ · P(k) · a, (15)

CT = 〈T 〉/
(

1
4πρU2L

)
= CP −CE , (16)

where a∗ denotes the adjoint of a (see Eqs. (6–8) in Wu [7]).
Under this form, it is evident that the above coefficients are
quadratic forms of the amplitude vector a.

When the plate is swimming at constant average speed, the
average thrust 〈T 〉 has to be opposite to the average drag 〈D〉.
If the flow is potential or if the viscous stresses are negligi-
ble (which is generally the case), the drag is also proportional
to ρU2 and therefore in dimensionless form this conditions re-
duces to

CT = CD = 〈D〉/
(

1
4πρU2L

)
, (17)

where the drag coefficient CD only depend on the swimmer
shape. In the following, the drag coefficient will be assumed
to be constant, CD = 10−2. This value is relatively high for a
streamlined body, but the results do not qualitatively depend on
the particular value chosen.

If the thrust has to counterbalance the drag on average, the
instantaneous values do not generally balance. This leads to
small accelerations and decelerations over each period. How-
ever, when body inertia is present, these accelerations can be
neglected and the instantaneous velocity is always equal to the
average velocity at leading order.

The propulsion performance is usually measured with the hy-
drodynamic efficiency η, defined as the ratio of the power gen-
erated by the thrust to the total power required

η =
CT

CP
=

CD

CP
= 1 −

CE

CP
. (18)

An alternative approach is to examine two quantities: the av-
erage swimming velocity and the consumption of energy per
unit distance. In dimensionless form, these quantities reduce
to the dimensionless velocity u = 1/k and the dimensionless
consumption ξ given by

ξ = 〈P/U〉/
(

1
4πρΩ2L3

)
=

CP

k2 =
CD

ηk2 , (19)

where P/U is the instantaneous hydrodynamic energy con-
sumption per unit distance at leading order.

When the angular frequency Ω is constant, the swimmer
reaches a large velocity when the reduced frequency k is small.
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But in this case, the consumption is large as ξ scales as k−2

(assuming that CD is constant and η of order one). Therefore,
two asymptotic regimes can be distinguished: a high-velocity
regime for asymptotically small k which implies a large con-
sumption, and a low-velocity regime for large k which implies
a low consumption. Moderate values of k will correspond to
the intermediate regime and the value k = π will be chosen to
describe this regime as it corresponds to a swimming velocity
of one body length per period.

2.5. Leading-edge suction
The leading-edge suction S is the local thrust force arising

from the singularity of the pressure at the leading edge. This
force is never negligible and can be greater than the total thrust
in some cases (the complementary thrust coming from the rest
of the plate thus being negative). In dimensionless form, the
average leading-edge suction can be calculated similarly to the
total thrust

CS = 〈S 〉/
(

1
4πρU2L

)
= a∗ · S(k) · a, (20)

where the matrix S is given in the Appendix.
It has been recognized that a large leading-edge suction may

be hard to achieve in practice [5, 7, 11]. In such cases, one
expects dynamic stall to occur, an ubiquitous phenomenon in
helicopter flight and turbomachines which can limit or enhance
the performances. In this case, a leading-edge vortex is de-
tached and the hydrodynamic forces can no longer be described
with the present potential flow theory. Some animals have also
been shown to exploit the flow separation at the leading edge, in
particular in flapping flight [21]. However, the phenomenon of
dynamic stall is difficult to model adequately and the existing
model usually consider rigid plates in steady flow [22].

It is beyond the scope of the present paper to develop a
model of dynamic stall for a flexible plate in unsteady flow.
Instead, the leading-edge suction will be constrained to zero
which is possible for a large enough number of degrees of free-
dom (N − 2). When CS = 0, the flow is almost parallel to the
plate at the leading-edge in such a way that the pressure field
is no longer singular at this point. One could alternatively im-
pose the flow to be parallel to the plate at the leading edge by
using the decomposition given by Eq. (3), which would results
in CS being close to zero. Finally, another way to prevent large
leading-edge suction would be to add the constrain CS < CT

such that the thrust originating from the rest of the plate re-
mains positive. These three alternatives have been tested and
they give very similar results.

3. Optimization of the linear problem

In this section, optimal plate deformations will be calculated
for the different swimming regimes. This optimization proce-
dure consists in finding the minimum of the dimensionless en-
ergy loss CE given by Eq. (14) as a function of the reduced
frequency k when the the amplitude vector a is varied.

This optimization is constrained by the recoil conditions of
Eqs. (9) and (10) and by the balance of thrust and drag given
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Figure 2: Efficiency as a function of the reduced frequency for the linear model.
The parameters are CD = CN = 10−2, N = 5 and: CS , 0, µ = 0 (dotted line);
CS = 0, µ = 0 (dashed line), CS = 0, µ = 0.3 (solid line). The circles refer to
the optimal gaits illustrated in Fig. 3.

by Eq. (17). Since the thrust and energy averages are quadratic
functions of the amplitude vector a, its norm CN will be also
constrained, where

CN =

N∑
n=3

|an|
2 . (21)

Note that the heave (n = 1) and pitch (n = 2) amplitudes are
omitted in this norm since they are assumed to depend passively
on the other amplitudes via the recoil conditions as explained
above.

This optimization depends on the free parameters of the
problem: the normalized drag CD/CN , the mass ratio µ given
by Eq. (13), the number of modes N, the reduced frequency
k and the values allowed for the leading-edge suction CS . In
this section, the values of the drag and norm will be fixed:
CD = CN = 10−2 and the number of modes will be set to its
minimum to allow for the constraints: N = 5. The main rea-
son for keeping the value of N small is that, for larger values,
the optimal deformation can locally exhibit large angles with
the main flow and therefore escape the validity domain of the
linear model. The dependence on the number of modes will
be discussed with an appropriate non-linear model in the next
section.

The function to minimize and the different constraints can all
be expanded as polynomials of the amplitudes an. This property
allows to find the global optimum for a given reduced frequency
k with a symbolic calculation software such as Mathematica
[23].

3.1. Leading-edge suction

For a massless flexible plate (i.e. µ = 0, equivalent to a negli-
gible thickness) and with a unconstrained leading-edge suction,
the optimal efficiency has been calculated as a function of the
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Figure 3: Optimal swimming gaits given by the linear model for CD = CN = 10−2, N = 5 and different reduced frequencies k as labelled. The plate is moving
from right to left and three instantaneous deformations are pictured per period (with no vertical magnification). The hydrodynamic efficiency associated with each
of these gaits is given in Fig. 2.

reduced frequency (Fig. 2, dotted line). The corresponding op-
timal swimming gaits for k = π/3, π and 3π are reproduced in
Fig. 3 (a–c). In the following, we will refer to these particular
values of the reduced frequency as the high-velocity, interme-
diate and low-velocity regimes respectively.

In these three regimes, the leading-edge suction far exceeds
the total thrust: CS = 4.9CT , 18.5CT and 23CT respectively. It
means that the contribution of the thrust originating from the
rest of the plate is negative. Since such a large leading-edge
suction would be difficult to realize without dynamic stall, we
have calculated the optimal swimming gaits with the additional
constraint of zero leading-edge suction, with CS given by Eq.
(20).

The resulting efficiency is plotted in Fig. 2 with a dashed
line. As expected intuitively, the efficiency is lower with this
additional constraint. This is especially true in the interme-
diate regime when k ≈ π. The corresponding optimal swim-
ming gaits (see Figs. 3 b,e) indeed show different features in this
regime. When the leading-edge suction is zero the plate follows
an undulating path such that the leading edge is always parallel
to its local velocity (this is also true for any point of the plate).
When CS is non zero, the leading edge is no longer parallel to
its velocity (Fig. 3 b) and the optimal gait looks ‘anomalous’.

In the high-velocity regime (k . 1), whether the leading-
edge suction is constrained to zero or not, the optimal swim-
ming gaits exhibits the same characteristics and the efficiency
is almost equal to 100%. The amplitudes of heave and pitch
dominate over the bending amplitudes and the path followed by
the leading edge is a large amplitude sine curve (with this am-
plitude increasing as k decreases). Note that there is no solution
for k < 0.22 when the leading-edge suction is constrained to
zero (and for k < 0.13 without this constraint). This means that
there is a maximum allowed speed in this case u = 1/k = 4.5.
This maximum speed is the consequence of the imposed norm
CN = 10−2 as defined by Eq. (21). Note that the maximum ve-
locity would be drastically reduced if the heave and pitch am-
plitudes were included in the definition of the norm CN .

In the low-velocity regime (k & 10) , the optimal gaits are
very similar whether the leading-edge suction is constrained to

zero or not (Fig. 3 c,f). In this regime, the heave and pitch am-
plitude are almost zero and the deformation is approximately
given by a sine function such that there are 1.5 wavelengths
along the chord (there is 1 wavelength when k = π and approx-
imately 1/3 wavelength with k = π/3). This particular defor-
mation and wavelength is constrained by the relatively small
number of degrees of freedom allowed (N = 5).

Since an unconstrained leading-edge suction leads to large
values of CS and mostly to negative values of the thrust origi-
nating from the rest of the plate surface, we will always add the
additional constraint of zero leading-edge suction in the follow-
ing.

3.2. Effects of body inertia
We now examine the effect of body inertia on the swimming

performance by considering a mass ratio µ = 0.3, still with zero
leading-edge suction (i.e. CS = 0). The mass per unit chord as
given by Eq. (13) reflects a swimmer of elliptical thickness with
the same density as the surrounding fluid and with an aspect
ratio AR = µ/2 = 0.15 (defined as the maximum thickness at
mid chord divided by the chord).

The hydrodynamic efficiency of this elliptical swimmer is
plotted as a function of the reduced frequency in Fig. 2 with a
solid line, and the corresponding optimal gaits are illustrated in
Fig. 3 (g–i). The main difference with the massless swimmer is
that it is less efficient in the high-velocity regime with a hydro-
dynamic efficiency dropping to η ≈ 0.65 and a maximum speed
of u = 1/k = 2.4 (again this maximum speed is closely related
to the imposed norm CN = 10−2). The main reason for the loss
of efficiency is that the effects of body inertia prevents large
heave and pitch amplitudes and therefore the large-amplitude
undulating path followed by the massless swimmer (Fig. 3 d)
can no longer be achieved with inertia.

In the intermediate and low-velocity regimes, the optimal
gaits and the efficiency are similar with that of the massless
swimmer because heave and pitch are small in these regimes.

3.3. Energy consumption
The dimensionless energy consumption as defined by Eq.

(19) is plotted as a function of the reduced frequency in Fig. 4.
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Figure 4: Energy consumption as a function of the reduced frequency for the
same parameters as in Fig. 2.

In all cases (with zero or non-zero leading-edge suction, with
inertia or not), the consumption is a monotonically decreasing
function of the reduced frequency, and therefore a monotoni-
cally increasing function of the cruising velocity.

If the swimming performance is evaluated in terms of both
consumption and swimming speed, Fig. 4 thus shows that there
is no particular value of the reduced frequency for which there
is an advantage on both of these criteria compared to the other
values. It means the choice of the reduced frequency is always
a trade-off between consumption and speed.

It should be pointed out here that the above argument on
the reduced frequency and the different swimming regimes as-
sumes that the swimmer deforms itself with a fixed angular fre-
quency Ω. If one allows this frequency to be varied, the swim-
mer can adjust it in order to obtain any particular value of the
reduced frequency for a given targeted swimming velocity. In
this case, there will always be an energetic advantage to maxi-
mize the hydrodynamic efficiency.

4. Non-linear effects

The major drawbacks of the linear model described above are
the following. First, the amplitude of the plate deformation has
to be prescribed to perform the optimization as the thrust and
energy loss grows are quadratic forms of the plate amplitude.
As it has been seen above, this arbitrarily imposed norm CN

yields a maximum swimming velocity. Second, when calculat-
ing the optimal swimming gaits with a large number of degrees
of freedom, the linear model predicts unrealistic deformations
where small wavelength modes have large amplitudes and lead
to large angles between the plate and the flow locally. To avoid
these drawbacks and to take into account the saturation of both
the thrust and the energy loss as the amplitude of the plate defor-
mation grows, we propose here an empirical non-linear model.

4.1. Model
The sources of non-linearities are manifold in this problem.

For instance, the thrust is obtained by integrating p(x) sin θ(x)
along the plate chord, where p is the pressure difference across
the flexible plate and θ is the angle between the plate and the
horizontal. One source of non-linearity here is the difference
between sin θ and the x-derivative of the deformation used in
the linear approximation which gives at second order (with real
quantities now)

sin θ =
dh
dx

1 − 1
2

(
dh
dx

)2

+ · · ·

 . (22)

For high-order bending modes, the derivative dh/dx scale as
n|an| in first approximation, where n is the order of the mode.

The other source of non-linearity arises from the saturation
of the pressure difference p for large deformations. To find this
pressure difference, the velocity potential is first found by solv-
ing a Laplace equation with the Neumann boundary condition
given by the kinematic boundary condition on the plate surface.
This boundary condition states that the normal flow velocity
should equal the normal plate velocity. When the deformation
amplitude is finite, this Neumann boundary condition has to be
applied away from the Ox axis and yield again to a geometric
non-linearity for the pressure difference of the form

p(x) = pL

1 − α (
dh
dx

)2

+ · · ·

 , (23)

where pL is the pressure difference of the linear model and α
a coefficient which depends a priori on the particular mode of
deformation and on the reduced frequency. Note that the sign
of the coefficient α is not necessarily positive.

Finally, as it has been shown by Chopra [24], the finite am-
plitude of the vortex sheet deformation in the wake leads to a
non-linearity of the pressure difference of the form

p(x) = pL

(
1 − βk2|a|2 + · · ·

)
, (24)

where β is a positive parameter. This particular non-linear term
is due to the fact that the wake has a finite thickness that scales
as |a| and a wavelength as λ = 2π/k.

To avoid too many empirical coefficients, we propose the fol-
lowing non-linear model, where the dimensionless energy loss,
power required and average thrust are now given by

CE =
(
1 − αEk2CNL

)
a∗ · E · a, (25)

CP =
(
1 − αPk2CNL

)
a∗ · P · a, (26)

CT = CP −CE , (27)

where CNL is the following norm

CNL =

N∑
n=1

n2 |an|
2 , (28)

αE = 0.04 and αP = 0.08 are two empirical coefficients, and
the recoil conditions given by Eqs. (9) and (10) are supposed to
be unchanged.
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When the deformation amplitude is small enough such that
CNL � 1, the linear model is recovered. When the amplitude
increases the proposed non-linear model predicts the satura-
tion of the thrust with a non-linear term that grows quadrat-
ically both with the reduced frequency (as predicted by the
non-linearity due to the wake finite thickness) and with the or-
der of the mode n (as predicted by geometric non-linearities).
For asymptotically small reduced frequencies however, the
proposed model probably underestimate the non-linearities as
the added non-linear term vanishes for vanishing reduced fre-
quency. Each eigenmode contributes to the saturation indepen-
dently in this model and no interactions between modes are con-
sidered.

The present non-linear model is very crude but has several
advantages. First, it is very simple and allows to perform a
global optimization since the thrust and power coefficients are
still given as polynomials of the amplitudes an. Second, it cap-
tures some essential features of the non-linear saturation such
as the dependence on the reduced frequency and on the mode
order (which is essential to prevent high-order modes to dom-
inate). Finally, this model has only two adjustable parameters
αE and αP. The results do not depend appreciably on the value
of the coefficient αE as long as it is significantly lower than αP.
For instance, this parameter could be taken to be zero without
notable differences in the following calculations.

The value chosen for the coefficients αE and αP are an order
of magnitude larger than what can be estimated from the ana-
lytical results of Chopra [24] for a heaving and pitching rigid
plate, which gives αP ≈ 0.003. They are also larger than what
can be estimated from the theoretical/numerical results of An-
derson et al. [25] also on a oscillating rigid plate: αP ≈ 0.02.
One of the reason to choose larger values in the present study
is that the amplitude of the swimming modes and their Strouhal
number is closer to what is observed in nature with these values.
It could be also argued that for a plate of finite span, an addi-
tional energy is loss by the drag affecting the plate lateral dis-
placement. This drag can be estimated to be proportional to the
square of the lateral velocity and thus scales as |an|

2. If one were
to choose smaller values for αE and αP, it would only increase
the amplitude of the optimal swimming mode without qualita-
tively modifying its dependence on the reduced frequency and
on the number of degrees of freedom.

4.2. Results
Using this non-linear model, we have performed optimiza-

tion calculations keeping the drag coefficient constant (CD =

10−2), the mass ratio constant (µ = 0.3) and increasing the num-
ber N of modes of the decomposition starting with the minimal
value N = 5. The resulting optimal efficiencies are plotted as a
function of the reduced frequency in Fig. 5 and the correspond-
ing optimal swimming gaits are illustrated in Fig. 6.

The intuitive feature that the hydrodynamic efficiency should
increase as the number of degrees of freedom increases is re-
covered by the model. Another feature, less intuitive, is that
the efficiency globally increases when the reduced frequency
decreases (or the swimming velocity increases) reaching val-
ues close to 100% when k . 1. This is very different from
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Figure 5: Efficiency as a function of the reduced frequency for the non-linear
model. The parameters are: CD = 10−2, µ = 0.3, N = 5 (dotted line), N = 7
(dashed line), N = 9 (solid line), and the circles refer to the optimal gaits plotted
in Fig. 6.

the linear model where it was the opposite (Fig. 2, solid line).
The other difference is that there is no minimum reduced fre-
quency, and thus no maximal dimensionless velocity allowed,
the only limit being the prohibitive energetic cost for asymptot-
ically large velocities. This point would probably be different
with a non-linear model adapted to asymptotically small values
of k.

The optimal gaits in the different swimming regimes for N =

5 (Fig. 6 a–c) share some properties with what was observed
in the linear model for the same number of modes (Fig 3 g–i).
The amplitude of heaving and pitching also decreases as the
reduced frequency increases, but in the non-linear model, the
amplitude of all modes decrease as the non-linearity grows as k2

and thus the amplitude, as defined by the norm CN given by Eq.
(21), is expected to decrease as k−2. For the intermediate regime
and with a small number of degrees of freedom (Fig. 6 b), the
swimmer follows approximately a undulating path similarly to
what was obtained in the linear model (Fig 3 b). However, in
the high-velocity regime (Fig. 6 a), the optimal gait is somehow
different and consists in a ‘kink’ propagated backwards by the
swimmer. In the low-velocity regime (Fig. 6 c), the optimal
gait is again an undulation with approximately 1.5 wavelengths
along the plate chord similarly to the linear case (Fig. 3 c) but
with a smaller amplitude.

In the non-linear model maximum efficiency is achieved
when the reduced frequency is small while the opposite is true
in the linear model when body inertia is taken into account.
This difference arises from the fact that the norm CN is fixed in
the linear model whereas it is free and varies roughly as k−2 in
the non-linear model.

When the number of modes is increased, swimming is more
efficient and this gain in efficiency is reflected in the opti-
mal swimming gaits. For the intermediate regime for instance
(Fig. 6 b,e,h), as N is increased, the amplitude of the undulat-
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(a)
(b) (c)

(d)
(e) (f)

(g)
(h) (i)

k = π/3 k = π k = 3π

N = 5

N = 7

N = 9

Figure 6: Optimal swimming gaits given by the non-linear model for CD = 10−2, CS = 0, µ = 0.3. The reduced frequency k and the number of modes N are varied
as labelled. The hydrodynamic efficiency and the Strouhal number associated with each of these gaits are given in Figs. 5 and 7.

ing path followed by the leading edge is reduced whereas the
amplitude at the trailing edge is increased. The optimal mode
envelope thus exhibits a maximum at the tail which is more
pronounced as N increases. This can be related to the result of
Lighthill [5] using elongated-body theory which shows that the
confinement of undulations to a reduced fraction of the fish’s
length near the caudal fin should produce a gain in efficiency.
The hypotheses used by Lighthill are very different from the
present work because elongated-body theory assumes that the
fish span is small compared to its length, and he also assumes
that the lateral fish motion generates a drag due to vortex shed-
ding. However, the conclusion is similar and suggests that con-
fining the deformation near the trailing edge leads to more effi-
cient swimming for all aspect ratios.

4.3. Strouhal number
From the above calculations of optimal swimming gaits, we

have evaluated the corresponding Strouhal number defined as

St =
ΩA
2πU

=
k
π

∣∣∣∣∣∣∣
N∑

n=1

anhn(1)

∣∣∣∣∣∣∣ , (29)

where A is the peak-to-peak amplitude at the trailing edge. The
results are plotted as a function of the reduced frequency in
Fig. 7.

For a given N, and over a wide range of the reduced fre-
quency (1 . k . 10), the Strouhal number is almost constant:
St ≈ 0.15 for N = 5; 0.2 < St < 0.25 for N = 7; 0.25 < St < 0.3
for N = 9. This is probably due to the particular form of the
non-linear term chosen in the model which induces that k2CNL

should be almost constant such that the thrust saturates (indeed
the calculations show that k2CNL ≈ 4 over the whole range of
k). And therefore the amplitudes an should decrease as k−1.
However, the fact that the Strouhal number is almost constant
does not reflect that the high-velocity regime is dominated by
heaving and pitching whereas the low-velocity regime is domi-
nated by the higher order modes.

When the number of modes N increases, the Strouhal number
increases also, showing again that high efficiency favors a plate
deformation with large deformation near the trailing edge. We
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Figure 7: Strouhal number as a function of the reduced frequency. Same pa-
rameters as Fig. 5.

have performed calculations in the intermediate regime (k =

π) with N up to 15 (not plotted here) and they show that the
Strouhal number grows monotonically up to St = 0.35 without
clear signs of saturation.

Surprisingly, the Strouhal numbers obtained with the present
simple model for N ≥ 7 falls within the range of Strouhal num-
bers measured on swimming [26, 27] and flying [28] animals:
0.2 < St < 0.4. Indirectly, this supports the belief that animal
locomotion is tuned for high hydrodynamical efficiency.

5. Discussion

In this paper, the propulsion performance and the optimiza-
tion of a flexible plate undergoing a harmonic motion have
been addressed. When this plate is free of external forces, its
heave and pitch motions are found by using recoil conditions
and thus are the results of its particular bending deformation.
Using a linear model based on potential flow theory, the aver-
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age thrust power and wasted power can be calculated explic-
itly and an optimization procedure can be performed. Differ-
ent optimal swimming regimes have been identified: a low-
velocity regime in which the energy consumption is small, a
high-velocity regime implying a large energy consumption and
an intermediate regime. We have shown that constraining the
leading-edge suction to zero, in order to avoid dynamic stall,
the optimal swimming gaits consist in an undulation of the plate
with the number of wavelength along the plate chord increas-
ing as the reduced frequency increases (corresponding also to a
decrease of both the swimming velocity and energy consump-
tion). We have also shown that taking into account the effects of
body inertia reduces the hydrodynamic efficiency, particularly
in the high-velocity regime (for asymptotically small reduced
frequencies).

An empirical non-linear model has also been proposed to
model the amplitude saturation in swimming. This simple
model allows to find optimal swimming gaits for the different
regimes which are close to what is observed in nature. In par-
ticular, it is shown that a gain in efficiency is obtained when
allowing a larger number of degrees of freedom, the resulting
gait having a larger deformation near the trailing edge. The
Strouhal number of these swimming modes have also been cal-
culated and is found to lie in the interval 0.2 < St < 0.4 for all
swimming regimes, as it has been measured on swimming and
flying animals [26–28]. With more numerical or experimen-
tal data on the propulsion of undulating plates, a more refined
model could certainly be developed, giving a better insight into
the physical mechanism of swimming but probably at the cost
of simplicity.

The present study being two-dimensional, one possible re-
finement would be to take into account the three-dimensional
effects on the swimming efficiency. This has been done by
Chopra [29] on oscillating foils of different planforms. The
major effect is that the average pressure along the span is lower
than what is to be expected from a two-dimensional calculation,
in agreement with unsteady airfoil theory [19, 30]. In the case
of a flexible plate, a similar effect has been mentioned by the
authors in another context [31, 32]. On that account, the thrust
should be lower when taking into account the three-dimensional
effects but the picture should be qualitatively unchanged.

One possible application of the present theoretical study
would be to address the swimming mechanism of animals like
rays for which a two-dimensional approach seems appropriate.
One particularity of these animals however is that they usu-
ally swim very close to the sea floor. It would be interesting
to understand how the presence of this near wall modifies the
swimming performance and if the optimal swimming gaits are
different in this case.
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Appendix A.

Appendix A.1. Eigenmodes

The eigenmodes of an elastic beam in vacuo are given by

hn(x) = cos knx + cosh knx

+γn (sin knx + sinh knx) (n ≥ 3), (A.1)

with

γn =
cosh kn − cos kn

sin kn − sinh kn
, (A.2)

and kn the solutions of cos kn cosh kn = 1 sorted in ascending
order such that k3 = 4.7300, k4 = 7.8532, etc.

Appendix A.2. Hydrodynamic lift and moment

The row vectors l and m needed to calculate the hydrody-
namic lift and moment are given by

l(k) =

(
C(k) +

ik
2
,C(k),−

ik
2
, 0

)
, (A.3)

m(k) =

(
C(k),C(k) − 1 −

ik
4
,−1,

ik
4

)
, (A.4)

where C(k) is the Theodorsen function [14]

C(k) =
H(2)

1 (k)

H(2)
1 (k) + iH(2)

0 (k)
, (A.5)

with H(2)
n the Hankel function of the second kind.

Appendix A.3. Averaged thrust and energy

The N × N matrices needed to calculate the average energy
loss, power required and leading-suction force are given by

E(k) = B(k) F∗ · F, (A.6)

P(k) = −
ik
2

GT · F +
ik
2

F∗ ·G, (A.7)

S(k) = H∗ ·H, (A.8)

where the asterisk denotes the adjoint matrix and the bar the
complex conjugate, with B(k) = <(C(k)) − |C(k)|2,

F = (r1 + r2) · C, (A.9)
G = (C(k)r1 + (1 −C(k))r2) · B, (A.10)
H = (C(k)r1 − (1 −C(k))r2) · C, (A.11)

and

r1 = (1, 0, 0, 0), (A.12)
r2 = (0, 1, 0, 0). (A.13)
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