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In this paper, we report experimental and theoretical results on the flow inside a pre-
cessing and rotating cylinder. Particle Image Velocimetry measurements have revealed
the instantaneous structure of the flow and confirmed that it is the sum of forced inertial
(Kelvin) modes, as predicted by the classical linear inviscid theory. But this theory pre-
dicts also that the amplitude of a mode diverges when its natural frequency equals the
precession frequency. A viscous and weakly nonlinear theory has therefore been devel-
oped at the resonance. This theory has been compared to the experimental results and
shows a good quantitative agreement. For low Reynolds numbers, the mode amplitude
scales as the square root of the Reynolds number due to the presence of Ekman layers
on the cylinder walls. When the Reynolds number is increased, the amplitude saturates
at a value which scales as the precession angle power one third for a given resonance.
The nonlinear theory also predicts the forcing of a geostrophic (axisymmetric) mode
which has been observed and measured in the experiments. These results allow to fully
characterise the flow inside a precessing cylinder in all regimes as long as there is no
instability.

1. Introduction
In the field of aerospace, the stability of spinning spacecrafts containing propellant

liquids is still a topical question. For instance, the attitude of spinning satellites (see
Stewartson 1958; Gans 1984; Garg et al. 1986; Agrawal 1993; Bao & Pascal 1997) is
likely to be disrupted by the hydrodynamics of the inside fluid. Consequently, a good
understanding of the behaviour of such a fluid–structure coupled system requires a pre-
cise knowledge of the dynamics of the rotating contained fluid. Moreover, rotating fluid
dynamics lies far beyond the scope of aerospace : a lot of atmospheric phenomena (hurri-
canes, tornadoes), are closely connected to this class of problems, due to the predominant
role played by the Coriolis force at low Rossby numbers (Vanyo 1993).

First experimental and theoretical studies on rotating fluids date from the end of the
19th century. Lord Kelvin (1880) suggested that the flow of a disturbed rotating fluid
could be decomposed into a sum of so-called normal Kelvin modes (i.e. inertia waves),
each of them corresponding to a well defined frequency which is always less than twice
the basic rotation frequency. The inviscid approach of Kelvin can be extended in the
limit of large Reynolds numbers by taking into account viscous boundary layers on the
walls of the container as shown by Kudlick (1966) and Greenspan (1968). A large set of
experimental and numerical studies in the case of a completely filled cylinder (see Fultz
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1959; McEwan 1970; Kobine 1995; Kerswell & Barenghi 1995) has confirmed the values
of the frequencies and viscous decay rates predicted by these theories.

An important aspect of these rotating flows is that Kelvin modes have been shown to
become unstable for large Reynolds numbers. McEwan (1970) first showed that when a
rotating fluid cylinder is forced at a given frequency on one of its ends, Kelvin modes are
forced. One of these Kelvin modes can become resonant if its wavelength matches the
height of the cylinder. This leads to a resonant collapse (i.e. a breakdown of the initial
mode) degenerating into a fine-scale disordered flow. In some cases, this very disordered
flow can relaminarise into solid body rotation again leading to a cycle of instability,
breakdown and relaminarisation. These behaviours have also been reported when the
Kelvin modes are forced in a partly filled and tilted cylinder (Thompson 1970) or in
completely filled cylinder in precession (Manasseh 1992; Mahalov 1993) or when they
are the natural modes of an instability such as the elliptic instability (Malkus 1989;
Eloy et al. 2000; Kerswell 2002; Eloy et al. 2003). The physical mechanism leading to
the breakdown is still unclear but several scenarios have been proposed. Kerswell (1999)
proposed that a given Kelvin mode can trigger a triad resonance with two other Kelvin
modes leading to an instability (this mechanism bears similarity with the mechanism
of the elliptic instability). The triggered modes can themselves be unstable leading to
a secondary instability and eventually to a tertiary instability, and so on. This cascade
of bifurcation may explain the transition to turbulence observed in these flows. When
nonlinear effects are important, another aspect of these rotating flows is the generation
of a geostrophic motion which slows down the main solid body rotation and modifies its
radial profile. Kobine (1995, 1996) has proposed that, due to this geostrophic motion,
the main flow can be modified enough to cause a centrifugal instability responsible of
the breakdown. Finally the observed breakdown could also be due to a boundary layer
instability near the wall of the container. So far, there is no clear experimental evidence
to support one of these scenarios.

The picture is different for an ellipsoidal container since there are no corners to prevent
the azimuthal circulation. For an inviscid fluid, Poincaré (1910) showed that there exists a
class of solution with uniform vorticity whose direction rotates around the precession axis.
In a real fluid, the presence of viscous boundary layers selects a unique solution in which
the viscous and pressure torques balance the precessional torque (Lorenzani & Tilgner
2001). However, some (conical) inertial waves are still generated by the breakdown of the
Ekman layer at a critical latitude (Noir et al. 2001). It can lead to an instability consisting
of cylindrical waves propagating around the axis of rotation of the fluid (Lorenzani &
Tilgner 2001) and generates a strong turbulent flow (Goto et al. 2007). It is thus unclear
if this flow will be unstable through local destabilisation of the Ekman layers or through
a global instability (such as a triadic resonance) for large Reynolds numbers.

In this paper, we address the basic laminar flow in the case of a precessing cylinder full
of water. This flow can be decomposed into a sum of Kelvin modes which are resonant
if their wavelength is equal to 2H, 2H/3, 2H/5, etc (where H is the cylinder height).
By performing Particle Image Velocimetry (PIV) measurements in the precessing frame,
we investigate the primary inertial flow in both situations: far from a resonance, where
the linear inviscid theory is valid, then close to a resonance, where viscous and non-
linear effects determine the amplitude of the resonant Kelvin mode. Gans (1970) first
gave a theoretical interpretation of the amplitude saturation close to the resonance by
taking into account the viscous effects only. In this paper, the derivation of the ampli-
tude equations is performed by considering both viscous and nonlinear terms. We have
distinguished two different regimes of saturation. At low Reynolds numbers, the main
mode amplitude is saturated by viscosity (which is consistent with Gans’ results (Gans
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1970), whereas the nonlinear effects prevail at higher Reynolds numbers (Wood 1965).
Such nonlinear couplings of Kelvin modes have been largely studied in the context of the
elliptic instability (Waleffe 1989; Eloy et al. 2003; Mason & Kerswell 1999).

The paper is organized as follows. Section 2 is dedicated to the general problem for-
mulation. The equations governing the fluid motion are first introduced then the whole
experimental setup is presented in details in §2.2. In §3, the linear inviscid theory is
presented to express the Kelvin mode amplitudes when the flow is non-resonant. Ex-
perimental flow fields are then shown and compared to these theoretical predictions. In
§4 the viscous and nonlinear amplitude equations are derived and compared to the PIV
velocity fields measured at the resonance. Finally our results are discussed in §5.

2. Presentation of the problem
2.1. Formulation

We address the equations governing the flow inside a precessing cylinder full of fluid
of density ρ and kinematic viscosity ν. This problem is illustrated in figure 1(a). In
the laboratory reference frame (O, x̂, ŷ, ẑ), we consider a turntable rotating at constant
angular frequency Ω2 = ψ̇ around the axis (O, ẑ). In the reference frame of this turntable,
a cylinder of radius Rc and height H rotates around its own axis (O′, k̂) at the angular
frequency Ω1 = φ̇. The angle between these two axes of rotation is the nutation angle θ.
As shown in figure 1(a), the angles (ψ, θ, φ) are the classical Euler coordinates of the
cylinder.

In the reference frame of the cylinder (O′, ı̂, ̂, k̂), the radius vector R is located by its
cylindrical coordinates (R,ϕ, Z) as shown in figure 1(b). The time-dependent rotation
vector of the cylinder in the laboratory frame is

Ω = Ω1 k̂ + Ω2 ẑ. (2.1)

Since the cylinder frame is non galilean, the Navier–Stokes equations satisfied by the
velocity field U(R, T ) and the pressure field P (R, T ) take the following form

∂ U
∂ T

+ (U ·∇)U + 2Ω×U + Ω× (Ω×R) +
dΩ
dT

×R + ΓO′ = −1
ρ
∇P + ν∆U, (2.2a)

and
∇ ·U = 0, (2.2b)

with the boundary condition U = 0 on the cylinder walls.
In the Navier–Stokes equation (2.2a), the first two terms are the usual inertial terms,

the third and the fourth terms are the Coriolis and centrifugal acceleration respectively,
the fifth term is due to the acceleration of the rotation vector and ΓO′ refers to the
acceleration of the centroid O′ of the cylinder. Note that this latter term is potential and
corresponds to a hydrostatic pressure ΓO′ ·R.

The previous equations are made dimensionless by using Rc and Ω−1 as characteristic
length and time, where

Ω = Ω · k̂ = Ω1 + Ω2 cos θ. (2.3)
By using lowercase letters for the dimensionless quantities, the Navier–Stokes equations
for the dimensionless velocity field u(r, t) become

∂u
∂ t

+ 2 k̂× u + ∇p = −2εζωr cos(ωt + ϕ) k̂

+ u× (∇× u)− 2εζ δ × u +
1
Re

∆u, (2.4a)
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and

∇ · u = 0, (2.4b)

with

ω =
Ω1

Ω
, ε =

∣∣∣∣
Ω2 sin θ

Ω

∣∣∣∣ , ζ = sgn
(

Ω2 sin θ

Ω

)
, δ = cos ωt ı̂− sin ωt ̂, (2.5a–d)

and Re = ΩR2
c/ν the Reynolds number. In this dimensionless form, h = H/Rc is the

aspect ratio of the cylinder. The dimensionless pressure field p(r, t) is constructed to
include all the potential terms

p =
P

ρ Ω2R2
c

− 1
2
r2 + ε |1− ω| rz cos(ωt + ϕ)

+ γO′ · r−
1
2
ε2[z2 + r2 sin2(ωt + ϕ)] +

1
2

u2, (2.6)

where γO′ = ΓO′/RcΩ2 is the dimensionless acceleration of the cylinder centroid. The
boundary condition of the velocity field is

u = 0 at the walls (r = 1 or z = ±h/2). (2.7)

The Navier–Stokes equations (2.4 a, b) with the boundary condition (2.7) govern the
flow inside a precessing cylinder. This set of equations has been obtained without any
approximation and is thus valid for any value of the experimental parameters. It is
clear from these equations that the problem is entirely governed by four dimensionless
parameters: the forcing amplitude ε; the forcing frequency ω; the Reynolds number Re;
and the cylinder aspect ratio h. However, these equations cannot be solved easily in
the general case and we will limit ourselves hereinafter to the case of asymptotically
small amplitude ε and large Reynolds number Re. This is the relevant limit if one is
interested in the flow forced by the precession before it becomes unstable or at the onset
of instability.

For the sake of clarity and brevity, a four-component formulation for the velocity-
pressure field v = (u, p) expressed in cylindrical coordinates will be used. With this
formulation the Navier–Stokes equations (2.4 a, b) take the following form

(
∂

∂t
I +M

)
v = εζ F0ei(ωt+ϕ) + N(v,v) + εζ D ei(ωt+ϕ)v +

1
Re
Lv + c.c., (2.8)

where the operators I, M, D, L, the forcing vector F0 and the bilinear function N are
defined in appendix A. The symbol c.c. stands for the complex conjugate.

We will solve a linearised version of the above equation in §3.1 and the weakly nonlinear
and viscous solution corresponding to the saturated resonant flow will be given in §4.1.

2.2. Experimental setup
The experimental setup is sketched in figure 2. It corresponds exactly to the configuration
depicted in figure 1. A right-circular PMMA cylinder, filled with distilled water, rotates
at the angular velocity Ω1 around its axis and is mounted on a rotating platform. The
cylinder axis is tilted relative to the axis of the platform with an angle θ. The platform,
that ensures the precessing component of the motion, also rotates at a velocity Ω2. The
platform is mounted on a wide vertical axis in order to limit the vibrations of the structure
at high precession velocities.

The angular frequency Ω1 can be increased up to 60 rad s−1 and is measured with an
accuracy of 0.1%. The precession frequency Ω2 is limited to 6 rad s−1 and is measured with
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an accuracy of 0.2 % when the precession frequency is larger than 0.2 rad s−1. Each axis
having its own driving motor, the angular velocities can be varied independently so that
the dimensionless frequency ω can be varied over the whole range [−2, 2]. We used three
different cylinders: a cylinder of aspect ratio h = H/Rc = 1.989 ± 0.3% (H = 9.14 cm)
has been used at first, but its principal resonance was found for a vanishing precessing
frequency (ω ≈ 1). A second cylinder with aspect ratio h = 1.8 ± 0.7% (H = 8.27 cm)
has been thus designed to study this resonance. Finally, a third cylinder with the same
aspect ratio 1.8 but smaller dimensions (H = 2.7 cm) has also been used to obtain data
at smaller Reynolds numbers (by a factor almost 10). The thickness of the cylinder walls
is extremely large (2 cm) in order to avoid shade areas in the light sheet (because of
refraction on the cylindrical wall).

The acquisition computer is located on the rotating platform to limit the number of
rotating electrical contacts and improve the quality of the data. The power is brought
up to the platform by a rotating collector through the vertical axis and is used to supply
the cylinder motor, the video camera and the electromagnet of the release device. The
rotating collector also conveys back the signal from the video camera to an auxiliary
screen, which is used for observation and optical adjustment of the PIV system.

A release device is mounted on the platform and is controlled externally, so that the
cylinder can be tilted during the rotation of the platform. It allows the observation of
the transient stage during which the observed Kelvin modes grow. The release device is
composed of an electromagnet designed to keep the cylinder in a vertical position during
the spin-up phase. Once the electromagnet is turned off, a drawback spring pulls the
cylinder into its tilted position. The electromagnet is then turned on again to ensure the
stability of the nutation angle θ during the experiment. This angle can be varied from 0
to 15 degrees. Due to the spring strength, we consider that the swing of the axis happens
in a duration (about half a second) much smaller than the duration of the transient stage
(varying from 3 to 50 seconds).

The PIV measurement system is schematically presented in figure 2. The fluid is seeded
with small reflecting particles (Optimage Ltd.) of mean diameter 50µm and density
1000 ± 20 kgm−3. They are illuminated with a light sheet of thickness 2 mm, created
either by a Yag pulsed laser for large velocities or by an Argon Ion continuous laser
(through an optical fiber) for small velocities. The laser beam goes through a cylindrical
lens to provide the laser sheet. None of the lighting system is rotating so the laser sheet
is fixed relative to the laboratory frame. As far as the tilt angle θ is not too large (smaller
than 5 degrees), the laser sheet, due to its thickness, can be considered normal to the
cylinder axis. This might introduce a bias at larger nutation angles and the laser sheet
should then be created on the rotating platform with a set of mirrors. The altitude of the
laser sheet can be varied along the height of the cylinder and was chosen in a subtle way,
depending on the type of experiments that was done. First, to look at the dependence
of the amplitude with the frequency ω, we had to take a sheet close to the center of the
cylinder (in order to not be at a node of the Kelvin mode): a good compromise was taken
as z = 0.12h. Then, to study the first (resp. second) resonance of a Kelvin mode, we took
z = h/4 (resp. z = h/6) in order to measure a maximum transverse velocity.

The images of particles are recorded by a PIV camera (Kodak Megaplus ES 1.0, 1008×
1018 pixels) mounted on the rotating platform and aligned with the axis of the cylinder.
The time interval between two successive images is relatively large (from 5 ms to 1 s)
such that the cylinder rotates of approximately 20 degrees between the two images. This
creates large displacements of the particles at the periphery of the cylinder (150 pixels),
but the two images are rotated around the center of the cylinder in order to remove the
solid body rotation of the particles. The PIV thus gives directly the velocity field in the
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cylinder reference frame. This procedure allows to measure very small velocities down to
1% of the velocity of the cylinder wall. Such measurements would not have been possible
without the image rotation. The pairs of images are then treated by a cross-correlation
algorithm detailed in Meunier & Leweke (2003) which gives velocity fields with 60× 60
vectors.

To perform the acquisition of a PIV field, we proceed as follows. First the cylinder is
kept vertical and rotates at Ω1. The platform rotates at Ω2 so that the angular velocity
of the cylinder relative to the laboratory frame is (Ω1 + Ω2) ẑ. Once the spin-up stage is
completed, the cylinder is released to its tilted position. This allows to study the transient
and the spin-up phase independently.

Some preliminary visualisations were also performed with Kalliroscope particles, in
order to check that the resonances were in good agreement with the linear inviscid theory,
and to validate our set-up by comparison of these visualisations with those from the
literature (Manasseh 1992; Kobine 1995). However, no quantitative new results were
obtained and we will not present any of these visualisations in this paper.

3. Flow inside a non-resonant cylinder
3.1. Linear inviscid theory

We assume an asymptotically small forcing amplitude ε and asymptotically large Reynolds
number Re. In this limit, the velocity-pressure field v is O(ε) and the Navier–Stokes equa-
tion (2.8) becomes at first order in ε

(
∂

∂t
I +M

)
v = εζ F0ei(ωt+ϕ) + c.c. (3.1)

For an inviscid fluid, the no-slip boundary condition (2.7) becomes a condition of no
outward flow

u · n = 0 at the walls (r = 1 or z = ±h/2), (3.2)

where n is an unitary vector normal to the wall.
Equations (3.1) and (3.2) form a linear system for the vector v = (u, p), with a forcing

term. It admits a particular solution of the form

vpart. = (0, 0, ε ζ i r ei(ωt+ϕ), 0) + c.c. (3.3)

Unfortunately, this solution does not satisfy the boundary condition (3.2) in z = ±h/2.
Thus, one must complete this particular solution with a solution of the homogeneous
equation (without forcing), so that the boundary condition at the upper and lower walls
is satisfied. Due to the time and azimuthal dependence of the forcing, the homogeneous
solution is to be searched as a sum of Kelvin modes of azimuthal wavenumber m = 1
and angular frequency ω (see Greenspan 1968). Using (3.2) and (3.3) and such a form of
the homogeneous solution, one finds

v = vpart. + ε ζ

∞∑

i =1

aivi(r, z)ei(ωt+ϕ) + c.c., (3.4)

where vi(r, z)ei(ωt+ϕ) is a Kelvin mode of axial wavenumber ki, azimuthal wavenumber
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m = 1 and frequency ω

vi(r, z) =




ui(r) sin(kiz)

vi(r) sin(kiz)

wi(r) cos(kiz)

pi(r) sin(kiz)




with





ui(r) = i
ωrδi J ′1(δir) + 2J1(δir)

r(ω2 − 4)

vi(r) =
2rδi J ′1(δir) + ωJ1(δir)

r(4− ω2)

wi(r) =
i ki

ω
J1(δir)

pi(r) = J1(δir)

, (3.5)

with Jν(x) the Bessel function of the first kind and J ′ν(x) its x-derivative. The amplitude
ai of each Kelvin mode is

ai =
2 ω2

(ω − 2)(k2
i + 1) ki J1(δi) cos(ki h/2)

, (3.6)

the axial wavenumber ki is the positive root of the constitutive relation

δ2
i =

4− ω2

ω2
k2

i , (3.7)

and the radial wavenumber δi is solution of Kelvin’s dispersion relation

ω δi J ′1(δi) + 2J1(δi) = 0. (3.8)

As long as −2 < ω < 2, the dispersion relation admits an infinite, countable number of
roots δi which are numbered in ascending order. A Kelvin mode can be associated to each
root δi. The radial velocity ui(r) of the first Kelvin mode (corresponding to δ1) is formed
of one lobe and has no zero for 0 < r < 1, the second Kelvin mode contains two lobes and
one zero, the third contains three lobes and two zeros, and so on. The velocity field of the
first Kelvin mode is shown in Fig. 3(a): it contains two counter-rotating vortices, due to
the presence of a single lobe of radial velocity and an azimuthal wavenumber m = 1. In
the general case, the i-th Kelvin mode contains 2i vortices, and these Kelvin modes form
a complete set. Their dispersion relation (3.7-3.8) is plotted on Fig. 4. The precession
excites only the Kelvin modes with a given frequency ω corresponding to increasing
wavenumbers ki (as shown on Fig. 4 for ω = ω3,4). When the wavenumber ki of a Kelvin
mode is equal to π/h, 3π/h, 5π/h... the mode ‘fits’ inside the height of the cylinder and
becomes resonant. When ω is increased, each branch of the dispersion relation leads to an
infinite number of resonances, with the wavenumber ki of the Kelvin mode being equal
to π(2n− 1)/h (n being an integer). Strictly speaking, each resonance labeled with (i, n)
corresponds to a different Kelvin mode. In the following, all modes corresponding to the
same branch of the dispersion relation (same index i) will be gathered in a family of
modes which will be called the i-th Kelvin mode (for the sake of simplicity).

Equation (3.6) gives the amplitudes of the Kelvin modes forced by the precession. This
equation is valid as long as the cylinder aspect ratio is not resonant, i.e. cos(kih/2) 6= 0.
In other words, the present linear analysis predicts a divergent amplitude of the i-th
Kelvin mode if the forcing frequency ω is equal to one of the natural frequencies ωi,n

of the cylinder. Here, ωi,n refers to the frequency obtained through (3.7) and (3.8) by
taking ki = π(2n − 1)/h, with n an integer. One can show (Kudlick 1966) that the set
of natural frequencies ωi,n is dense in the interval −2 < ω < 2. This means that there
is always a Kelvin mode arbitrary close to a resonance for any chosen forcing frequency
ω. This emphasises the need of a theoretical prediction of the Kelvin mode amplitude at
the resonance as it will be done in §4.1.
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3.2. Kelvin modes: PIV measurements

We performed PIV measurements of the (u, v) transverse velocity field in the range
0.2 < ω < 1.9 and at Reynolds numbers between 2 × 103 and 2 × 105. The issue was,
from the averaged velocity field in the permanent regime, to achieve the extraction of
the linear amplitudes ai of the main modes as defined by (3.6).

In figure 3(a) is shown the horizontal-velocity field at a frequency ω = 0.9 close to the
first resonance ω1,1 = 0.996 of the mode i = 1, for Re = 5500 and θ = 1◦, the laser sheet
being at an altitude z = 0.29. As previously mentionned, the flow in the reference frame
of the cylinder mainly consists of two counter rotating vortices corresponding to the first
Kelvin mode described by the above inviscid theory. However, it can be noted that the
mode is not exactly aligned with the xψ-axis. This tilt angle is due to the viscous and
nonlinear effects appearing at the resonance and will be analysed in detail in the next
section. Figure 3(b) shows the radial velocity profile along the xψ-axis of this velocity
field, as round symbols. The normalised value of the velocity decreases monotonically
between r = 0 and r = 1, and is very close to the curve found theoretically (solid line)
for the first Kelvin mode at this value of ω. Figure 3(b) also shows the radial velocity
profile obtained for ω = 0.45, i.e. close to the resonance of the second mode. It exhibits
a positive lobe for r < 0.5, a negative lobe for r > 0.5 and a zero for r ' 0.5. This is
characteristic of the second Kelvin mode, whose theoretical radial velocity is plotted as a
dashed line. The third Kelvin mode (plotted as a dotted line) has three lobes of opposite
radial velocity, but in this case the experimental data are very noisy and have not been
plotted.

The presence of these Kelvin modes is better visualised by plotting the mean vorticity
fields as done in Fig. 5, since the small scatter in the velocity field (such as a translation
or a rotation) is hidden by the differentiation of u and the modification of the colorbar.
The Kelvin modes are thus clearly distinguished by plotting the vorticity fields at various
ω: even the fifth Kelvin mode is discernible at its first resonance ω5,1 = 0.2. However, the
spatial structure is arranged as a double spiral for the highest modes, whereas the theory
predicts a series of lobes since the vorticity is expected to vanish for ϕ = π/2 − ωt. In
fact, such a spiral structure has already been observed theoretically for the Kelvin modes
of a Gaussian vortex by Fabre et al. (2006). We thus think that this discrepancy might
be due to a slight differential rotation in the geostrophic motion, coming from nonlinear
and viscous effects.

For each experiment outside of the resonance, we have decomposed each velocity field
into a sum of Kelvin modes. For this purpose, we use the fact that the Kelvin modes
are orthogonal, such that the amplitude ai of each Kelvin mode is simply given by the
normalised scalar product 〈uexp|ui〉/〈ui|ui〉 (see appendix B for exact definition), where
uexp (resp. ui) are the two transverse components of the measured (resp. theoretical)
velocity field and the scalar product is defined as the average over the whole section. In
fact, the method has to be slightly improved since this average can only be calculated
for r ≤ 0.9 instead of r ≤ 1 (due to spurious vectors at the cylinder wall) and because
the mode can have a tilt angle αi with respect to the xψ axis. This method, which is
detailed in appendix B, allows the precise determination of the amplitude and tilt angle
of the first two Kelvin modes for each instantaneous velocity field.

In the permanent regime, the amplitude of the Kelvin modes is stationary and depends
only on the frequency ω. It is plotted in Fig. 6 for the first two Kelvin modes and for
two different Reynolds numbers. Despite a large scatter, experimental results are clearly
independent of the Reynolds number outside of the resonances and very well predicted
by the linear inviscid theory. As far as we know, this is the first exact measurement of
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the mode amplitudes forced by precession. The amplitudes measured at the resonances,
for the first two modes are large and cannot be predicted by the linear inviscid theory.
A nonlinear and viscous theory is necessary to predict the finite value of the amplitude
in this case; this is the scope of §4.

3.3. Transient stage

The experimental results can also give indications on the transient stage, since the am-
plitude ai of each mode can be extracted for each instantaneous velocity field. Fig. 7(a)
shows the temporal evolution of the amplitude of the first Kelvin mode just after the on-
set of the precession forcing, far from its resonance. The amplitude oscillates very rapidly
and converges toward its permanent value a0

1 which is plotted in Fig. 6. This curve can
be fitted by a decaying exponential a1(t) = a0

1[1 − cos(ωtt)e−t/ts ] where ωt corresponds
to the frequency of the oscillation and ts is the settling time. Since ωt corresponds to
the frequency in the rotating table reference frame, we have to subtract the dimension-
alised angular velocity of the cylinder ω to obtain the frequency of the oscillation in the
cylinder reference frame. By doing this, we find a non-dimensional frequency ωt−ω close
to -1.8, and this was observed for any ω outside of a resonance. This value is close to
the frequency of the second resonance of the first Kelvin mode ω1,2 = 1.774. This can
be understood by the fact that at t = 0+, the velocity field which is equal to 0 in the
bulk of the cylinder is the sum of the permanent solution (given by the inviscid theory)
and a sum of free and decaying Kelvin modes with frequencies −2 < ωi,n < 2, n varying
from 1 to infinity. Another methof to evaluate experimentally the initial amplitude of
each free Kelvin mode is to plot the Fourier transform of the amplitude as a function of
the dimensionalised frequency ωt−ω, as shown on Fig. 7(b). A small peak is discernible
around -1 (for both values of ω), which corresponds to the free Kelvin mode ω1,1 = 0.996
and which is indicated by a thin solid line on the figure. A large peak is located near
-1.8, which is close to all the other free Kelvin modes (with i = 1), whose frequencies
(ω1,n)n≥2 lie between 1.774 and 2. It is thus not clear whether this large peak is due to
a large amplitude of the second free Kelvin mode ω1,2 or to the constructive interference
of all these modes (ω1,n)n≥2.

4. Flow inside a resonant cylinder
4.1. Nonlinear and viscous theory

As seen in §3.1, when the forcing frequency ω is equal to a natural frequency of the
cylinder ωi,n, the linear inviscid theory predicts a divergent amplitude of the i-th Kelvin
mode. To predict correctly the mode amplitude in this case, one has to take into account
the viscous effects or the nonlinear effects or both. As shown by Gans (1970), if Ai is
the mode amplitude, the secondary flow in the core of the cylinder due to the viscous
boundary layers is O(AiRe−1/2). If the nonlinear effects are negligible, the correct scaling
is obtained when this secondary flow is of the order of the forcing amplitude ε. This gives a
mode amplitude Ai = O(εRe1/2) which is Re1/2 larger than the flow in the non-resonant
case. On the other hand, if the viscous effects are negligible, the secondary flow is due
to the nonlinear interaction of the Kelvin mode with itself. In this case, the secondary
flow of same Fourier components is obtained at third order and is O(|Ai|2Ai). This gives
a mode amplitude Ai = O(ε1/3).

The distinguished scaling is obtained when the viscous and nonlinear effects are of
same order, that is ε2/3 = O(Re−1/2). This leads to the definition of a viscous parameter
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η of order 1 and a slow time scale τ as follows

η = Re−1/2ε−2/3, τ = ε2/3 t. (4.1a,b)

We now assume that the forcing frequency ω is close to a resonant frequency ωi,n for
the i-th Kelvin mode. The four-component velocity-pressure field corresponding to this
Kelvin mode is expanded in powers of ε1/3 as follows

Vi = ε1/3 V1 + ε2/3 V2 + εV3 + ε4/3 V4 + · · · . (4.2)

The real velocity field is obtained by adding the complex conjugate in the above equation
(the same is implicitly assumed in all the following equations). The nonlinear and viscous
amplitude equations are obtained by injecting the above expansion (4.2) into the Navier–
Stokes equation (2.8) and examining its different orders. The procedure is similar to the
one used by Gans (1970) except that here the nonlinear effects are included and the
forcing frequency ω is arbitrary, whereas Gans (1970) considered only the special case
ω = 1 which corresponds to a nutation angle θ = π/2. The present analysis bears strong
similarities with the weakly nonlinear analysis of parametric instabilities in rotating flows
such as the elliptic instability (Waleffe 1989; Sipp 2000; Eloy et al. 2003) or the instability
of a rotating gas periodically compressed (Racz & Scott 2007). Because this calculation
is quite lengthy, most of its technical details have been postponed in appendices C, D
and E.

4.1.1. Order ε1/3

At order ε1/3, the resonant flow satisfying the linear homogeneous equation
(

∂

∂t
I +M

)
V1 = 0, (4.3)

is

V1 = A(τ)vi ei(ωt+ϕ), (4.4)

where vi is the i-th Kelvin mode given by (3.5), as it has been shown in §3.1. The
amplitude A of the Kelvin mode vi is assumed to vary on the slow time scale τ and the
other Kelvin modes (with j 6= i) are assumed to be non resonant so their amplitudes are
given by (3.6).

The Kelvin mode vi satisfies an inviscid boundary conditions. In a viscous boundary
layer of thickness O(Re−1/2), the complete flow is obtained by adding the viscous flow
Ṽ1 such that V1 + Ṽ1 satisfies the viscous boundary condition (2.7). This viscous flow
takes the form

Ṽ1 = A ṽi ei(ωt+ϕ), (4.5)

where ṽi is the viscous counterpart of the Kelvin mode vi located in a viscous bound-
ary layer of thickness O(Re−1/2) near the walls (its complete expression is given in
appendix D). At this order the viscous flow ṽi is parallel to the walls (it has to compen-
sate V1 which is also parallel to the wall because of the inviscid boundary condition).
However, this viscous flow gives rise to an Ekman pumping at order ε with a compo-
nent perpendicular to the walls Ṽ⊥

3 = O(ηṼ1). This gives a boundary condition for the
inviscid flow at order ε:

V3 · n = −Ṽ⊥
3 = −ηA ṽ3 · n ei(ωt+ϕ) on the walls, (4.6)

where n is the unitary vector normal to the wall and ṽ3 ·n is a function of order 1 given
in appendix D.
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4.1.2. Order ε2/3

As shown by Greenspan (1969), the nonlinear interaction of a Kelvin mode with it-
self gives rise to two velocity components. For a Kelvin mode of wavenumbers-frequency
(k,m, ω) (where m is the azimuthal wavenumber, in our case m = 1), these two com-
ponents are of the form (2k, 0, 0) and (0, 2m, 2ω). In other words, the geostrophic mode
(0, 0, 0) and the mode (2k, 2m, 2ω) are not forced by nonlinear interactions.

At order ε2/3 the Navier–Stokes equation (2.8) becomes
(

∂

∂t
I +M

)
V2 = N(V1,V1). (4.7)

The solution of this equation is

V2 = |A|2 v2k + A2 v2ωei(2ωt+2ϕ) +
∞∑

j=1

Aj
0(τ)vj

0 + o.t., (4.8)

where o.t. stands for ‘other terms’ of different Fourier components. The first two terms
of (4.8) correspond to the particular solution of (4.7) (see Waleffe 1989). In agreement
with Greenspan (1969), they are of the form (2k, 0, 0) and (0, 2, 2ω) (these velocity fields
are given explicitly in appendix C).

The third term of (4.8) is the solution of (4.7) without forcing, where we have only
retained the axisymmetric geostrophic modes of Fourier components (k, m, ω) = (0, 0, 0).
It is easy to show that this flow is a stationary azimuthal velocity field whose components
can be written as vj

0 = (0, vj
0(r), 0, pj

0(r)) in cylindrical coordinates. At this point, the
geostrophic flow is arbitrary and we choose to decompose it on the basis of the Bessel
functions of the first kind such that

vj
0(r) = −J1(djr) with J1(dj) = 0, (4.9)

with the roots dj sorted in ascending order such that dj = jπ + O(1). We chose to put
a minus sign in the above expression such that a positive amplitude Aj

0 corresponds to
a slow down of the basic solid body rotation. As we will see below, this geostrophic flow
is forced at order ε4/3 by the nonlinear interactions in the end wall boundary layers. Its
saturation is due to viscous effects in the boundary layers and this geostrophic mode
therefore appears at order A0 = O(ε4/3Re1/2) = O(ε2/3).

The velocity field V2 satisfies inviscid boundary conditions. As we did at order ε1/3,
one has to add a viscous velocity field Ṽ2 in a boundary layer of thickness O(Re−1/2)
in order to satisfy the viscous boundary condition at the walls. This viscous flow is
decomposed into several components. First, the velocity fields v2k and v2ω contribute to
this viscous velocity field. Then the geostrophic flow corresponds to viscous corrections
ṽj

0 in the end wall boundary layers. And finally, the nonlinear interactions of V with Ṽ
and Ṽ with itself act as a source term at order ε2/3 and give rise to a nonlinear part of
the viscous flow ṼNL

2 . If we are only interested in the axisymmetric and stationnary part
of this viscous flow, it can be written as

Ṽ2 = |A|2 ṽ2k + |A|2ṽNL
2 +

∞∑

j=1

Aj
0(τ)ṽj

0 + o.t., (4.10)

where the details of these velocity fields are given in appendices D and E. This viscous
flow Ṽ2 is parallel to the walls at this order but it gives rise to an Ekman pumping at the
end walls at the order ε4/3 of the form Ṽ⊥

4 = O(ηṼ2). This pumping gives a boundary
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condition for the inviscid flow of the form

V4 · n = −Ṽ⊥
4 = −η|A|2ṽNL

4 · n− η

∞∑

j=1

Aj
0(τ)ṽj

4 · n + o.t., on the walls, (4.11)

where the details of these fields are given in appendices D and E and where we have omit-
ted the term due to ṽ2k because it does not contribute to the forcing of the geostrophic
mode at order ε4/3 as it will be shown below.

4.1.3. Order ε

At order ε, the Navier–Stokes equation becomes

I ∂V1

∂ τ
+

(
∂

∂t
I +M

)
V3 = ζ F0ei(ωt+ϕ) + N(V1,V2) + N(V2,V1) +

ηLV1

Re1/2
. (4.12)

The last term of this equation should not appear at this order but at order ε5/3. However,
we have decided to take it into account in the analysis because its importance in eval-
uating the viscous decay has been shown in several papers (Kerswell & Barenghi 1995;
Eloy et al. 2003; Racz & Scott 2007). The integration of equation (4.12) is not needed.
We introduce the scalar product

X¯Y =
∫

V

(XrYr + XϕYϕ + XzYz + XpYp)d3V, (4.13)

where the overbar stands for complex conjugation and V is the volume of the cylinder. A
solvability condition for V3 is obtained by forming the scalar product of vi ei(ωt+ϕ) with
the equation (4.12) and dividing by vi ¯I vi. It yields the following amplitude equation
for A

∂A

∂ τ
= if − η

(
µ +

ν

Re1/2

)
A + i


σ|A|2 −

∞∑

j=1

ξjA
j
0


 A, (4.14)

where the calculation of the different coefficients is detailed in appendices D and C. Some
useful numerical values are given in Tables 1–3. In the above equation the term f comes
from the forcing F0, the term ν is linked to the volume viscous damping. The term σ
originates from the nonlinear interaction of V1 with v2k and v2ω. The terms ξj come
from the nonlinear interaction of V1 with the geostrophic modes vj

0 . The surface viscous
damping term µ comes from the following relation

vi ei(ωt+ϕ) ¯
(

∂

∂t
I +M

)
V3 =

∫

S

pi e−i(ωt+ϕ)V3 · nd2S = ηµA (vi ¯ I vi) , (4.15)

where S is the surface of the cylinder. This relation is obtained by integrating by parts
the scalar product and using the fact that vi ei(ωt+ϕ) is in the kernel of the operator
(∂I/∂t +M) by construction. Since V3 · n is known from the relation (4.6) and is pro-
portional to ηA, the above relation leads to the evaluation of µ in (4.14). This term is
a complex number whereas all the other coefficients of (4.14) are real. This means that
the viscous boundary layers have two effects: the damping of the flow (the real part of µ
is positive) and a detuning of the resonance (due to the non-zero imaginary part of µ).
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i, n ωi,n δi f µ σ ξ ν

1,1 1.088 2.691 −0.467 1.799− 0.268i −0.058 1.524 10.3
1,2 1.812 2.447 0.0328 0.822− 0.456i 11.37 170.2 33.4
1,3 1.927 2.420 −0.00522 0.486− 0.342i 76.03 1897 82.0
2,1 0.566 5.912 −0.0771 1.707 + 0.041i −9.13 2.736 38.0
2,2 1.366 5.602 −0.0187 1.434− 0.382i 15.35 75.51 58.8

Table 1. Values of the nonlinear and viscous parameters for an aspect ratio h = 1.8.

4.1.4. Order ε4/3

At order ε4/3, if we retain only the geostrophic terms, the Navier–Sokes equation
becomes

∞∑

j=1

∂Aj
0

∂ τ
I vj

0 +MV4 =
∞∑

j=1

η Aj
0

Re1/2
Lvj

0 + o.t., (4.16)

where the volume viscous term on the right hand side has been included for the same
reason as in (4.12). The terms N(V2,V2) and N(V1,V3) do not appear in the above
equation because they do not lead to geostrophic forcing.

The amplitude equation for the geostrophic mode can be found by forming the scalar
product [as defined by (4.13)] of vj

0 with (4.16) and dividing by vj
0 ¯ I vj

0 . It yields the
amplitude equations for the geostrophic modes

∂Aj
0

∂τ
= ηχj |A|2 − η

(
2
h

+
d2

j

Re1/2

)
Aj

0. (4.17)

The last term comes from volume viscous effects by using the following equality

vj
0 ¯ Lvj

0 = −d2
j vj

0 ¯ I vj
0 . (4.18)

The forcing term χj and the surface viscous damping 2/h originate from the relation

vj
0 ¯MV4 =

∫

S

pj
0 V4 · n d2S = η

(
−χj |A|2 +

2
h

Aj
0

) (
vj

0 ¯ I vj
0

)
, (4.19)

where we have integrated by parts the scalar product and used the fact that vj
0 is in the

kernel of M. The outward velocity V4 · n is known from the relation (4.11); it allows to
calculate the coefficients χj and 2/h as it is detailed in appendices D and E. Here, the
term due to ṽ2k in V4 · n has no influence since we only retained the geostrophic part
of the flow (independent of z) in (4.16). Physically, the forcing of the geostrophic mode
appears through the coefficient χj and is due to the nonlinear interaction of the flow
with itself in the end wall boundary layers. Therefore, to have a geostrophic flow, both
nonlinear and viscous effects are needed near the end walls.

4.2. Discussion
In this section, we will discuss the results of the nonlinear viscous theory presented in
§4.1 and compare it with experimental measurements.

4.2.1. Amplitude equations
The amplitude equations (4.14) and (4.17) give the time dependence of the Kelvin mode

amplitude A and the amplitudes Aj
0 of the geostrophic modes. A further simplification

can be obtained by assuming that the Reynolds number is large when the nonlinear
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i, n ωi,n δi f µ σ ξ ν

1,1 0.996 2.737 0.469 1.728− 0.128i −0.232 0.910 9.96
1,2 1.774 2.456 0.0418 0.841− 0.404i 7.799 94.28 28.2
1,3 1.911 2.424 −0.00696 0.497− 0.322i 50.93 1032 67.6
2,1 0.510 5.960 −0.0737 1.579 + 0.112i −10.69 1.921 38.0
2,2 1.285 5.618 −0.0209 1.398− 0.261i 9.962 45.70 53.8

Table 2. Values of the nonlinear and viscous parameters for an aspect ratio h = 2.

i, n h ξ1 ξ2 ξ3 ξ4 ξ5 χ1 χ2 χ3 χ4 χ5

1,1 1.8 0.277 0.144 -0.052 0.031 -0.021 4.743 1.308 -0.314 0.139 -0.077
1,2 1.8 0.701 0.062 -0.017 0.009 -0.006 240.2 27.56 -7.231 3.253 -1.811
1,3 1.8 0.767 0.049 -0.011 0.005 -0.003 2458 244.3 -64.13 28.82 -16.03
2,1 2 -0.516 -0.132 0.316 0.127 -0.044 2.331 -1.044 7.969 3.388 -0.907

Table 3. Values of the first parameters ξi and χi for different resonances i, n and different
aspect ratios h.

effects come into play. In this case, the volume viscous term d2
jRe−1/2 can be neglected

in front of the surface viscous term 2/h for the geostrophic modes. With this assumption,
all geostrophic modes have the same natural decay time and one can define a single
geostrophic amplitude A0 = Aj

0/χj such that all amplitude equations for the geostrophic
modes become identical. By defining a global parameter ξ =

∑∞
j=1 χjξj , the final system

can be reduced to two amplitude equations:

∂A

∂ τ
= if

(
1− A

ε2/3ai

)
− η

(
µ +

ν

Re1/2

)
A + i

(
σ|A|2 − ξA0

)
A, (4.20a)

∂A0

∂τ
= η

(
|A|2 − 2

h
A0

)
. (4.20b)

In these equations, we have assumed that the frequency ω is not exactly equal to the
resonant frequency ωi,n, which introduces an additional axial velocity in the solvability
condition at order ε, leading to the extra term ifA/(ε2/3ai), where ai is the amplitude
of the Kelvin mode given by (3.6). This term vanishes at the resonance since ai diverges
in this case. On the other hand, if the forcing frequency is far enough, the resonant
frequency such that ai ¿ ε2/3, we recover the inviscid solution A = ε2/3ai of § 3.1.

The linear forcing parameter f and the nonlinear parameter σ (corresponding to the
interaction of the Kelvin mode with itself) are given analytically in Appendix C. The
surface and volume viscous parameters µ and ν are given in Appendix D. The term
ξ is due to the nonlinear interaction of the Kelvin mode with the geostrophic modes
and cannot be given analytically in a simple form. We thus show the variation of this
parameter as a function of the aspect ratio h in Fig. 8 for five different resonances. It
drastically decreases of ten decades when h increases from 0.1 to 10. This is due to the
fact that the nonlinear forcing of the geostrophic mode is generated in the top and bottom
boundary layers only, and is thus more efficient for small aspect ratios h.

The amplitude equations (4.20 a, b) describe the transient stage and the saturation of
the mode amplitude A. They have been obtained for the distinguished scaling ε2/3 =
O(Re−1/2) which corresponds to η = O(1). However, one can easily obtain simplified
equations when viscous effects are dominant by taking the limit η À 1. In this case,
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the amplitude equation for the geostrophic mode (4.20 b) is not needed anymore and the
amplitude equation (4.20 a) simplifies into a linear equation for A with a forcing term.
Its solution is an exponential convergence toward a fixed point with a characteristic
time scale which is the natural viscous decay time of the Kelvin mode. The fixed point
corresponds to A = O(η−1) which gives Vi = O(εRe1/2) in agreement with the results
of Gans (1970). In this case, it is easy to show that the mode amplitude is maximum
when the detuning of the forcing frequency compensates exactly the viscous detuning, i.e.
f/(ε2/3ai) = −ηIm(µ). When this is true, A is a pure imaginary number, which means
that the mode is oriented with an angle of π/2 compared to the non-resonant case of
§3.1.

When nonlinear effects are not negligible, the dynamics of the mode amplitude given
by (4.20 a, b) becomes more complex. Some typical trajectories of A in the complex
plane are shown in Fig. 9 for different values of the parameter η. If nonlinear effects are
small which correspond to η large (or Re small compared to ε−4/3), the amplitudes of
the Kelvin mode A and geostrophic mode A0 converge toward a fixed point. This fixed
point is easily obtained by equating the time-derivative in (4.20 a, b) to zero. It is worth
pointing out that the first effect of nonlinearities is to detune the Kelvin mode. Indeed
the terms originating from the nonlinear interaction of the mode with itself and with
the geostrophic mode are both expressed as a real number multiplying iA. This form
is identical to that of the detuning term iAf/(ε2/3ai) and the viscous detuning term
−ηIm(µ)iA.

For larger values of the Reynolds number (or smaller values of η), the fixed point may
become unstable. In this case, the trajectory of A in the complex plane converges toward
a limit cycle as shown on Fig. 9. However, this cycle could not be observed experimentally
because it corresponds to experimental parameters leading to instability as shown in the
next section.

As noted by Gans (1970) in the viscous regime, the resonances are important when the
amplitude at the resonance (of the order of ε

√
Ref/µ in the viscous regime) is much larger

than the linear amplitude (of the order of ε) outside of the resonance. Since the term
f/µ decreases with the radial wavenumber δ as δ−7/2, we recover that the resonances
are visible if δ < Re1/7 in the viscous regime. Doing the same analysis in the non linear
regime, the resonance is visible only if the amplitude at the resonance, which scales as
(εf/σ)1/3 is larger than the linear amplitude ε outside of the resonance. Since f/σ scales
as δ−11/2, we find that the resonance is important when δ < ε−4/11. In the general case,
the resonances are thus visible if the radial wavenumber δ is smaller than these two
bounds scaling as Re1/7 and ε−4/11 respectively.

4.2.2. Experimental amplitude at the resonance
Figure 10 shows the experimental measurement of the amplitude of the first Kelvin

mode at its second resonance for three different Reynolds numbers. For small Reynolds
numbers, the temporal evolution of the amplitude is exponential Af (1− e−t/ts), with a
final amplitude Af and a settling time ts which can be easily obtained by a least-square fit.
However, for higher Reynolds numbers, the amplitude strongly oscillates before reaching
a quasi-stationary final amplitude. This may be due to the nonlinear effects (which create
a decaying oscillation of the amplitude), but in fact it mostly comes from the onset of
a three-dimensional instability which is slowly growing during the transient stage. This
oscillation prevents the correct determination of the final amplitude and introduces a
large error, which is taken as the difference between the maximum and the local minimum
of the amplitude. This error is shown in the next figures as error bars on the amplitude.

To clearly demonstrate that the flow has become three-dimensionally unstable at high
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Reynolds numbers, we have plotted in Fig. 11(a) the instantaneous vorticity field found
in the cylinder for the second resonance of the first Kelvin mode. The vorticity is made of
several small vortices, which completely hide the organised structure of the initial Kelvin
mode. However, this Kelvin mode is recovered (at a smaller amplitude) when plotting
the mean vorticity field calculated on 100 fields (i.e. during 50 rotation periods), as in
Fig. 11(b). It is striking to see that although the flow seems completely turbulent, the
resonant Kelvin mode is still present with an amplitude only slightly oscillating in time.
In this case, the current nonlinear theory cannot apply anymore because other Kelvin
modes have appeared because of an instability.

By plotting the transient regimes for each frequency ω, we were able to measure the
final amplitude A decomposed on its norm |A| and argument α such that A = |A|eiα.
They are plotted in Fig. 12 as a function of the dimensionless frequency ω around the
second resonance of the first Kelvin mode and for η = 0.22. This solution is compared
to the theoretical viscous solutions (linear and nonlinear). What is intended here by
viscous linear (respectively nonlinear) theory is the set of equations (4.20 a, b) in the
limit η À 1 [respectively for η = O(1)]. Despite the large error bars, the comparison
between experiment and theory clearly shows that both nonlinear and viscous effects are
needed to predict the correct amplitude of the mode. The viscous effects saturate the
amplitude of the mode at a finite value, and the nonlinear effects shift the maximum
of the peak toward smaller frequencies ω. The overall agreement is excellent for the
amplitude. However, the experimental determination of the orientation of the mode α is
closer to the linear theory than to the nonlinear theory. This discrepancy may come from
transient effects: the measurements can only be done during a small duration, due to the
presence of an instability. When looking at the solid line of Fig. 9, we can understand
that the amplitude might be correctly predicted although the argument is not at its final
value.

4.2.3. Scaling at the resonance
Five series of experiments were conducted to study the dependence of the amplitude

with the Reynolds number when the frequency ω is exactly equal to the resonant fre-
quency ωi,n. For this purpose, Ω1 and Ω2 were varied in each experiment, by keeping
a fixed dimensionless frequency ω. It has been done for the first three resonances of
the first Kelvin mode and for the first two resonances of the second Kelvin mode. Fig-
ure 13 shows the final amplitude of the mode after the transient stage. The results are
in excellent agreement with the present theoretical predictions, knowing that there are
no fitting parameters. They clearly show that the amplitude scales with Re1/2 at low
Reynolds numbers and saturates due to nonlinear effects at large Reynolds numbers.
This saturation value decreases rapidly with the number of the resonance n. There is a
large uncertainty in the nonlinear regime because of the onset of the three-dimensional
instability as discussed above, which makes the validation of the nonlinear saturation
more difficult. However, there is an agreement up to 50%. It can be noted that the exact
theory given by (4.14) and (4.17) and plotted as thin lines is very close to the approximate
theory given by (4.20a,b) plotted as thick lines: this means that it is justified to neglect
the volume viscous damping of the geostrophic modes in the regime we have studied.

The dimensionless settling time ts measured during the transient response is also plot-
ted for these resonances in Fig. 14 as a function of the Reynolds number. It is compared
to the viscous time Re/(Re1/2µ + ν). Although there is a large scatter, the agreement
seems to be good. The settling time is only measured in the viscous regime since it is
impossible to determine the settling time in the nonlinear regime when the transient
response is not exponential anymore (as shown in Fig. 10).
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Figure 15 shows the argument α of the complex amplitude as a function of the Reynolds
number for the same five resonances. At low Reynolds numbers, the angles are determined
by the viscous theory and are equal to ±90◦ (if viscous detuning are neglected). It means
that, at the resonance, the mode is perpendicular to its direction in the linear inviscid
theory (or far from the resonances). However, when the nonlinear effects become large,
the phase shift occurs at a frequency different from ωi,n, and the angle is thus equal to 0◦

or 180◦ at ω = ωi,n. The agreement with the experimental results is correct for the first
resonance of the first mode. However, there is a large scatter for the other resonances,
and it is hard to ensure the validity of the theoretical predictions.

Finally, we have measured the dependence of the amplitude A with the small parameter
ε by varying the precession angle from 0.5 to 10◦. The measured amplitudes are plotted
in Fig. 16 and compared to the theoretical predictions. We recover that the amplitude
scales as ε2/3 in the viscous regime and then saturates at a fixed value for large precession
angles. The agreement is again excellent in the viscous regime and fairly good in the
nonlinear regime although the theory slightly overestimates the amplitude. This might
be due once again to the appearance of a three-dimensional instability before the final
amplitude has been reached. This relative discrepancy could be also due to the fact that
the theoretical derivation assumes that ε1/3 is asymptotically small whereas it goes up
to 0.5 when the precession angle is large.

4.2.4. Geostrophic modes
As was previously stated in §4.2.1, the nonlinear and viscous effects leed to the gen-

eration of a geostrophic mode. This mode is mainly responsible for the saturation of
the mode amplitude since the parameter ξ is generally larger than the parameter σ in
(4.20 a) as it appears in tables 1 and 2. It is thus essential to check if the theory predicts
an accurate amplitude of the geostrophic mode. Figure 17 shows the velocity profile of
the geostrophic mode for the first and second modes. It has been obtained by taking an
azimuthal average of the azimuthal velocity (this way, the velocity of the Kelvin modes
are conveniently removed). For the first mode, the measured profile is bell-shaped and
depends very weakly on the Reynolds number. This is in excellent agreement with the
nonlinear theory. For the second Kelvin mode, the geostrophic profile is more complex. It
exhibits two velocity maxima, but still vanishes for r = 1. This is due to the simultaneous
presence of several components J1(djr) in the geostrophic mode. It is again in fairly good
agreement with the nonlinear theory, although the minimum is less pronounced in the
experiments.

It is possible to decompose these profiles on the Bessel functions J1(djr) (dj being the
roots of the bessel function) in order to get the amplitudes Aj

0 of the geostrophic mode as
defined in (4.8) and (4.9). For the first Kelvin mode, the amplitude A1

0 is much larger than
the others since the geostrophic mode is mostly bell-shaped. We have thus plotted this
amplitude A1

0 as a function of the Reynolds number and the parameter ε. In the viscous
regime, the amplitude A1

0 roughly scales as the Reynolds number and as ε4/3, since it
scales as the square of the amplitude A. This means that the total geostrophic motion
A0ε

2/3v0 scales as the square of the forcing parameter ε. It can be noted that there are
some small variations of the scaling exponent among the resonances, which are due to
the volumic diffusion terms d2

jRe−1/2. In the nonlinear regime, the geostrophic amplitude
A1

0 saturates because the amplitude A also saturates. This means that the geostrophic
motion scales as ε2/3 in this regime. The agreement between the experiment and the
theory is good for the first two resonances: the scaling exponents and the multiplication
factors are correct, although the theory slightly overestimates the amplitude of the first
mode in the nonlinear regime. For the third resonance, the amplitude is much smaller
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in the experiments than in the theory, but the velocity of the geostrophic mode is very
small in this case and the uncertainty is thus very high.

For the second Kelvin mode, the geostrophic profile contains more than one component
and we thus need to plot the amplitudes Aj

0, j varying from 1 to 3. They are plotted
in Fig. 19 and compared to the theory. It is surprising to see that here, the theory
underestimates the amplitudes by a factor 10. Again this discrepancy could be due to
the fact that ε1/3 is not very small and thus the asymptotic decomposition may not be
valid anymore in this case.

5. Conclusion
In this paper we addressed both experimentally and theoretically the flow inside a

rotating cylinder subject to a weak precession. We have shown that this flow can be
expressed as a sum of Kelvin modes which have been measured for the first time using
Particle Image Velocimetry. We have distinguished two cases depending on the preces-
sion frequency. When this forcing frequency is not equal to a natural frequency of a
Kelvin mode, the flow is said to be non-resonant and a linear inviscid theory can predict
accurately the amplitude of the forced Kelvin modes in the limit of small precession am-
plitude and large Reynolds number. However, if the forcing frequency is resonant, this
linear inviscid theory is unable to give the mode amplitude since it diverges. In this case,
a viscous and nonlinear theory has been introduced to predict the finite value of the
mode amplitude.

In the resonant case, there are two different regimes depending on the value of the
Reynolds number. For small enough Reynolds numbers, nonlinear effects are negligible
and taking into account the effects of both the viscous boundary layers and the volume
viscous damping is enough to predict the dynamics of the resonant Kelvin mode as it has
already been shown by Gans (1970) in the particular case of a precession angle of 90◦. It
yields a saturation of the mode amplitude which scales as Re1/2 in excellent agreement
with the experimental results.

For larger Reynolds numbers, weakly nonlinear effects have to be taken into account
together with viscous effects. It leads to the saturation of the mode amplitude at a
value which scales as θ1/3, where θ is the precession angle supposedly small. It is thus
independent of the Reynolds number. This scaling is correctly recovered experimentally.
An interesting point is that experiments show the presence of a geostrophic motion,
whose amplitude always scales as the square of the Kelvin mode amplitude, as can be
predicted by the nonlinear and viscous theory. This small geostrophic motion has been
observed and measured in the experiments and its amplitude has been shown to be
correctly predicted by the theory for the first Kelvin mode.

In the present paper, we have characterised the stable flow inside a precessing cylinder
in all regimes. In the future, these results can serve as a basis for a stability study of this
flow. Indeed, it is known from McEwan (1970) and Manasseh (1992) that Kelvin modes
can become unstable and even turbulent for large Reynolds numbers. Such a breakdown
of the flow has been observed in our experiments, and always appeared at the transition
between the viscous and the nonlinear regime, i.e. when the nonlinear effects cease to
be negligible. The instability of the Kelvin modes is probably due to a triadic resonance
similarly to the elliptic instability (Kerswell 2002; Eloy et al. 2003). A theoretical and
experimental study is currently carried out to understand this instability better.

Finally, it would be interesting to know if the present theoretical framework can hold
when the flow becomes unstable and eventually turbulent. Indeed, the Kelvin modes are
still excited in this case, although they are hidden by the presence of a very disordered
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flow (which can still be expressed as a sum of Kelvin modes). This would have great
consequences for industrial and geophysical applications for which the Reynolds numbers
are usually a few decades higher than in the laboratory experiments.

We would like to thank Laurie Devesvre for preliminary results during the set-up of the
laboratory experiment. This study has been carried out under the contract CEA-CNRS
N◦ 004746.

Appendix A. Four-component formulation
The operators appearing in equation (2.8) are defined by

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (A 1)

D =




0 0 −i 0
0 0 1 0
i −1 0 0
0 0 0 0


 , (A 2)

L =




∆− 1
r2

− 2
r2

∂

∂ϕ
0 0

2
r2

∂

∂ϕ
∆− 1

r2
0 0

0 0 ∆ 0

0 0 0 0




, (A 3)

where

∆ =
1
r

∂

∂r
+

∂2

∂r2

1
r2

∂2

∂ϕ2
+

∂

∂z2
(A 4)

and

M =




0 −2 0
∂

∂r

2 0 0
1
r

∂

∂ϕ

0 0 0
∂

∂z
∂

∂r
+

1
r

1
r

∂

∂ϕ

∂

∂z
0




. (A 5)

The vectors F0 and N(v1, v2) are defined by

F0 =




0
0

−rω
0


 , (A 6)
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and

N(v1, v2) =
(

u1 × (∇× u2) + u1 × (∇× u2)
0

)
. (A 7)

Appendix B. Extraction of the mode amplitude ai

The PIV measurements give the two components uexp = (uexp, vexp) of the (real)
transverse velocity field at a specific height z. We want to obtain the amplitudes ai and
the tilt angles αi of the first 5 Kelvin modes whose transverse components are given in
the reference frame of the rotating platform by ui(r, ϕ, z) = eiϕ(ui, vi) sin(kiz), (ui and
vi being given in Eq. (3.5). We thus suppose that the experimental velocity field is given
by

uexp(r, ϕ, z) =
∑

i

ai

( −i sin(ϕ + αi)ui(r)
cos(ϕ + αi)vi(r)

)
. (B 1)

It can be noted that uexp is real since ui is purely imaginary and vi is purely real.
We introduce the scalar product 〈X|Y〉 =

∫ 2π

0

∫ 0.9

0
(XrYr + XϕYϕ) r dr dϕ for which

the Kelvin modes are almost orthogonal: they would be orthogonal if the integration was
achieved over the whole section 0 < r < 1. If we define the complex experimental velocity
(which can be easily derived numerically)

uc
exp(r, ϕ, z) = uexp(r, ϕ, z)− iuexp(r, ϕ + π/2, z) (B 2)

we find that the scalar product 〈ui|uc
exp〉 is equal to:

〈ui|uc
exp〉 =

∑

j

Mijajeiαj sin(kjz) (B 3)

where Mij = 2π
∫ 0.9

0
(uiuj + vivj)r dr. If we consider only the five first Kelvin modes, we

can invert numerically the 5× 5 matrix M to get:
(
aieiαi sin(kiz)

)
i=1,5

= M−1
(〈ui|uc

exp〉
)
i=1,5

. (B 4)

The tilt angles αi of the Kelvin modes are thus equal to the argument of this expression
and the amplitudes ai to the modulus of this expression divided by (sin(kiz))i=1,5.

Appendix C. Calculation of the nonlinear coefficients
The aim of this Appendix is to calculate the coefficients f , σ and ξj appearing in the

nonlinear amplitude equation (4.14).

C.1. Order ε2/3

At order ε2/3, the particular solution of (4.7) is given by (4.8) where

v2k =




0

a2k cos(2kiz)

0

p2k cos(2kiz)




, v2ω =




i
r

a2ω

−1
2

da2ω

dr
0

p2ω




, (C 1a,b)

with

a2k =
iki

ω

(
viwi − 1

2ki

∂(uivi)
∂r

)
, a2ω =

ωδ2
i

(ω2 − 4)2
[
J2

1 (δir)− J2
1 (δi) r2

]
.(C 2a,b)
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C.2. Order ε

We first need to calculate the scalar product N , which is the norm of the velocity field

N = vi ¯ I vi = 2πh
ω2

(
ω + 2δ2

i − 2
)− 4ω + 8

ω2 (4− ω2)2
J2

1 (δi)

+
π

ki
sin(kih)

ω2
(
ω − δ2

i ω − 2
)− 4ω + 8

ω2 (4− ω2)2
J2

1 (δi). (C 3)

It can be noted that the last term vanishes at the resonance. The term of forcing comes
from

F = vi ei(ωt+ϕ) ¯ ζ F0ei(ωt+ϕ) = 2πζ
2i
δ2
i

ω + 2
ω

sin
(

kih

2

)
J1(δi), (C 4)

which is a pure imaginary number. The coefficient of forcing f appearing in the amplitude
equation (4.14) is simply

f =
F

iN
, (C 5)

where N and F are given by (C 3) and (C 4).
The coefficient σ in (4.14) is separated in two parts. The first one comes from the

nonlinear interaction of V1 with v2k

σ2k = vi ei(ωt+ϕ) ¯
[
N

(
v2k,vi ei(ωt+ϕ)

)
+ N

(
vi ei(ωt+ϕ),v2k

)]
, (C 6a)

= 2πh

∫ 1

0

(
2ki a2k viwi − a2k

∂(uivi)
∂r

)
rdr, (C 6b)

with a2k given by (C 2a). The other term comes from the interaction of V1 with v2ω

σ2ω = vi ei(ωt+ϕ) ¯N
(
v2ωe2i(ωt+ϕ),vi e−i(ωt+ϕ)

)
, (C 7a)

= 2πh
iki

ω

∫ 1

0

(
da2ω

dr
uiwi − 2ia2ω

r
viwi

)
rdr, (C 7b)

where the term associated with N(vi,v2ω) has been omitted because its scalar product
with vi ei(ωt+ϕ) is zero. The final coefficient σ used in the amplitude equation (4.14) is

σ =
σ2k + σ2ω

iN
, (C 8)

where N , σ2k and σ2ω are given by (C 3), (C 6b) and (C 7b). The integrals appearing in
the coefficients σ2k and σ2ω can be evaluated numerically. It is easy to see that σ2k and
σ2ω are pure imaginary and therefore σ is real.

Finally the coefficients ξj describe the nonlinear interaction of the Kelvin mode with
the j-th geostrophic mode

Xj = vi ei(ωt+ϕ) ¯
[
N

(
vj

0 ,vi ei(ωt+ϕ)
)

+ N
(
vi ei(ωt+ϕ),vj

0

)]
, (C 9a)

= −2πh

∫ 1

0

(
2iki

ω
vj

0uiwi +
1
r

d(rvj
0)

dr
uivi

)
rdr, (C 9b)

where vj
0 is given by (4.9). The coefficient ξj of (4.14) is

ξj = −Xj

iN
, (C 10)
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where N and Xj are given by (C 3) and (C 9b). Again, the integral in (C 9b) is calculated
numerically.

Some numerical values of the coefficients f , σ and ξj whose analytical expressions are
given by (C 5), (C 8) and (C 10) are found in tables 1, 2 and 3.

Appendix D. Linear viscous boundary layers (Ekman pumping)
In this appendix we derive the viscous correction to the main flow V in the boundary

layers. This correction can be written as

Ṽ = ε1/3A
(
ṽi + Re−1/2 ṽ3

)
ei(ωt+ϕ) + o.t., (D 1)

with the boundary conditions V + Ṽ = 0 on the walls and Ṽ tends to zero far from the
walls. In the previous expression, ṽi = (ũi, ṽi, w̃i, p̃i) and ṽ3 = (ũ3, ṽ3, w̃3, p̃3) are of
order 1. The added corrective flow (Ekman pumping) is denoted ṽ3 because, as we shall
see below, this flow constitutes the normal boundary condition for the bulk flow V3 at
order ε. This calculation is classical and can be found in several sources (e.g. Greenspan
1968; Gans 1970).

D.1. Lateral wall
At first, let us focus on the lateral wall r = 1. By taking into account the viscous effects
in (2.8) and considering the rescaled coordinate

r̃ = Re−1/2 (1− r), (D 2)

one can write the linear Navier-Stokes equation valid close to the lateral wall
(

iωI − Re1/2 ∂

∂r̃
Rl +Ml − ∂2

∂r̃2
I
)

Ṽ = O
(
Re−1Ṽ

)
, (D 3)

where the tensors Rl et Ml are defined as follow

Rl =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0




and Ml =




0 −2 0 0

2 0 0 i

0 0 0
∂

∂z

1 i
∂

∂z
0




. (D 4)

At order Re1/2, one gets
∂

∂r̃
(Rl ṽi) = 0, (D 5)

which leads to ũi = p̃i = 0.
At order 1, (D 3) gives

∂

∂r̃
(Rl ṽ3) =

(
iωI +Ml − ∂2

∂r̃2
I
)

ṽi. (D 6)

The solution of this linear system with the boundary conditions vi + ṽi = 0 in r̃ = 0 and
ṽi vanishes to zero for r̃ À 1 is

ṽi(r̃, z) = −vi(1) sin(kiz) e−κr̃ and w̃i(r̃, z) = −wi(1) cos(kiz) e−κr̃ (D 7)
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where κ is given by

κ =
1 + i√

2

√
ω. (D 8)

and

ũ3 = ṽ3 · n = −αi J1(δi) sin kiz, in r = 1, (D 9)

where

αi =
1 + i√

2
(δ2

i − 1) ω2 + 4
(4− ω2)ω3/2

. (D 10)

D.2. End walls
An equivalent derivation can be done for the upper wall (the flow in the lower wall
boundary layer is formally identical). Using the local rescaled coordinate

z̃ = Re1/2

(
h

2
− z

)
, (D 11)

one can rewrite the Navier-Stokes equation valid close to the upper wall
(

iωI − Re1/2 ∂

∂z̃
Ru +Mu − ∂2

∂z̃2
I
)

Ṽ = O
(
Re−1Ṽ

)
, (D 12)

where the tensors Ru et Mu are defined as follow

Ru =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0




and Mu =




0 −2 0
∂

∂r

2 0 0
i
r

0 0 0 0

1
r

+
∂

∂r

i
r

0 0




. (D 13)

At order Re1/2, one finds w̃i = p̃i = 0. At order 1, the projection of (D 12) onto the
radial, azimuthal and pressure directions with the proper boundary conditions gives

ũi(r, z̃) = i S(r) e−κsz̃ − i D(r) e−κdz̃, (D 14a)
ṽi(r, z̃) = S(r) e−κsz̃ + D(r) e−κdz̃, (D 14b)

where κs and κd are given by

κs =
1 + i√

2

√
ω + 2, and κd =

1− i√
2

√
2− ω, (D 15)

and where S and D are given by

S(r) =
i ui − vi

2
sin(kih/2), and D(r) =

−iui − vi

2
sin(kih/2). (D 16)

The projection of (D 12) on the vertical direction gives

w̃3 =
(

2iS
r

+ i
dS

dr

)
e−κsz̃

κs
− i

dD

dr

e−κdz̃

κd
, (D 17)

such that

w̃3 = ṽ3 · n = −βi sin(kih/2)J1(δir) , in z̃ = 0 i.e. z = h/2, (D 18)
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where

βi =
1− i
2
√

2
δ2
i

[
1

(2− ω)3/2
+

i
(2 + ω)3/2

]
. (D 19)

D.3. Geostrophic flow
For the geostrophic flow, the viscous flow in the end wall boundary layers can be calcu-
lated with a similar method as for the Kelvin mode in D.2. This viscous flow is of the
form

Ṽ = ε2/3
∞∑

j=1

Aj
0(τ)

(
ṽj

0 + Re−1/2ṽj
4

)
+ o.t., (D 20)

where ṽj
0 = (ũj

0, ṽ
j
0 , w̃

j
0 , p̃

j
0). One finds w̃j

0 = p̃j
0 = 0 and

ũj
0 =

i
2
vj

0

(
−e−κ1z̃ + e−κ2z̃

)
, and ṽj

0 = −1
2
vj

0

(
e−κ1z̃ + e−κ2z̃

)
, (D 21)

where κ1 = 1 + i and κ2 = 1− i. This leads to

w̃j
4 = ṽj

4 · n = w̃j
4 =

1
2

(
dvj

0

dr
+

vj
0

r

)
, in z = h/2. (D 22)

D.4. Viscous coefficients
The surface viscous coefficients appearing in (4.14) and (4.17) can now be calculated. If
the surface of the cylinder is separated into two parts S = Sl +Se, where Sl is the lateral
wall and Se the end walls, we have

µl =
∫

Sl
pi sin(kiz) ṽ3 · nd2S = −π [h− sin(kih)/ki)] αiJ

2
1 (δi), (D 23a)

µe =
∫

Se
pi sin(kiz) ṽ3 · nd2S = −2πβi

(δ2
i − 1)ω2 + 4

δ2
i ω2

J2
1 (δi) sin2

(
kih

2

)
, (D 23b)

where we have used the formulation of ṽ3 · n found in (D 9) and (D18). Now using the
relation (4.15) the viscous coefficient µ used in (4.14) is simply

µ = −µl + µe

N
, (D 24)

where N is given by (C 3).
For the geostrophic flow, we obtain by integrating by parts

µ0 =
∫

Se

pj
0 ṽj

4 · nd2S = −4π

∫ 1

0

vj
0

2
rdr, (D 25)

where we have used ṽj
4 · n as given by (D 22) and

N0 = vj
0 ¯ I vj

0 = 2πh

∫ 1

0

vj
0

2
rdr, (D 26)

which leads to a surface viscous coefficient µ0/N0 = −2/h as it appears in the amplitude
equation (4.17).

The volume viscous coefficient ν is simply

ν =
−vi ¯ Lvi

vi ¯ I vi
= (k2

i + δ2
i ). (D 27)

Some useful numerical values of the viscous coefficients µ and ν obtained through
(D 24) and (D 27) are given in tables 1 and 2.
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Appendix E. Nonlinear viscous boundary layers
To calculate the forcing of the geostrophic flow by the Kelvin mode, we need to perform

a weakly nonlinear analysis in the end wall boundary layer. We choose to focus on
the upper wall boundary layer z = h/2 (the calculation is symmetric for the bottom
wall) using the rescaled vertical coordinate z̃ as defined by (D 11). Taking into account
the nonlinear effects and considering only the forcing of geostrophic modes of angular
frequency ω = 0, the Navier-Stokes equation reads
(
−Re1/2 ∂

∂z̃
Ru +Mu − ∂2

∂z̃2
I
)

Ṽ = Nu(Ṽ, Ṽ) + Nu(V, Ṽ) + Nu(Ṽ,V) + o.t., (E 1)

where the operators Ru and Mu are defined in (D 13) and Nu is similar to the bilinear
function N defined in (C 3) but adapted to the rescaled variable z̃.

We now need to evaluate the right hand side of the above equation at order ε2/3

focusing on the geostrophic component (independent of t and φ). It leads to

Nu(Ṽ, Ṽ) = ε2/3|A|2




γ1(r, z̃)
κ1(r, z̃)

0
0


 + o.t. + O(ε), (E 2)

where

γ1 = ṽi

(
ṽi

r
− i

r
ũi

)
− ũi

∂ũi

∂r
− w̃3

∂ũi

∂z̃
, (E 3a)

κ1 = ũi

(
ṽi

r
− ∂ṽi

∂r

)
− ṽi

iṽi

r
− w̃3

∂ṽi

∂z̃
, (E 3b)

where ũi and ṽi are given by (D 14 a,b) and w̃3 is given by (D17). The other two terms
are

Nu(V, Ṽ) = ε2/3|A|2




γ2(r, z̃)
κ2(r, z̃)

0
0


 + o.t. + O(ε), (E 4a)

Nu(Ṽ,V) = ε2/3|A|2




γ3(r, z̃)
κ3(r, z̃)

0
0


 + o.t. + O(ε), (E 4b)

where

γ2 = sin
kih

2

[
vi

(
− i

r
ũi +

ṽi

r

)
+ ui

∂ũi

∂r
− w3

∂ũi

∂z̃
− kiz̃ wi

∂ũi

∂z̃

]
, (E 5a)

κ2 = sin
kih

2

[
ui

(
ṽi

r
+

∂ṽi

∂r

)
− i

r
viṽi − w3

∂ṽi

∂z̃
− kiz̃ wi

∂ṽi

∂z̃

]
, (E 5b)

γ3 = sin
kih

2

[
ṽi

(
− i

r
ui +

vi

r

)
+ ũi

∂ui

∂r

]
, (E 5c)

κ3 = sin
kih

2

[
−ũi

(
vi

r
+

∂vi

∂r

)
+

i
r
viṽi

]
, (E 5d)

where w3 = −w̃3(z̃ = 0).
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The solution of (E 1) forced by the right hand side is sought at order ε2/3 of the form

Ṽ = ε2/3|A|2
(
ṽNL

2 + Re−1/2 ṽNL
4

)
. (E 6)

Examining (E 1) at order ε2/3Re1/2 leads to w̃NL
2 = p̃NL

2 = 0. At order ε2/3, it leads to
(

∂4

∂z̃4
+ 4

)
ũNL

2 = 2 (κ1 + κ2 + κ3)− ∂2

∂z̃2
(γ1 + γ2 + γ3) , (E 7a)

ṽNL
2 = −1

2

(
γ1 + γ2 + γ3 +

∂2ũNL
2

∂z̃2

)
. (E 7b)

The solution of the above system is a sum of the particular solution of (E 7 a) and the
solution of the homogeneous system of the form ũNL

2 = a1 exp(−1 + i)z̃ + a2 exp(−1 −
i)z̃. The particular solution is found with a symbolic calculation software where the
coefficients a1 and a2 are adjusted to satisfy the boundary conditions ũNL

2 = ṽNL
2 = 0 in

z̃ = 0 (the boundary condition of vanishing ṽNL
2 for z̃ À 1 is ensured by the selection of

the vanishing exponential in the particular solution).
Taking (E 1) at order ε2/3 also gives the form of the flow orthogonal to the wall at

order ε2/3Re−1/2 which satisfies

∂

∂z̃
w̃NL

4 = −
(

1
r

+
∂

∂r

)
ũNL

2 . (E 8)

Once this is integrated, the normal flow is ṽNL
4 · n = w̃NL

4 (z̃ = 0). The coefficients χj

needed for the amplitude equation (4.17) can now be obtained

χj =
4π

N0

∫ 1

0

pj
0 (ṽNL

4 · n− w̃SB
4 ) rdr + c.c., (E 9)

where N0 is given by (D 26) and

w̃SB
4 =

∫ 1

0

ṽNL
4 · n rdr + c.c., (E 10)

corresponds to the flow associated with a modification of the solid body rotation fre-
quency.
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Figure 1. Sketch of the problem. (a) The cylinder of radius Rc and height H rotates about its
axis at fixed angular frequency Ω1. The precession rate Ω2 and the nutation angle θ are also
fixed. (b) Polar coordinates (R, ϕ, Z) defined in the cylinder rotating frame.
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Figure 2. Sketch of the experimental setup. The cylinder is directly mounted on the axis of
the motor which is located on the rotating platform, and can be tilted during the rotation of
the platform. The camera, located above the cylinder is fixed in the platform frame of reference.
The whole platform block, including the computer, rotates at angular frequency Ω2.
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Figure 3. (a) Velocity field measured at ω = 0.9, i.e. close to the first resonance ω1,1 = 0.996
of mode i = 1 (Re = 5500, h = 2 and ε = 1.7× 10−3). (b) radial velocity along the xψ-axis. The
circles (◦) correspond to the field displayed in (a). The triangles (O) correspond to a velocity
field at ω = 0.45 with ε = 9.6 × 10−3, i.e. close to ω1,2 = 0.51. The related linear theoretical
profiles are plotted in solid and dashed lines. The dotted line corresponds to the theoretical
profile for the third Kelvin mode.
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Figure 4. Dispersion relation of the Kelvin modes with an azimuthal wavenumber m = 1, given
by (3.7) and (3.8). The dotted lines correspond to the resonances for an aspect ratio h = 1.8.
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(a) (b)

(c) (d)

Figure 5. Vorticity fields of the first (a), second (b), third (c) and fifth (d) Kelvin mode,
observed close to their first resonance (where ki is close to π/h). Here, h = 2 and the flows
are observed respectively for ω = 0.9, 0.45, 0.3, 0.2. The Reynolds number is equal to 5500
(a), 11800 (b), 17700 (c) and 26600 (d) and the small parameter ε is equal to 1.7 × 10−3 (a),
9.6× 10−3 (b), 1.2× 10−2 (c) and 1.4× 10−2 (d).
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Figure 6. Amplitude of the first mode (i = 1) (a) and second mode (i = 2) (b) for a cylinder
of radius Rc = 4.66 cm and an aspect ratio h = 2. The angular velocity of the cylinder Ω1 is
equal to 2 rad s−1 (◦) and 8 rad s−1 (O) so that the Reynolds number lies between 2× 103 and
2× 105. The solid line shows the prediction of the linear inviscid theory as done in §3.1.
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Figure 7. (a) Transient dynamics of the first mode amplitude for a forcing frequency ω = 0.8
and a Reynolds number Re = 6640. (b) Spectrum of the amplitude for ω = 0.8 (solid line) and
ω = 1.1 (dashed line). The corresponding Reynolds numbers are Re = 6640 and Re = 4830
respectively. The Fourier transform of the temporal signals is plotted as a function of the tran-
sient dimensionless frequency (Ωt − Ω1)/Ω (given in the cylinder frame). The thin solid lines
correspond to the first three resonances of the Kelvin mode i = 1: ω1,1 = 0.996, ω1,2 = 1.774,
ω1,3 = 1.912. Here, ε = 3.5× 10−3 and h = 2.
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Figure 8. Numerical value of the nonlinear parameter ξ multiplied by h6 quantifying the inter-
action of the resonant Kelvin mode with the geostrophic mode. The curves correspond to the
first (thick lines) and second (thin lines) Kelvin modes at their first (solid line), second (dashed
line) and third (dotted line) resonance.
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Figure 9. Phase portrait of the complex amplitude of the first Kelvin mode at its first resonance,
obtained by integrating equations (4.20a,b). The Reynolds number is equal to 2.5 × 104 (solid
line), 2.2 × 105 (dashed line) and 2.5 × 106 (dotted line) for a small parameter ε = 0.003 as in
the experiments. This corresponds to η equals 0.31, 0.10 and 0.03 respectively.
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Figure 10. Time evolution of the amplitude of the first mode at the second resonance (ω = 1.812
and h = 1.8) for Re = 720 (¤), Re = 2200 (4) and Re = 7400 (•). The thick line corresponds
to an exponential fit for Re = 720. The forcing amplitude is ε = 2.8× 10−3.
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(a) (b)

Figure 11. Instantaneous (a) and mean (b) vorticity field of the second resonance of the
first Kelvin mode (ω = 1.812 and h = 1.8) after destabilisation of the flow (Re = 7400 and
ε = 2.8× 10−3).
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Figure 12. Amplitude (a) and orientation (b) of the first Kelvin mode around its second
resonance. Experimental results (◦) are obtained for an aspect ratio h = 1.8, Reynolds number
Re = 2500 and ε varying between 2.3× 10−2 and 3.3× 10−2 . The solid line corresponds to the
non linear viscous theory at the second resonance of the first mode, the dashed line to the linear
viscous theory and the dotted line to the linear inviscid theory.
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Figure 13. Amplitude of the first (a) and second (b) Kelvin modes as a function of the Reynolds
number for the first (◦, solid line), second (O, dashed line), and third (¤, dash-dotted line)
resonances. Closed symbols correspond to a small cylinder Rc = 1.5 cm and open symbols to
a large cylinder Rc = 4.6 cm. The thick lines correspond to the approximate theory (4.20) and
the thin lines to the exact theory (4.14) and (4.17). For the first mode, h = 1.8; ε = 3.1× 10−3,
2.8× 10−3 and 3.2× 10−2 for the first, second and third resonance respectively. For the second
mode h = 2; ε = 8.6× 10−3 and ε = 5× 10−3 for the first and second resonance respectively.
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Figure 14. Settling time of the first (a) and second (b) modes as a function of the Reynolds
number, obtained at the first (◦, solid line), second (O, dashed line) and third (¤, dash-dotted
line) resonances. Closed symbols correspond to a small cylinder and open symbols to a large
cylinder. Same experimental parameters as in Fig. 13.
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Figure 15. Orientation of the first (a) and second (b) modes as function of the Reynolds
number, obtained at the first (◦, solid line), second (O, dashed line) and third (¤, dash-dotted
line) resonances. Closed symbols correspond to a small cylinder and open symbols to a large
cylinder. The thick lines corresponds to the approximate theory (4.20) and the thin lines to the
exact theory (4.14) and (4.17). Same experimental parameters as in Fig. 13.
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Figure 16. Amplitudes of the first (a) and second (b) modes as a function of the parameter
ε (proportional to the precessing angle θ), obtained at the first (◦, solid line) and second (O,
dashed line) resonances. For the first mode, h = 1.8 and Re = 11900 (resp. 2150) for the first
(resp. second) resonance. For the second mode, h = 2 and Re = 9000 (resp. 3600) for the first
(resp. second) resonance.
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Figure 17. Velocity profile of the geostrophic mode (m = 0) for the first resonance of (a) the
first (ω = 1.088, h = 1.8, ε = 3.1× 10−3) and (b) the second (ω = 0.51, h = 2, ε = 8.6× 10−3)
Kelvin mode. (a) Re = 1300 (◦, solid line), Re = 4900 (O, dashed line) and Re = 12200, (¤,
dotted line); (b) Re = 3900 (◦, solid line), Re = 7800 (O, dashed line) and Re = 16000 (¤,
dotted line).
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Figure 18. Amplitude of the geostrophic mode as a function of the Reynolds number (a) and the
precession angle (b). The results are obtained with an aspect ratio h = 1.8 for the first mode at
its first resonance (◦, solid line, ω = 1.088), its second resonance (O, dashed line, ω = 1.812) and
its third resonance (¤, dotted line, ω = 1.927). Closed symbols correspond to a small cylinder
and open symbols to a large cylinder. (a) ε = 3.1× 10−3, 2.8× 10−3 and 3.2× 10−2 for the first,
second and third resonance respectively.; (b) Re = 12200 for the first resonance and Re = 2200
for the second resonance.
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Figure 19. Amplitude of the geostrophic mode as a function of the Reynolds number, for
the first resonance of the second mode. The different curves correspond to the first component
A1

0 (solid line, ◦), the second component A2
0 (dashed line, O) and the third component A3

0

(dash-dotted line, ¤). The dimensionless parameters are h = 2, ε = 8.6× 10−3.


