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Most aquatic vertebrates swim by passing a bending wave down their bodies, a swimming
mode known as undulatory propulsion. Except for very elongated swimmers like eels and
lampreys, these animals have evolved to a similar shape: an anterior streamlined region of
large volume separated from a caudal fin by a caudal peduncle of reduced cross-section.
However, the link between this particular shape and the hydrodynamical constraints re-
mains to be explored. Here, this question is addressed by seeking the optimal design for
undulatory swimmers with an evolutionary algorithm. Animals of varying elliptic cross-
section are considered whose motions are prescribed by arbitrary periodic curvature laws.
In the elongated-body limit, reactive and resistive forces can be formulated at any cross-
section, allowing to calculate the recoil motion and the mean swimming speed of a given
animal. A bi-objective optimisation problem then consists in finding body shapes and
corresponding motions associated with the highest swimming velocities, the lowest ener-
getic costs, or any trade-offs between the two. For biologically relevant parameters, this
optimisation calculation yields two distinct ‘species’: one specialised in economical swim-
ming and the other in fast swimming. By comparing, the attributes and performances of
these numerically-obtained swimmers with data on undulatory-swimming animals, it is
argued that evolution is consistent with low energetic costs.

1. Introduction
There are presumably more than 30,000 different species of fish, the majority of them

using ‘undulatory swimming’ as their main mode of locomotion. This mode is some-
times also called ‘body and caudal fin’ propulsion, and is different from ‘median and
paired fin’ propulsion in that animals use the bending of their backbones to achieve lo-
comotion (Blake 2004). The kinematics and performances of undulatory swimmers have
been widely studied in the literature, starting with the pioneering works of Gray (1933)
and Bainbridge (1958, 1963), and have been reviewed numerous times (e.g. Gray 1968;
Lighthill 1969; Alexander 1977; Blake 1983; Fish & Hui 1991; Videler 1993; Triantafyllou
et al. 2000; Lauder & Tytell 2005; Wu 2011).

Observing their designs, one can distinguish two groups of undulatory swimmers: elon-
gated eel-like swimmers, and salmon-like or tuna-like ones. The elongated swimmers have
aspect ratios of the order of 10 or more and their cross-section generally varies moderately
along their length. Their swimming gaits involve the bending of their whole body with an
envelope that grows almost linearly from head to tail. Salmon-like or tuna-like swimmers
have been divided into three subclasses (sub-carangiform, carangiform, and thunniform
swimmers) by Lindsey (1978) according to the localisation of their bending along the
backbone, but these subdivisions are not related to any phylogenetic considerations, and
describe a continuum of shapes and motions that share common characteristics (Blake
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2004; Lauder & Tytell 2005). These salmon-like swimmers have usually an aspect ratio
of the order of 5, with a large and streamlined anterior region that accounts for most
of the animal mass. This anterior region is separated from a caudal fin of similar height
by the caudal peduncle, which is generally of markedly reduced cross-section. As eel-like
swimmers, the salmon-like swimmers generate thrust by propagating a bending wave
down to their caudal fin, but large curvatures are now localised in the posterior region
(again, the extent of this localisation leads to the subclasses defined by Lindsey 1978).

To use a vocabulary common in evolutionary biology, these two classes of undulatory
swimmers (the eel-like group and the salmon-like group) likely correspond to local peaks
of the fitness landscape. Examples of convergent evolution give other evidence of the
attractive nature of these two groups, canonical examples being the convergent evolution
of sharks, dolphins, and reptilian ichthyosaurs (species now extinct 90 My ago), which
belong to the salmon-like group (Lighthill 1969), or the convergent evolution of eels and
lampreys that are different from a phylogenetic viewpoint but belong to the eel-like group.
It seems reasonable to assume that evolution selected these two groups of undulatory
swimmers because of their superior swimming performances over all possible shapes and
motions. However, it is still unclear which of the performances have served as selective
pressures. Or, said differently, the design principles behind undulatory swimming are
still largely unknown. Addressing this open question with biological and paleontological
tools is difficult because of the gaps in the fossil record, and because of the lack of any
quantitative relation between the morphology and physiology of animals and their fitness
or performance. Another difficulty arises from the inherent properties of evolution itself.
Because evolution is a one-time experiment, and because it occurs on such large time-
scales, evolutionary biologists are often reduced to offer tentative adaptative arguments
that can hardly be proved or disproved with experiments.

In this paper, to address the question of optimality and attractiveness of designs in
the fitness landscape, a different approach is proposed. The optimal shapes and motions
of undulatory swimmers are computed with an evolutionary algorithm. The premises of
this computation are that fluid mechanics is the main selective pressure on undulatory
swimmers, and that their fitness can be assessed through two measurable performance
variables: their swimming velocity and their efficiency. The goal here is to describe the op-
timality of undulatory swimming beyond the naive arguments of maximisation of thrust
and minimisation of drag (Blake 2004).

The first to address physically the optimisation of shape in undulatory swimming
is probably Lighthill (1969, 1970), using a linear elongated-body theory proposed in
Lighthill (1960). From mainly inviscid considerations, Lighthill (1970) showed with a
simple model that the morphology of carangiform (or salmon-like) swimmers is adapted
to their motion. He argued that the localisation of the large amplitudes of motion near
the tail is aimed at reducing the wasted energy due to what he called the ‘vortex-force
effect’, which is simply the drag force due to transverse motions. Then he showed that
the amplitude of the motion should be almost constant near the tail, or equivalently
that the transverse velocity and the incident angle of the tail should be in phase. This
means that there should be a narrow region just ahead of the tail where there is a rapid
increase of the motion amplitude. To further minimise the wasted energy, he argued that
the cross-section of this narrow region, which corresponds to the caudal peduncle, should
be as small as possible. Finally, he showed that, since the thrust force is generated at
the tail and accompanied by a lateral force, a periodic torque is produced that leads to
a recoil pitching motion. To limit this inefficient recoil motion, the anterior and rigid
region of the body should have a large mass or a large added-mass. In brief, using mainly
linear and inviscid arguments, Lighthill (1970) showed convincingly that tuna and related
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fish have a shape adapted to their swimming motion. However, these explanations lacked
quantitative elements and did not take into account nonlinearities and internal mechanics.

Focusing on large thunniform swimmers belonging to the salmon-like group, Lighthill
(1970) and Wu (1971a) calculated the optimal flapping motion of a two-dimensional
rigid foil with the aim of modelling the lunate tail of these animals. They showed that,
similarly to the elongated-body approximation results (Lighthill 1960, 1970; Eloy 2012),
one expect the transverse velocity and the incident angle of the tail to be in phase.
These optimisation calculations were later confirmed by the experiments of Triantafyllou
et al. (1993), and, more recently, Eloy & Schouveiler (2011) extended this approach to
a flexible flapping foil, calculating its optimal motion in two dimensions. Also address-
ing the optimal motion of an undulatory swimmer, Kern & Koumoutsakos (2006) used
three-dimensional numerical simulations on an eel-shaped swimmer to find, with an evo-
lutionary algorithm, the swimming gaits that maximise either the efficiency or the burst
swimming speed. These different optimisation calculation are related to the problem at
stake here, although all assumed explicitly or not that the swimmer shape is known.
They were thus unable to address the link between the shape and the motion for optimal
undulatory swimming.

Very recently, a study by Tokić & Yue (2012) has been published that addresses the
optimal shape and motion of undulatory swimmers using an evolutionary algorithm. This
study is very similar to the present one, although Tokić & Yue (2012) have given more
emphasis to the modelling of muscles and less to the modelling of hydrodynamics. The
similarities and differences between this work and the present study will be discussed in
more details in § 6.

This paper is organised as follows. First, in § 2, the physical model is presented. In
particular, the geometries and motions considered are discussed, and the different forces
exerted on the swimmers are detailed. Then, in § 3, the evolutionary algorithm used
to solve the constrained bi-objective optimisation is described briefly, and in § 4 the
results of optimisation calculations are reported. Finally, these results are compared to
experimental data on aquatic animals in § 5 and discussed in the light of previous works
in § 6.

2. Model
2.1. Geometry

Consider an animal of length L swimming at constant mean velocity U in water at rest
(see figure 1). The curvilinear coordinate s is defined as the distance from the head along
the backbone such that s varies between 0 and L, assuming that the animal’s backbone
is inextensible. Each cross-section of the animal is taken as elliptic, with semi-major
axis a(s) along the vertical and semi-minor axis b(s) along the horizontal (these two
directions can be inverted for comparisons with aquatic mammals, as gravity plays no
role here). For convenience, the axis a(s) will indifferently be referred to as the height,
depth, or span of the swimmer, the axis b(s) will be called width or thickness, and the
computational undulatory swimmers will also be designated as fish or animals.

The limit of small aspect ratio is considered such that the continuous functions a(s)
and b(s) satisfy

0 6 b(s) 6 a(s) 6 εL, (2.1)

with ε � 1. In the following, it will be more suitable to define the aspect ratio as the
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Figure 1. Geometry of the “animals” considered: side view (a), top view (b), and close-up (c)
to show how the velocity, v, of each cross-section is decomposed into tangential (u) and normal
(w) components.

ratio of the length to the maximal major axis

AR =
L

2 max(a(s))
, (2.2)

which is equal to AR = 1/2ε in general. To avoid blunt leading and trailing edges, it is
also required that

a(0) = b(0) = b(L) = 0. (2.3)
The volume of the animal is not constrained, but a dimensionless volume, V0, is defined
as

Vol = V0ε
2L3, (2.4)

where Vol is the animal volume.
The mass per unit length is then

M(s) = ρπab, (2.5)

where ρ is the density of both water and the animal. While the added mass per unit
length is

m(s) = ρπa2. (2.6)
This added mass corresponds to the equivalent mass of water displaced when a given
cross-section is moved in a direction normal to the backbone (it will be used below to
calculate the reactive forces). Finally, the moment of inertia associated with a rotation
in the Oxy plane is

I(s) = ρ
π

4
ab2. (2.7)

2.2. Kinematics
The motion of the animal is prescribed through its curvature, assumed to be harmonic
of angular frequency ω

θ′(s, t) = K(s)eiφ(s)eiωt, (2.8)
where θ is the local incident angle as defined in figure 1b, K and φ are the amplitude
and phase of the curvature, and the prime denotes derivation with respect to s. Note
that, here, the complex notation is used, but when nonlinear terms will be involved, the
real notation will be assumed. To obtain motions that are compatible with an actuated
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elastic body, the bending moments and tensile forces should be zero at the head and at
the tail, which translates into boundary conditions for K:

K(0) = K ′(0) = K(L) = K ′(L) = 0. (2.9)

Integrating the prescribed curvature (2.8) yields the local incident angle θ of zero mean

θ(s, t) =
(

Θ1 +
∫ s

0

K(ξ)eiφ(ξ)dξ
)

eiωt ≡ θ1(s)eiψ(s)eiωt, (2.10)

where Θ1 is a constant of integration physically related to the amplitude of the pitching
recoil motion. Taking the cosine and sine of the incident angle, and using formulas (9.1.44–
45) in Abramowitz & Stegun (1965) gives

x′(s, t) = cos θ = J0(θ1)− 2J2(θ1)e2iψe2iωt + · · · , (2.11a)
y′(s, t) = sin θ = 2J1(θ1)eiψeiωt − · · · , (2.11b)

where Jn(x) is the Bessel function of the first kind. Integrating again gives the position
of any point of the backbone in the Oxy plane

x(s, t) = −Ut+X2e2iωt +
∫ s

0

x′(ξ)dξ ≡ x0(s) + x2(s)e2iωt + · · · , (2.12a)

y(s, t) = Y1eiωt +
∫ s

0

y′(ξ)dξ ≡ y1(s)eiωt + · · · , (2.12b)

where Y1 and X2 are two constants of integration associated with the amplitudes of
heaving and surging recoil motions respectively. From the position (x, y) of a point on
the backbone, its velocity can be determined as v = (ẋ, ẏ), where the dots denote dif-
ferentiation with respect to t. Projecting this velocity onto its tangential and normal
components (figure 1c) gives

u = ẋx′ + ẏy′ ≡ u0(s) + u2(s)e2iωt + · · · , (2.13a)
w = ẏx′ − ẋy′ ≡ w1(s)eiωt + · · · , (2.13b)

where care has to be taken with the complex notations because these expressions are
nonlinear.

At this point, the full swimming kinematics is characterised by two prescribed func-
tions, the amplitude K(s) and phase φ(s) of the curvature, and seven unknown scalars:
the real and imaginary parts of the recoil amplitudes Θ1, Y1, and X2, and the mean
swimming speed U .

The present model is based on the slender-body approximation. It is therefore valid
when the aspect ratio AR is asymptotically large, or equivalently when ε is small. If
one assumes that the first harmonic of the deflection y1(s) is also 0(ε), then the second
harmonic of the x-deflection, x2(s), will be O(ε2), and the third harmonic y3(s) will be
0(ε3). Keeping all harmonics up to the third thus gives a model correct up to the first
O(ε2) nonlinear corrections. However, preliminary calculations have shown that the third
harmonic could be neglected to substantially decrease the computation time, without
affecting the results. All the calculations were therefore performed by keeping the mean
values and the first two harmonics of all functions.

Now, three forces will be assumed to act on the swimming fish. First, a drag force will
be considered, and it will be decomposed into pressure and skin-friction drags. Then,
since the body is elongated, it will be assumed that reactive and resistive forces apply
independently and locally on every cross-section of the animal. These forces are identical
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to the ones that would apply on an infinite cylinder of same cross-section moving with
the same velocity in water.

2.3. Pressure drag

The pressure drag, or form drag, Fp, is generally due to the shedding of vorticity that
can occur when the shape is not perfectly streamlined. For simplicity, it is assumed here
that this form drag is not modified by the motion of the animal. A realistic estima-
tion of Fp would require relatively long numerical calculations not compatible with the
present approach. An empirical description is chosen instead, based on the formulas given
by Hoerner (1965) for axisymmetric and two-dimensional streamlined rigid bodies. The
empirical formula used for the pressure drag reads

Fp =
1
2
ρU2

0 × 0.33
B

L
Sf ex, (2.14)

where ex is the unit vector in the x-direction, U0 is the mean tangential velocity at the
head satisfying

U2
0 = u2

0(0) +
1
2
|u2(0)|2, (2.15)

with u0 and u2 defined by (2.13), Sf has the dimension of a surface and is given by

Sf =
π

4
ABS∗, (2.16)

with A and B the maximal height and width of the fish such that

A = 2 max(a), B = 2 max(b), (2.17)

and S∗ is an empirical dimensionless number that describes the streamlining of the
function b(s), and which is given by

S∗ =
∫ L

0

|b′|2bL
B3

(5.2− 4.4 sgn(b′)) ds. (2.18)

The surface Sf is thus equal to the maximal cross-section, πAB/4, multiplied by this
dimensionless factor S∗. As illustrated in figure 2, S∗ is minimal and equal to 1.0 when
the profile is streamlined and increases as streamlining worsen. By setting S∗ = 1 and
A = B, the formula (2.14) becomes identical to the empirical approximation of Hoerner
(1965) for axisymmetric streamlined bodies. When S∗ = 1 and A� B, one recovers, the
empirical formula of Hoerner (1965) for two-dimensional airfoils. The formula (2.18) for
S∗ aims at extending these empirical formulas to non-streamlined bodies. It is somewhat
tentative and would need to be confirmed and fine-tuned with specific studies in the
future. Although this approach to model pressure drag may not be rigorous, one can also
consider it as a penalisation method. When the profile b(s) is not exactly as pictured in
figure 2a, the drag increases and the shape is penalized. As it will be seen below, optimal
solution rarely correspond to the minimum S∗ = 1, expressing that the optimal shape is
a balance between streamlining and other important features related to the form such as
inertia and viscoelastic dissipation.

2.4. Skin-friction drag

The skin-friction drag is different when the animal is in motion or not. When there is
no motion, it can be estimated using Mangler’s transformation (see Schlichting 1979,
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S∗ = 1.0 S∗ = 2.1

S∗ = 3.0 S∗ = 4.8

(a) (b)

(c) (d)

Figure 2. Illustration of the values taken by S∗, as given by (2.18), for different profiles b(s).
These profiles are obtained by a cubic spline interpolation around 5 degrees of freedom regularly
spaced between the leading and the trailing edge (the black dots). The first case (a) corresponds
to the minimal value of S∗, and the other three (b–d) are random cases illustrating the link
between streamlining and low values of S∗.

p.245–247), which gives the laminar skin friction on an axisymmetric body

dFµ = 0.332ρU2
0

(
Re
U0

U

)− 1
2 `(∫ s

0
`2ds

) 1
2

2π`ds t, (2.19)

where t is the tangential unit vector oriented as in figure 1c,

Re = UL/ν, (2.20)

is the Reynolds number, and `(s) is the radius of an equivalent body of revolution, taken
to be

`(s) =
2
π
aE

(
1− b2

a2

)
, (2.21)

with E the complete elliptic integral of the second kind. This choice of ` gives a perimeter,
2π`, equal to the perimeter of the elliptic cross-section of the fish. To calculate the skin-
friction dFµ, it has also been assumed that the outer velocity is everywhere U0, which
is of course not exactly true, but is a convenient approximation. The total skin friction
calculated by integrating (2.19), when added to the pressure drag given by (2.14), gives
the total drag when the animal is motionless. This total drag compares very well with
the empirical formulas given by Hoerner (1965) in the case of axisymmetric streamlined
bodies. The present approach is however preferable because it allows one to calculate not
only the total drag, but also the distribution of the skin friction along the length of the
animal.

When the fish is moving, the boundary layers are modified and the skin-friction drag
can be enhanced (e.g. Ehrenstein & Eloy 2012). This enhancement is intimately due to the
compression of the boundary layer in the presence of crossflow, a phenomenon sometimes
referred to as the ‘Bone-Lighthill boundary-layer thinning’ mechanism in reference to a
remark made by Lighthill (1971) citing a conversation with Bone. The precise modelling
of this effect is still an open problem today, but it can be approximated by the formula
of Taylor (1952) for a smooth circular cylinder in steady flow, which yields, after time-
averaging, to the force per unit length

dFν = −2.9ρ|νaw1|1/2u0 ds t, (2.22)

where the second harmonic (i.e. the term proportional to e2iωt) has been neglected, and
it has been assumed that b(s) has no influence. This latter assumption is consistent with
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the experimental observations of Ota & Nishiyama (1984) on the heat transfer around an
elliptic cylinder in crossflow (as already pointed out by Taylor 1952, there is an analogy
between the two problems), but not exactly with the boundary layer calculations of
Ehrenstein & Eloy (2012). Because of the square root dependence with lateral velocity w1,
dFν accounts for the increase of skin friction due to the motion of the animal as observed
experimentally by Anderson et al. (2001) and numerically by Borazjani & Sotiropoulos
(2008).

To take into account the situations where the skin-friction drag for a motionless animal,
dFµ, and the skin-friction drag due to motion, dFν , are of same order, the total skin-
friction drag is taken to be

dF‖ = dFµe−4|w1/U | + dFν , (2.23)

which ensures that dF‖ = dFµ when there is no lateral motion, i.e. w1 = 0, and dF‖ ≈
dFν when w1 is large. This ad hoc formulation captures the essential features of the
skin-friction drag, in particular the effect of skin-friction enhancement due to transverse
motion. Preliminary studies have shown that, as long as this specific effect is conserved,
the results remains essentially the same when a different model for skin-friction drag is
used.

This model of the skin-friction drag corresponds to laminar boundary layers and is
thus applicable up to Reynolds numbers Re ≈ 106. Beyond this limit, the boundary
layers will likely be turbulent even if most swimming animals use ingenious mechanisms
to delay this transition such as the release of secretions through their skins (Rosen &
Cornford 1971; Hoyt 1975). In the case of turbulent boundary layers, one could devise a
specific skin-friction model using an approach similar to the one used here for laminar
ones. However, this would involve additional modelling assumption, and, for the sake
of simplicity, the study has been restricted to the case of laminar skin friction, which
already allows one to address swimming optimisation up to fish lengths of the order of
L = 30 cm.

2.5. Dynamics
In addition to the drag, reactive and resistive forces also act on the swimming fish. The
reactive force has been first formulated by Lighthill (1971) in the case of large amplitude
swimming. From a physical point of view, it results from the acceleration of an added
mass of fluid when the animal is moving. To accelerate this mass of water, a force has
to be applied to it, and reactively the opposite force is exerted on the swimming animal.
Recently, Candelier et al. (2011) have given a more rigorous proof of Lighthill’s result,
and complemented it with comparisons with numerical results. On every cross-section of
thickness ds (see figure 1c), this reactive force can be written as

dFm = ∂s
(
mwun− 1

2mw
2t
)

ds− ∂t (mwn) ds, (2.24)

where t and n are the tangential and normal unit vectors (figure 1c). The expression
(2.24) derives from the conservation of momentum applied to a slice of fluid attached to
the cross-section [s s+ds]. The first term of (2.24) corresponds to the flux of momentum
through the fluid slice, the second to the pressure forces and the last to the rate of change
of momentum. It can be seen that the total reactive force, obtained by integrating (2.24)
between s = 0 and L, is a sum of a term that depends only on the motion of the tail
(as m = 0 in s = 0) and a term of zero time-average. This remarkable feature, already
pointed out by Lighthill (1971), has recently been used to calculate the optimal motion
of the tail in the inviscid limit (Eloy 2012).

The large-amplitude elongated-body theory of Lighthill (1971) takes advantage of the
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large aspect ratio of the swimming animal to assume that the flow (and the reactive
force) at a given section does not depend on the animal’s motion at other sections. In
particular the vorticity shed in the wake has no influence on the reactive force in this
large aspect ratio limit. If one wanted to model manoeuvres such as turns and start, or
the hydrodynamical interactions within a fish school, Lighthill’s theory would have to be
refined to take into account these effects.

The above discussion on the kinematics suggests that the present model is correct up
to the first nonlinear corrections, of order ε2 smaller than the leading order. However,
the nonlinear corrections on the reactive force due to a moderate aspect ratio have been
neglected in the analysis. This effect would give an additional nonlinear term of order
ε2 ln(ε) as it has been shown in Eloy et al. (2010). It is beyond the reach of the present
paper to include this term and it has thus been assumed to be negligible, but it would
certainly be interesting to assess the validity of this assumption in the future.

The resistive force, which is the component of the drag normal to the backbone when
the lateral velocity is non zero can be expressed as

dF⊥ = − 8
3π
CDaρw1|w1|eiωt dsn, (2.25)

where only the first harmonic has been kept (the 8/3π factor above comes from projecting
w|w| onto the harmonic eiωt), and where CD = 2− b/a is a linear approximation of the
drag coefficient of the elliptic cross-section when moving parallel to its minor axis.

Now that the different forces acting on the fish have been expressed (pressure drag Fp,
skin-friction drag dF‖, reactive force dFm, and resistive force dF⊥), Newton’s second
law can be used. Conservation of momentum and angular momentum can be expressed
as

Fp +
∫ L

0

dFm + dF⊥ + dF‖ −M r̈ds = 0, (2.26a)∫ L

0

Iθ̈ezds+ (dFm + dF⊥ + dF‖ −M r̈ds)× r = 0, (2.26b)

where r = (x, y) is the position vector. The projection of (2.26a) onto the x-direction
only involves even harmonics. Keeping terms up to second harmonic yields three equa-
tions (one for the time-average and two for the real and imaginary parts of the second
harmonic). On the contrary, the projection of (2.26a) onto the y-direction involve odd
harmonics, and keeping only the first harmonic yields two other equations. Finally, the
first harmonic of (2.26b) gives the two last equations. Therefore, the equations (2.26a)
and (2.26b), when projected adequately, give the seven equations needed to calculate
unambiguously the seven unknowns of the kinematics evoked above.

Note that, this system of equations is fully coupled and nonlinear, and, as a conse-
quence, there is no simple analytical way of inverting it. In the present work, the function
fsolve of Matlab is used to solve this system numerically by discretising the integrals
in (2.26a–b) on 100 collocation points. This computation generally takes about 0.1 s on
a laptop computer.

For a shape set by the functions a(s) and b(s), and a motion given by K(s) and φ(s),
the recoil motion and the mean swimming speed can be calculated. To fully address the
swimming performances, the energetic costs have now to be computed as well.
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2.6. Energetics

The average power needed to perform the prescribed motion (labeled ‘e’ as external) is
given by

Pe = Fp · Uex + 〈
∫ L

0

(
dFm + dF⊥ + dF‖

) · v〉, (2.27)

where the brackets denotes time-averaging. As shown by Lighthill (1971), the reactive
part of this power simplifies to

Pm = 〈
∫ L

0

dFm · v〉 =
[
1
2m〈w2u〉]

s=L
, (2.28)

which corresponds physically to the kinetic energy given to the wake per unit time.
In addition to this energetic cost of hydrodynamical origin, an internal dissipation has

been considered by assuming that the fish soft tissues are viscoelastic such that the power
dissipated internally is

Pi = 〈
∫ L

0

1
2µiI|θ̇′|2ds〉, (2.29)

where µi is the dynamic viscosity of the material, several orders of magnitude larger
than the viscosity of water. The precise value taken by µi for different species of aquatic
animals is largely an open question and is discussed in appendix C. From this internal
viscosity, an internal Reynolds number can be defined,

Rei =
ρUL

µi
, (2.30)

which measures the relative importance of hydrodynamical energy losses and internal
dissipation. The total average power needed to swim is the sum of the external and
internal powers

Ptot. = Pe + Pi. (2.31)

2.7. Dimensionless numbers

To analyse the results in a proper manner, dimensionless quantities are now introduced.
The energetic costs are measured through a dimensionless efficiency

E∗ =
ρVol2/3U3

Ptot.
. (2.32)

It measures the distance that can be travelled by a unit mass fish with unit energy
(ρUVol/Ptot. in m kg J−1) made dimensionless by the characteristic acceleration U2/Vol1/3.
Note that the acceleration of gravity is not used here, since it plays no role in the prob-
lem. The efficiency E∗ can also be seen as a dimensionless ‘gas mileage’ and is similar to
the inverse of a ‘cost of transport’ (Tucker 1970; Videler 1993).

If one believes that the available power of a given animal is proportional to its volume
to the power 2/3, the efficiency E∗, given by (2.32), is also a measure of the ratio of
the available power to the actual power spent. In fact, Kleiber’s law states that the
metabolic rate of animals is proportional to Vol3/4, and not Vol2/3, but the question
of the validity of this scaling law is still controversial (e.g. Dodds et al. 2001; White &
Seymour 2005), and, in any case, this slightly different exponent would not qualitatively
change the results of the present analysis.

The dimensionless number that characterise the mean swimming velocity is the stride
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Symbol Formula Equation Name

Shape AR L/max(a) (2.2) aspect ratio
V0 Vol/(ε2L3) (2.4) volume
bmin min(bi/L) – minimal thickness

Motion θmax |θ1(L)| (2.10) tail maximum incident angle
U/V U/V (2.39) slip ratio
St fA/U (2.34) Strouhal number

Physical Re UL/ν (2.20) Reynolds number
Rei ρUL/µi (2.30) internal Reynolds number
Ip Dp/(Dp +D‖) (2.35) fraction of form drag
ID D/Dplate (2.35) first drag index†
Iw D/Drigid (2.35) second drag index‡

Performance E∗ ρVol2/3U3/Ptot. (2.32) efficiency
U∗ U/fL (2.33) stride length
Li D/(2ρa2(L)U2) (2.38) Lighthill number
Im Treac./(Treac. + Tresis.) (2.37) thrust index

† With Dplate the drag of a flat plate of same surface S.
‡ With Drigid the drag of the motionless animal.

Table 1. Dimensionless parameters

length which is the number of fish lengths travelled during one tailbeat period

U∗ =
U

fL
=

2πU
ωL

, (2.33)

where f is the tailbeat frequency.
A commonly used dimensionless number to characterise the amplitude and frequency

of the tail motion is the Strouhal number

St =
fA

U
=
ω y1(L)
πU

, (2.34)

where A is the peak-to-peak amplitude at the tail.
One can also define the total drag D as the sum of the pressure drag Fp defined above

and the average contribution of the tangential component of the viscous stresses dF‖
such that

D =

(
Fp + 〈

∫ L

0

dF‖〉
)
· ex ≡ Dp +D‖, (2.35)

where Dp is the form drag and D‖ is the skin-friction drag. Three indexes are then
defined: Ip = Dp/(Dp + D‖) is the ratio of form drag to total drag; ID is the ratio of
the total the drag to the drag of a flat plate of same surface assuming Blasius boundary
layers (Schlichting 1979); and Iw is the ratio of the total drag to the drag of the same
body without motion.

Similarly the total contribution to the energetic costs can be divided into several com-
ponents:

Ptot. =

(
Fp · Uex + 〈

∫ L

0

dF‖ · v〉
)

+ 〈
∫ L

0

(dFm + dF⊥) · v〉+ Pi (2.36a)
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≡ PD + Pm + P⊥ + Pi, (2.36b)

with PD the contribution of the total drag, Pm the inviscid or reactive energetic cost, P⊥
the resistive cost of perpendicular motion, and Pi is the internal viscoelastic dissipation
given by (2.29).

To quantify the relative importance of reactive and resistive forces to generate thrust,
the index Im is defined as

Im =
ex ·

∫ L
0

dFm

ex ·
∫ L
0

dFm + dF⊥
, (2.37)

such that it measures the relative importance of reactive forces to generate thrust.
An important dimensionless quantity can also be constructed that measures the ratio

of the drag D to the typical available reactive thrust. Following a previous article (Eloy
2012), this quantity is called the Lighthill number and is equal to

Li =
πD

2m(L)U2
=

1
2

D

ρa2(L)U2
. (2.38)

To characterise the motion, the wave speed V of the deformation at the tail is also
defined, and it is measured on the posterior 10%. The slip ratio U/V is then given by

U

V
=

10U
ωL

arg
(
y1(0.9L)
y1(L)

)
. (2.39)

For convenience, the dimensionless parameters that characterise the problem are gath-
ered in Table 1.

3. Evolutionary algorithm
For a given shape, described by the functions a(s) and b(s), and a given motion de-

scribed by K(s) and φ(s), the model described above allows one to calculate the full dy-
namics, in particular the recoil motion and the mean swimming speed. The performances
of the animal are then deduced from this dynamics. In particular two dimensionless func-
tions, the efficiency or distance E∗ and the stride length U∗, can be calculated.

The main goal of the present paper is to find the shapes and the associated motions
that maximise E∗, or U∗, or any trade-off between the two. Mathematically, a bi-objective
constrained optimisation has to be solved. The complexity of this problem and the rel-
atively large number of degrees of freedom involved call for the use of an evolutionary
algorithm. In the following, the principle of this algorithm will be briefly explained.

3.1. Discretisation
In order to characterise the functions a, b, K, and φ with a limited number of degrees
of freedom, the values of these functions are prescribed on node points spaced regularly
along the curvilinear coordinate s. In other words, the segment [0 L] is divided into N
equal segments such that the degrees of freedom are the values taken by a, b, K, and
φ at si = iL/N (with i = 0 . . . N). These values will be noted ai, bi, Ki, and φi in the
following.

Some geometrical and dynamical restrictions apply to these degrees of freedom. More
specifically, to avoid blunt leading and trailing edges, and to ensure that the motion is
compatible with an activated elastic body, the following constraints apply

a0 = b0 = K0 = φ0 = 0, bN = KN = 0. (3.1)

Given the N + 1 nodes for each of the 4 functions and the 6 additional constraints, the
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number of degrees of freedom is 4N − 2. In order to avoid infinitely thin cross-sections,
a minimal value for the semi-axes of the ellipses is also assumed

0.15 εL 6 bi 6 ai 6 εL for i = 1 . . . N − 1, (3.2a)
0 6 aN 6 εL. (3.2b)

The amplitude and phase of the curvature are also constrained

0 < Ki < 10/L for i = 1 . . . N − 1, (3.3a)
−π < φi+1 − φi < π for i = 1 . . . N − 1. (3.3b)

These constraints are generally not reached during the optimisation and only serve to give
the order of magnitude of the Ki’s and φi’s. Between the node points, si, the functions
a, b, K, and φ are interpolated with a cubic spline function. For the curvature K(s),
the first derivative should be zero in s = 0 and L as stated by (2.9). This is ensured by
adding two node points in 0.01L and 0.99L where K is zero.

The shape and swimming gait are now described by 4N − 2 real numbers. Each of
them is called a gene and is constrained by the inequalities (3.2a,b) and (3.3a,b). The
vector containing all the genes is called the genome of a given individual and denoted by

G = (a1 . . . aN , b1 . . . bN−1,K1 . . .KN−1, φ1 . . . φN ). (3.4)

Through the model described in § 2, the performances associated with a given genome
can be calculated. In particular the functions E∗(G) and U∗(G), which correspond to
the dimensionless efficiency and velocity of swimming respectively, can be computed.

3.2. Principle
The evolutionary algorithm used in the present study is adapted from the PESA-II
method of Corne et al. (2001). Its principle will be briefly explained now (Branke et al.
2008, provide a general review on this subject).

First, two important concepts pertaining to multi-objective optimisation are intro-
duced: the dominance and the Pareto front. In the U∗–E∗ plane, called the objective
space, the domain accessible by all individual will be noted D as illustrated in figure 3a.
To compare two individuals, the concept of dominance in D is used. An individual of
genome G1 is said to dominate an individual of genome G2 if one of the two following
conditions is true

U∗(G1) > U∗(G2), E∗(G1) > E∗(G2), or (3.5a)
U∗(G1) > U∗(G2), E∗(G1) > E∗(G2). (3.5b)

The set of all non-dominated points of D is called the Pareto front and appears in
bold in figure 3a. The goal of the evolutionary algorithm is to best approach this Pareto
front.

The algorithm is illustrated by the flowchart reproduced in figure 4. The main principle
is to keep, at all times, both an active population, which is evolved at each time step, and
an archive, which contains the best approximation of the Pareto front at each generation.
More precisely, the different steps consist in the following:

(a) Creation of the population: P genomes Gi’s that satisfy the constraints (3.2–3.4)
are first selected at random. These P genomes constitute the initial active population,
noted P.

(b) Evaluation of the population: Each individual of P is evaluated, i.e. U∗(Gi) and
E∗(Gi) are calculated for i = 1 · · ·P .

(c) Ranking of the population: Once the active population is evaluated, a rank can be
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Figure 3. Illustration of the principles of the evolutionary algorithm: (a) The Pareto front
is the set of non-dominated points in the plane U∗–E∗; (b) A rank can be assigned to each
individual by counting the number of other individuals dominating them (the labels indicate
examples of ranks on three individuals). The individuals of rank 0 form the archive (solid line),
which is the best approximation of the Pareto front, i.e. the set of non-dominated individuals;
(c) To constitute the mating pool, the archive of dimension δU∗ × δP ∗ is divided into boxes of
dimensions (3δU∗/P )× (3δP ∗/P ) from which individuals are taken at random.

associated with each individual of genome Gi. As illustrated in figure 3b, the rank r(i)
is simply the number of individuals dominating the i-th individual.

(d) Creation of the archive: For the first generation, the archive is simply the set of
individuals of rank 0. At this step, the number of individuals in the archive is between
1 and P , because there is always at least one non-dominated individual. The archive
corresponds to the current approximation of the Pareto front.

(e) Creation of the mating pool: A ‘mating pool’ of size P is created from the current
archive and population. First, the archive set is divided into equal-size boxes as illustrated
in figure 3c. In each of these non-empty boxes a random individual is taken and added to
the mating pool and given a rank of zero. The mating pool is completed by individuals
of the active population, starting with individuals of rank zero, and proceeding with
increasing rank number. The goal of this procedure is to avoid cluster of points on
the archive. When the archive is sufficiently populated, the mating pool is composed
from individuals originating from the archive for approximately one half, and individuals
originating from the active population for the other half.

(f) Update of the population: From the mating pool, a new active population is created
as follows. With a probability pmutate, two individuals are taken at random from the
mating pool, and a tournament is run between them, i.e. the individual with the lowest
rank is selected or the choice is made at random if they are of equal rank. The chosen
individual is then mutated, which means that, with a probability pm, every gene of its
genome is modified by an amount given by a normal distribution of standard deviation
δm∆g, where pm and δm are adjustable parameters, and ∆g is the typical order of
magnitude of the gene, given by the bounds in (3.2a,b) and (3.3a,b). With a probability
pmate = 1 − pmutate, two individuals are selected from two pairs taken from the mating
pool after a tournament round. From these two individuals, the parents, a new individual,
a child, is created. The genes of the child are taken at random between the parent values,
with a probability pc, or equal to the mother’s gene with a probability 1 − pc (the
mother is simply one of the parent chosen arbitrarily). Then, the genes of this child are
mutated of a standard deviation δm∆g with a probability pm. After all the individuals
of the population are created either trough mutation alone or mating and mutation, the
constrains (3.2a,b) are enforced.

(g) Evaluation of the population: As in step (b), the active population is evaluated.
(h) Update of the archive: The population and the archive are added up and ranked.
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evaluate population
U∗(Gi), D∗(Gi), for i = 1 · · · P

Start
create random population

P = {G1 · · ·GP }

rank population
r(i), for i = 1 · · · P

create archive
A = {Gi | r(i) = 0}

create mating pool
M = MatingPool(A,P)

update population
P = MateMutate(M)

evaluate population
U∗(Gi), D∗(Gi), for i = 1 · · · P

update archive
A = Update(P,A)

convergence?NO YES End

input parameters

output archive

E∗

E∗

Figure 4. Flowchart illustrating the evolutionary algorithm.

From this super-set, the individuals of rank zero define the new archive. If the population
of the archive exceeds a certain value NA, individuals of the archive are deleted in regions
of largest density.
Steps (a–d) constitute the initialisation of the algorithm while, the steps (e–h) taken
together form the main loop, which is repeated typically several thousands of times.

The parameters used for the evolutionary algorithm are summarised in Table 2. In
general, the algorithm starts with a small population, P = 15, and a large value of
the standard deviation for mutations, δm = 0.1. As time increases the population is
slowly increased up to P = 500, and the standard deviation decreased to δm = 0.02
after about 10,000 generations. To avoid missing an optimum, the first 100 generations
are run 10 times with different random initial population, and then gathered in a single
archive. Good convergence is usually reached after about 10,000 generations, which takes
approximately one day on a basic laptop computer. After that, performances cannot be
improved by more than 1%.
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Parameter Symbol Value

Size of the population P 15–500
Maximum size of the archive NA 10,000
Probability of non-mating pmutate 0.5
Probability of mutation of a gene pm 0.5
Dimensionless std for mutations δm 0.02–0.1
Probability of cross-over during mating pc 0.5

Table 2. Parameters of the evolutionary algorithm.

The relative rapidity of this algorithm comes from the rapid evaluation of a single indi-
vidual. This allows one to run different optimisation calculations with different physical
parameters as it will be shown below.

4. Results
In this section, the results of the shape and motion optimisation will be discussed.

First, a set of physical parameters will be chosen to define a “reference case”, and then,
these physical parameters will be varied one by one in a series of parametric studies to
study their influence on the optimal swimmer characteristics and on their performances.

4.1. Reference case
For the reference case, the Reynolds number is Re = 105, the aspect ratio is AR = 6, the
number of collocation points for each function is N = 6 (which gives a number of degrees
of freedom equal to 4N − 2 = 22), and the internal viscosity is µi = 104 Pa s, such that
the internal Reynolds number is Rei = 10−2.

With these parameters fixed, the evolutionary algorithm described in the previous sec-
tion can be used to find the Pareto front, i.e. the set of non-dominated individuals in the
U∗–E∗ plane. This numerical optimisation is illustrated in figure 5. The initial popula-
tion of 15 individuals is represented as crosses. These individuals have been selected at
random with the only constraint of having a stride length U∗ > 0.1. After 20 generations
(which takes about one minute), one can see that the Pareto front has already greatly
improved. And after 100 generations, the approximation of the Pareto front is already
within 20% of its final value. Finally, after about 50,000 generations, one obtains an ap-
proximation of the Pareto front represented as a thick solid line in figure 5. This Pareto
front exhibits two lobes, one for velocities in the range 0.70 < U∗ < 1.23 and the other
for the range 1.23 < U∗ < 2.5.

Now, the characteristics and performances of the optimal swimmers found on this
Pareto front are examined. As illustrated in figure 5, six different individuals have been
extracted from the Pareto front, and their shapes and swimming motions are reproduced
in figures 6 and 7, while their characteristics are summarised in table 3. The first striking
feature is that the shapes of these optimal swimmers do not vary continuously along
the Pareto front. There is a abrupt change in shape between the fish labeled c and
d in figure 5. As it will be seen below, these different shapes are also associated with
qualitatively different swimming mechanisms.

The most efficient swimmers (i.e. the ones with the largest efficiencies E∗) correspond-
ing to the first lobe of the Pareto front in figure 5, have shapes and motions that bear
similarity with salmon-like fish such as tunas, cods, bass, etc. Their anterior section
gathers most of the fish mass, but is rigid during the swimming motion. This large ante-
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Figure 5. Result of the optimisation in the U∗–E∗ plane. The crosses show the initial population
(selected at random with the constraint U∗ > 0.1) and the circles mark the approximation of
the Pareto front after 20 and 100 generations, as labelled. The thick black line shows the final
Pareto front after about 50,000 generations and the red (grey) circles on this line correspond to
particular swimmers pictured in figure 6 and whose performances are reported in table 3 (the
labels are the same as the ones used in figure 6a–f ).

Figure 6a 6b 6c 6d 6e 6f

Results E∗ 12.150 11.007 8.754 8.667 7.849 4.975
U∗ 0.702 1.011 1.222 1.232 1.484 2.215
St 0.229 0.271 0.303 0.225 0.254 0.420
Li 0.117 0.114 0.113 0.085 0.081 0.084
θmax 0.462 0.614 0.721 0.542 0.617 0.987
U/V 0.632 0.700 0.729 0.757 0.751 0.666
V0 0.852 0.795 0.758 0.310 0.269 0.242
Ip 0.220 0.195 0.181 0.088 0.072 0.070
ID 2.751 2.705 2.715 2.642 2.600 2.590
Iw 1.623 1.677 1.732 2.053 2.096 2.180
L/B 9.443 10.114 10.412 19.967 25.403 40.000
S∗ 1.363 1.333 1.282 1.621 1.952 4.018
Im 0.928 0.993 1.122 0.832 0.865 0.941

Table 3. Results for the reference case. Parameters are: Re = 105, AR = 6, N = 6,
µi = 104 Pa s.

rior region is separated from a thin caudal fin by a region of reduced cross-section that
concentrates all the curvature during the swimming motion. Between the most efficient
fish (labelled a in figures 5 and 6) and the last fish of this first lobe of the Pareto front
(labelled c in figures 5 and 6), the changes in shape are only minor. However, these swim-
mers differ in that their amplitude of motion increases with stride length. It thus means
that, with the same shape, a given fish can almost double its stride length by tuning
the amplitude of its motion. This increase is accompanied by a 40% increase of energetic
costs however. Together with the beat frequency, this gives a mechanism to adapt the
swimming gait to the needs.
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(a)

(b)

(c)

(d)

(e)

( f )

side view top view swimming motion

Figure 6. Geometry and kinematics of the optimal swimmers in the reference case. Each line
(a–f ) corresponds to a different optimum on the Pareto front of figure 5 as labelled (the same
examples have been taken in table 3). The first column depicts the shape with a lateral view
and thus corresponds to a(s), while the second column is a dorsal or top view and corresponds
to b(s). The black dots on these shapes are the imposed values from the genome, the rest of the
shape being interpolated with cubic splines between these points. The last column depicts the
deformation of the backbone during one period in the framework moving at velocity U , the black
line being the backbone at different instants and the red (grey) line being the path followed by
the leading and trailing edges.

The fastest swimmers, i.e. the ones with the largest dimensionless velocity U∗ corre-
sponding to the second lobe of the Pareto front in figure 5, are qualitatively different
from the efficient swimmers described above. Their shape is more elongated (as seen
from the dorsal view) and their swimming gaits exhibit large curvatures all along the
backbone. Among these elongated swimmers, one can distinguish two different shapes:
one corresponding to moderately large velocities (figure 6d,e); the other corresponding
to very large swimming velocities (figure 6f ). As illustrated in figure 7, these fastest
swimmers use a gait different from the most efficient ones. Their slender body follows an
undulating path that resemble a sinusoid, each cross-section following the preceding one
along that path, as seen in the laboratory frame.

The sharp transition between the efficient swimmers and the fast ones is also exhibited
in figure 8 where the Strouhal number of the optimal swimmers of the Pareto front
is plotted as a function of U∗. For U∗ = 1.23, one can see an abrupt transition from
St = 0.30 to 0.22. These values of the Strouhal number are typical of fish swimming
at large Reynolds number with aspect ratios around AR = 6 (see Eloy 2012). In the
next section, the variation of the Strouhal number of the most efficient swimmers with
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Figure 7. Swimming kinematics of the optimal swimmers as seen from above in the laboratory
frame. Two periods are represented on each line (a–f ) and the labels are the same as in figures 5
and 6.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

U ∗

S
t

Figure 8. Strouhal number of the optimal swimmers as a function of U∗. The swimmers are
the same as in figure 5.

the Reynolds number will be considered, and compared to the values measured on real
animals.

The abrupt transition at U∗ = 1.23 is also present when one examines how the different
components of the energetic costs are distributed for each optimal swimmer, and how
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2.7. Evaluation of performance
To analyze the results in a proper manner, dimensionless quantities are now introduced.
The energetic costs are measured through a dimensionless efficiency

D∗ =
ρV 2/3U3

Ptot.
. (2.32)

It is noted with the letter D because it measures the distance that can be travelled by
a unit mass fish with a unit energy (ρV U/Ptot. in m kg J−1) made dimensionless by the
characteristic acceleration U2/V 1/3 (we are not using the acceleration of gravity as it is
sometimes done in the literature, since it plays no role in the present). The efficiency or
distance D∗ can also be seen as a dimensionless ‘gas mileage’ or as the inverse of a ‘cost
of transport’ as introduced by Videler (1993) (see also Tucker 1970).

!!!MORE!!!
The dimensionless number that characterize the mean swimming velocity is the stride

length which is the number of fish lengths travelled during one period of motion

U∗ =
U

fL
=

2πU

ωL
, (2.33)

where f is the tailbeat frequency. A commonly used dimensionless number to characterize
the amplitude and frequency of the tail motion is the Strouhal number

St =
fA

U
=

ω y1(L)
πU

, (2.34)

where A is the peak-to-peak amplitude at the tail.
One can define the drag D as the sum of the pressure drag Fp defined above and the

average contribution of the tangential component of the viscous stresses dF� such that

D =

�
Fp + �

� L

0

dF��
�

· ex ≡ Dp + D�, (2.35)

where Dp is the form drag and D� is the skin friction drag. We also define three indexes:
Ip = Dp/(Dp + D�) is the ratio of form drag to total drag, ID is the ratio of the total
the drag to the drag of a flat plate of same surface and Iw is the ratio of the total drag
to the drag of the same body without motion.

Similarly the total contribution to the energetic cost can be divided into several com-
ponents:

Ptot. =

�
Fp · Uex + �

� L

0

dF� · v�
�

+ �
� L

0

(dFm + dF⊥) · v� + Pi (2.36a)

≡ PD + Pm + P⊥ + Pi, (2.36b)

with PD the contribution of the total drag, Pm the inviscid energetic cost, P⊥ the viscous
cost of perpendicular motion, and Pi is the internal viscoelastic dissipation given by
(2.29).

To quantify the relative importance of reactive and resistive forces to generate thrust,
the index Im is defined as

Im =
ex · � L

0
dFm

ex · � L

0
dFm + dF⊥

, (2.37)

such that it measures the relative importance of reactive force to generate thrust.
An important dimensionless quantity can also be constructed which measure the ratio
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of transport’ as introduced by Videler (1993) (see also Tucker 1970).
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where A is the peak-to-peak amplitude at the tail.
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with PD the contribution of the total drag, Pm the inviscid energetic cost, P⊥ the viscous
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To quantify the relative importance of reactive and resistive forces to generate thrust,
the index Im is defined as
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such that it measures the relative importance of reactive force to generate thrust.
An important dimensionless quantity can also be constructed which measure the ratio
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2.7. Evaluation of performance
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Figure 9. (a) Repartition of the lost power for the optimal swimmers as a function of U∗. The
different powers are defined in (2.36): Pm is the reactive term and correspond to the energy lost
in the wake, P⊥ corresponds to the energy of the lateral drag forces, PD is the power spent to
balance the drag forces, both the form and the skin-friction drags, and Pi is the internal power
loss due to the viscosity of the swimmer material. (b) Relative contribution of the reactive forces
to the thrust. When Im > 1, the resistive force actually produce a drag, i.e. a force in the +x
direction.

the reactive and resistive forces contribute to the total thrust (figure 9). Examining the
repartition of energy losses in figure 9a, it can be noted that most of the energy is spent
through the work of the drag forces. This amounts for more than 50% of the energetic
costs for all optimal swimmers. The components Pm and P⊥, corresponding respectively
to the energy lost in the wake (the “reactive” energy) and to the work of the lateral drag
forces, each amounts for approximately 10% of the energetic costs. Finally, the internal
dissipation due to the viscoelastic nature of the fish material is of the order of 20% of
the total energetic cost, but varies substantially along the Pareto front. For the efficient
swimmers in the first lobe of the Pareto front (for 0.7 < U∗ < 1.23), the contribution of
the internal dissipation increases with the stride length, as the amplitude of motion also
increases. On the contrary, for the elongated swimmers of the second lobe of the Pareto
front (for 1.23 < U∗ < 2.5), the contribution of the internal dissipation decreases with
the stride length. This is due to the fact that, as the amplitude of the motion increases
(which would contribute to an increase of internal dissipation alone), the shape become
more and more slender, reducing the second moment of inertia I, as given by (2.7), and
thus the energy dissipated internally, as given by (2.29).

In figure 9b, the contribution of the reactive force to the production of thrust is plotted
for the different optimal swimmers. It can be seen that this contribution is always greater
than 80% showing that the thrust is mainly achieved by the reactive forces, i.e. the added-
mass effects. Surprisingly, this is also true for the fast swimmers of the second lobe of
the Pareto front (for 1.23 < U∗ < 2.5), despite their slenderness.

To complete this study of the reference case, optimisation calculations have been per-
formed where the shape of the swimmer was frozen and only the motion was allowed
to vary (figure 10). Three frozen shapes (pictured in figures 6b, 6e, and 6f ) have been
used, corresponding respectively to an efficient swimmer, a moderately fast swimmer,
and a very fast swimmer on the Pareto front. Each of these three frozen shapes leads to a
different Pareto front, which, when put together, give an excellent approximation of the
actual Pareto front (figure 10). This shows again that the Pareto front can be divided
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Figure 10. The Pareto front can be reproduced by using only three distinct “species”. Each
black line has been obtained with the evolutionary algorithm by freezing the shape functions,
a(s) and b(s), such that they correspond to the optima of figures 6b, 6e, and 6f. The thick blue
(grey) line correspond to the result of the optimisation when the shape is varied, as in figure 5,
and is displayed for reference.

into two species: the efficient swimmers, and the fast swimmers (which can further be
subdivided into two different shapes).

The unusual shapes and swimming gaits of the fastest swimmers raise the question
of the model validity in this case. First, it is observed that, as the stride length U∗

increases, so does the amplitude of the swimming path (figure 7d–f ), reaching angles
where the weakly nonlinear approximation adopted in the present paper is not valid
anymore (for say U∗ > 2). In addition, the contracting region observed after the “head”
of these swimmers (figure 6d–f ) may promote vorticity shedding that is not taken into
account in the present model (this point will be discussed again in § 6). Finally, these
surprising swimming gaits, with large stride lengths U∗, may require unfeasibly large
amounts of internal power, and this could explain why they seem so “unnatural”. For
these high-speed swimmer, the validity of the present model is therefore questionable.
Specific experiments or numerical simulations would help to understand the particularity
of the swimming hydrodynamics in this limit, and to refine the present approach. How-
ever, these limitations only concern the fastest “species” and not the efficient one that
will be examined in more details in the following.

4.2. Variation of the Reynolds number
Different parametric studies have been carried out in which all the physical parameters
of the reference case were kept constant except one that was varied. Discussions about
the effect of a variation of the number of degrees of freedom, of the aspect ratio, or of the
internal viscosity are deferred to the appendices A, B, and C. In the present section, the
variation of the characteristics of the most efficient swimmer when the Reynolds number
is varied from 104 to 106 are reported. As shown in figure 11, the swimmers with larger
Re outperform the swimmers with smaller Re, but the Pareto front always exhibits the
same property of having two lobes corresponding to efficient swimmers for the smaller
U∗ and elongated swimmers for larger U∗.
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Figure 11. Results of the optimisation for different Re varying from 104 to 106. The circles and
the attached labels correspond to the most efficient swimmers in each case. These particular
swimmers are pictured in figure 12 and their characteristics are reported in table 4.
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Figure 12. Geometry and kinematics of the most efficient swimmers when the Reynolds number
is varied: (a) Re = 104; (b) Re = 2 × 104; (c) Re = 5 × 104; (d) Re = 105; (e) Re = 2 × 105;
(f ) Re = 5 × 105; (g) Re = 106. The characteristics and performances of these swimmers are
reported in table 4.

The focus has been placed on the most efficient swimmer of the Pareto front for two
reasons. First, this swimmer is representative of the whole first lobe of the Pareto front
since the rest of this lobe roughly corresponds to the same swimmer with increased
swimming amplitude, as it has been discussed above for the reference case. Second, it
can be argued that, since the swimmer is free to change its beating frequency, a large
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Reynolds number Re 104 2× 104 5× 104 105 2× 105 5× 105 106

Figure 12a 12b 12c 12d 12e 12f 12g

Results E∗ 2.763 4.425 7.854 12.150 18.465 31.930 45.999
U∗ 0.248 0.417 0.623 0.702 0.774 0.790 0.864
St 0.332 0.304 0.263 0.229 0.194 0.157 0.145
Li 0.414 0.309 0.175 0.117 0.073 0.045 0.029
θmax 0.305 0.424 0.490 0.462 0.421 0.353 0.354
U/V 0.309 0.467 0.591 0.632 0.676 0.707 0.750
V0 1.337 1.316 0.990 0.852 0.669 0.635 0.516
Ip 0.179 0.230 0.212 0.220 0.163 0.187 0.186
ID 2.667 2.832 2.787 2.751 2.511 2.422 2.355
Iw 1.679 1.609 1.651 1.623 1.689 1.594 1.563
L/B 6.003 6.004 7.900 9.443 12.777 14.293 18.053
S∗ 1.584 1.517 1.374 1.363 1.145 1.008 1.057
Im 0.949 0.915 0.915 0.928 0.940 0.951 0.968

Table 4. Results of the parametric study when Re is varied from 104 to 106. The other
parameters are the same as in the reference case: AR = 6, N = 6, µi = 104 Pa s.

swimming speed U does not necessarily correspond to a large dimensionless velocity U∗,
but can be achieved by keeping the energetic efficiency E∗ maximum while increasing
the frequency. Strictly speaking, for an animal of given length, the swimming speed
cannot be increased without also increasing the Reynolds number and thus changing
the constraints on the optimisation. But, since the characteristics of the most efficient
swimmers do not qualitatively change with the Reynolds number as it will shown below,
it is true to say that, for a given efficient swimmer, increasing its undulatory frequency
without changing the swimming amplitude will lead to larger swimming speed with still
near-optimal efficiency. Thus achieving a large efficiency E∗ seems more important than
achieving a large stride length U∗. In reality, the efficiency of fish muscles depends on
frequency and amplitude such that increasing U∗ can be beneficial, but it is beyond
the scope of the present paper to take these frequency and amplitude dependencies into
account.

The variation of the performances of the most efficient swimmer as Re is varied will be
discussed in more detail below when comparing with biological data on aquatic animals.
In particular, the variation of U∗, E∗, St, and θmax with the size of the swimmer will be
examined. The striking feature of the different shapes reported in figure 12 is that the
width and the volume of the most efficient swimmer strongly depend on the Reynolds
number. For Re 6 2 × 104, the maximum width B reaches the upper bound imposed
by the constrains such that the thickness aspect ratio is L/B ≈ AR = 6, but as Re
increases, this value increases too to reach L/B ≈ 18 for Re = 106. This is accompanied
by a decrease of the volume as reported in table 4.

This qualitative change in the swimmer shape can be explained by comparing two
swimmers with different Reynolds numbers. For the smallest Reynolds numbers, the
reactive thrust force has to be comparatively larger to compensate a larger skin-friction
drag (in dimensionless units). But this larger thrust force goes with a larger periodic
torque exerted on the body as the thrust is mainly produced by the posterior section
and has a non zero normal component at each instant. To avoid a large recoil pitching
motion in this case, the inertia of the anterior region thus needs to be larger, explaining
why the volume and the width are larger for the smallest Reynolds number.

It is interesting to note that this increase in thickness for the smallest Reynolds number
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(a)
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Figure 13. Geometry and kinematics of the most efficient swimmer when AR = 4 (a) compared
to different species of fish: Largemouth bass (Micropterus salmoides) (Jayne & Lauder 1995) (b);
Kawakawa tuna (Euthynnus affinis) (Donley & Dickson 2000) (c); Saithe (Pollachius virens)
(Hess & Videler 1984) (d). The most efficient swimmer in (a) is the same as in figure 23a. The
blue (grey) shaded region in the last column corresponds to the envelope of the deformation.
The characteristics and performances of these swimmers are reported in table 5.

is accompanied by a larger drag coefficients. Indeed, the coefficients ID, Iw, and S∗ are
decreasing function of Re (table 4), except when Re = 104 for which the swimming
amplitude is much smaller. In other words, the optimal shape is achieved by balancing
drag reduction and inertia, and this balance is strongly dependent on the Reynolds
number.

In the appendices A, B, and C, additional parametric studies are reported where the
number of degrees of freedom, the aspect ratio, and the internal viscosity have been
varied. These different parametric studies show that the main characteristics of the op-
timisation results are robust to any change of the physical parameters. In particular, the
existence of two ‘species’ on the Pareto front, one specialised in efficient swimming, the
other in fast swimming, is always recovered in the optimisation calculations. In the next
section, a comparison with experimental observations on aquatic animals will be drawn.

5. Comparison with aquatic animals
To begin the comparison with aquatic animals, the morphologies and the performances

of different species of fish are compared with one result of the present optimisation
calculations in figure 13 and table 5. Three species of fish have been chosen, a bass
(Jayne & Lauder 1995), a tuna (Donley & Dickson 2000), and a saithe (Hess & Videler
1984), swimming at a Reynolds number Re ≈ 105 and with an aspect ratio AR ≈ 4.
They are compared to the most efficient swimmer found in the case of an aspect ratio
AR = 4, with Re = 105 (Appendix B).

The morphology of the model and of the real fish are very similar. Although the
thickness ratio L/B is slightly higher in the model, the top views in figure 13 reveal
almost identical streamlined shapes. The side views all exhibit a large anterior region,
a caudal peduncle of reduced cross-section, and a tail of similar depth as the maximum
depth of the anterior region. The swimming characteristics of the different species of
fish are also very similar to the characteristics of the most efficient swimmer (table 5).
In particular, their stride length U∗ and slip ratio U/V are almost the same, while the
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Species model bass tuna saithe
Aspect ratio AR 4 3.8 3.5 4.1
Reynolds number Re 105 1.4× 105 1.8× 105 3.9× 105

Figure 13a 13b 13c 13d

Results U∗ 0.751 0.591 0.595 0.794
St 0.171 0.223 0.212 0.230
U/V 0.670 0.739 0.613 0.757
L/B 10.051 8 6.5 7.9

Table 5. Comparison of the characteristics and performances of the most efficient swimmer
when AR = 4 and different species of fish.

Strouhal number is about 30% larger for real fish. This difference is probably due to the
non-actuated nature of the caudal fin for most animals as is explained below.

It should be noted that, in the case of the tuna (figure 13c), the lunate shape of the tail
can significantly improve the production of thrust (Chopra & Kambe 1977). Although
this effect cannot be captured within the present elongated-body approximation, the
results for the tuna reproduced in table 5 agree reasonably well with the characteristics
of the most efficient swimmer predicted by the optimisation calculation.

The comparison of the present results with aquatic animals is further explored by
examining the evolution of the swimming performances as the Reynolds number is var-
ied. In a previous paper, kinematic data on swimming animals have been compiled and
compared to an inviscid optimisation calculation (Eloy 2012). These biological data cor-
respond to an almost exhaustive review of the literature on the subject and comprise
66 independent measurements on 53 different species. They have been divided into 7
groups for convenience: 8 different species of mammals, 4 of sharks, 8 of scombrids (a
family including tunas, bonitos and mackerels), 11 of fish from the orders of Perciformes
and Salmoniformes, 19 of fish from other families (including the orders of Cypriniformes,
Gadiformes and Mugiliformes), 10 of ‘elongated’ fish (including eels, needlefish of the
family of Belonidae, and other fish with large aspect ratios) and 6 species categorised as
‘others’ gathering one reptile (crocodile), two frog tadpoles, two amphibians (axolotl and
siren) and one annelid (leech).

The optimisation carried out in Eloy (2012) was done using Lighthill’s large-amplitude
elongated-body theory (Lighthill 1971), for which the thrust and the kinetic energy lost
in the wake are functions of the tail kinematics only. This remarkable property allowed to
optimise the motion of the tail for a given thrust, i.e. to minimise the energy lost in the
wake when the thrust balances a given drag on average. In the present paper, resistive
forces are taken into account in addition to reactive forces, and the whole kinematics of
the body is included in the analysis through the recoil motions and the modification of
the skin-friction drag by the motion.

5.1. Kinematics

In figure 14, the optimal Strouhal number predicted by the inviscid analysis is compared
to the present results and to measurements on the different swimming animals. In the
inviscid analysis of Eloy (2012), the optimal Strouhal number St was only a function of the
Lighthill number, Li, which is defined in (2.38). In the present optimisation calculation,
St also depends on the different physical parameters of the problem: the aspect ratio,
the internal dissipation, and the number of degrees of freedom, but it appeared that the
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Figure 14. Strouhal number St as a function of the Lighthill number Li. The different symbols
represent different groups of animals compiled in Eloy (2012), as reported in the legend. The
thick solid line is the prediction of an inviscid optimisation based on the elongated-body theory
of Lighthill (1971). The open circles correspond to the data of the present paper, when Re is

varied between 104 and 106 (Li is roughly proportional to Re−1/2), reported in table 4 and
figure 12.

variation of the Reynolds number is the major effect in the parametric studies reported
above and in the Appendices.

Figure 14 shows that the most efficient swimmers predicted in the analysis exhibit
Strouhal numbers that are increasing with the Lighthill number. The scaling of this
dependency is similar to the results of the inviscid optimisation, roughly St ∼ Li1/3,
and a comparable trend also appears in the biological data, although the important
scatter in that case does not allow one to estimate the precise scaling law. However the
optimal Strouhal number in the present case is always lower than the prediction of the
inviscid analysis and than the biological data. This can be explained by the following
arguments. When compared to the inviscid analysis, the present calculations include two
additional sources of energy loss: the internal dissipation, and the ‘resistive energy loss’
due to transverse drag forces (figure 9a), both of which increase when the amplitude
of the swimming motion increases. This explains why the optimal amplitude and the
Strouhal number are lower when these effects are taken into account: in other words, it is
advantageous to decrease the swimming amplitude because the increased reactive energy
loss is compensated by smaller energy losses both internally and resistively.

One question remains however: why are the Strouhal numbers observed on real animals
systematically larger than in the present optimisation calculations? One reason could be
that the biological data are obtained by averaging over a large number of observed kine-
matics, most of them being not optimal. This could induce a statistical bias, which, added
to a possible underestimate of the drag on swimming fish, would tend to overestimate
the Strouhal number for a given Lighthill number. Another source of the discrepancy
could be the model approximations. The underestimate of the Strouhal number could
be a sign of an overestimate of the thrust force or an underestimate of the drag by the
model. Finally, an additional reason for this discrepancy could be that swimming animals
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Figure 15. Variation of the maximum incidence angle of the tail (a) and the slip ratio (b) as
a function of the Lighthill number. The legend is the same as in figure 14.

have generally a passive caudal fin, which results in swimming gait envelopes that are
qualitatively different from the present calculations. As seen in figure 6a for instance,
the present optimisation analyses always predict that the most efficient swimmers beat
their tail such that the maximum excursions correspond to a zero incidence angle. In
other words, the width of the swimming mode envelope is constant near the tail. The
same prediction can be reached with an inviscid analysis in the linear (Lighthill 1971)
or the weakly nonlinar limit (Eloy 2012). In contrast, fish usually exhibit a widening of
the envelope near the tail (e.g. Lauder & Tytell 2005) as shown in figure 13c and 13d
for instance. This widening is likely due to the non-actuated nature of the tail. This
difference may not drastically change the performance of swimming but will affect the
measure of the tail beating amplitude and therefore the Strouhal number.

In figure 15, two other characteristics of the swimming kinematics, the maximal in-
cidence angle at the tail θmax and the slip ratio U/V , are plotted as a function of the
Lighthill number for the present optimisation calculations, the inviscid analysis, and
the aquatic animals. In coherence with the results on the Strouhal number, the inci-
dence angle at the tail is lower in the present simulations than in the inviscid analysis
of Eloy (2012). The reason for this discrepancy is the same as the one evoked above:
the additional dissipative terms favour lower amplitude in the present optimisation. The
maximum incident angle at the tail has been measured only in few experiments and
therefore the comparison with biological data is delicate. However, the typical angles ob-
served for mammals, θmax ≈ 25◦, are similar to the ones of the most efficient swimmers
in the present analysis, and the values measured on fish species θmax ≈ 45◦ are closer to
the results of the inviscid analysis (figure 15a).

The slip ratio U/V has been more widely measured in the literature as seen in fig-
ure 15b. However, some care should be taken when analysing these data as the method
used to measure the wave speed V may have a strong influence on the results as already
noted by Webb et al. (1984). To illustrate this effect, the amplitude and phase of the
curvature, the incident angle, and the y-position are plotted in figure 16 as a function of
the position on the backbone. Through figure 16b, it appears clearly that the wave speed,
which is proportional to the slope of the phase angle (more precisely a wave speed V can
be defined for any phase φ(s) as V = −ω ds/dφ), varies along s and is different for the
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Figure 16. Illustration of the amplitude (a) and phase (b) of the curvature θ′ (solid red/grey
line), the incident angle θ (dashed line), and the excursion y (solid black line) as a function
of the curvilinear coordinate s/L. The kinematics chosen in this example corresponds to the
most efficient swimmer in the reference case (figure 6a). These three functions can be written

as f(s, t) = A(s)eiφ(s)eiωt, where A is the amplitude and φ the phase. The amplitudes are
normalised by 1/L, 1/AR and L/AR2 respectively (a). The phase of θ′ is plotted only when the
corresponding amplitude is non zero and appears shaded when the amplitude is lower than 5%
of its maximum.

three different functions. In the present paper, the wave speed has been defined in (2.39)
to be the average wave speed of y on the last 10% of the body. In the experimental data on
swimming, the wave speed is sometimes evaluated with a similar method (a longer part
of the body is usually used however), some other times the curvature is used, or an esti-
mate of the wavelength of the deformation is used together with the tailbeat frequency.
It is thus not surprising that the data on swimming animals appear quite scattered in
figure 15b. Nevertheless, when one examine each animal group independently (except for
sharks), a clear tendency emerges: the slip ratio U/V is a decreasing function of Li, as
was predicted by the inviscid analysis, and as is observed in the present optimisation
calculations. The order of magnitude of the slip ratio is also similar in the three cases:
U/V ≈ 0.6.

In figure 17, the stride lengths of the different swimming animals reported in the lit-
erature are compared to the stride lengths of the most efficient swimmers (the results
of the inviscid analysis do no appear on this figure because the optimisation does not
depend on the stride length in this case). It should first be noted that the stride length
of the most efficient swimmer (i.e. the one maximising E∗ in figure 5, for instance) is not
highly constrained since a slight change in E∗ on the Pareto front can lead to important
modification of U∗. Nevertheless, the agreement between the predicted U∗ and the mea-
sured one is very good (figure 17). In particular, one can observe that the stride length is
a decreasing function of the Lighthill number, or equivalently an increasing function of
the Reynolds number. This result contrasts with the generally accepted assumption that
the stride length is fairly constant and equal to U∗ ≈ 0.65 for all fish (Videler 1993).

5.2. Energetics
In figure 18, a comparison of the efficiency of the most efficient swimmers with exper-
imentally measured values is carried out. The experiments reported in this figure are
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Figure 17. Stride length U∗ as a function of the Lightill number Li for the most efficient
swimmers (solid line and open circles) and for different aquatic animals (filled symbols with the
same legend as in figure 14).
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Figure 18. The total efficiency E′ of different aquatic species is compared to the results of the
present analysis when the Reynolds number is varied. The total efficiency is defined in a similar
manner as E∗, given by (2.32), except that the total metabolic rate is used as the power cost,

such that E′ = ρVol2/3U3/PMR, with PMR the total metabolic rate. The relation PMR = 5Ptot.

has been assumed to plot the present results (see the main text for a justification of this factor).

the same as the ones used by Videler (1993) when he discussed the ‘cost of transport’
(COT) of different animals. The total efficiency, E′ = E∗/5, used in the present study
is similar to the inverse of the COT, except that the acceleration U2/Vol1/3 has been
used instead of gravity to make the efficiency dimensionless. The other difference is that
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COT and E′ are based on the total metabolic rate of the animals, which includes the
heat produced in the muscles and the metabolic rate used for other tasks than swimming
(such as the functions of the heart, the brain, the digestive organs, etc.). To estimate
the ratio between the total efficiency E′ and the ‘mechanical’ efficiency E∗, it has been
assumed that muscles have an efficiency of 50%, as reported in Curtin & Woledge (1993),
which is probably an upper bound, and that only 40% of the metabolic rate is devoted
to swimming as proposed by Weihs (1973) based on a simple optimisation calculation.
When combined, these rough estimates explain the tentative factor 5 between E∗ and
E′.

Figure 18 shows that the total efficiencies of the present model are in good quantitative
agreement with the experimental data. It can further be noted that the predictions
represent an upper bound for the experimental data. This is consistent with a possibility
of an overestimate of the muscle efficiency and it is also consistent with the fact that
predictions correspond to the maximum possible E′. One can also observe in figure 18
that E′ increases with a slope that is larger than the naive scaling law E′ ∼ Re1/2 that
would be obtained if the metabolic rate was proportional to a laminar drag coefficient
CD ∼ Re−1/2. The slope is actually close to E′ ∼ Re0.6. The reasons of this larger slope
likely originate from the following observation: as the Reynolds number increases, both
the recoil motions and the internal dissipation reduce, which yields better streamlining,
smaller drag coefficients and better conversion of energy into thrust.

The comparison of the performances of the most efficient swimmers with aquatic an-
imals have shown remarkable similarities. Most of the characteristics of the salmon-like
fish, which gather the sub-carangiform, carangiform, and thunniform subclasses (as ex-
plained in § 1) are recovered in the present analysis. The only difference is the Strouhal
number which is systematically larger for real animals than in the present simulations.
This difference could be due to either statistical biases in the experimental measurements,
invalid approximations of the present model, or to the inherent non-actuated nature of
caudal fins in most animals.

5.3. Large aspect ratio swimmers
Let us now examine the particular case of very elongated swimmers. To address this point,
additional calculations have been performed for swimmers of aspect ratios AR = 15, and
with a moderately low internal viscosity, µi = 103 Pa s, as illustrated in figure 19 and
table 6. Two optimisations have been carried out, one where the shape of the swimmer
was free to vary, and another one where an eel-like shape was assumed and only the
motion was optimised. The most efficient swimmers in both cases are compared to two
species of elongated fish, the American eel (Gillis 1998; Tytell & Lauder 2004) and the
hagfish (Long et al. 2002), which share similar aspect ratios and Reynolds number.

First, it should be noted that the swimming kinematics of the American eel as reported
by Gillis (1998) does no exhibit large curvatures all along the backbone (figure 19c) as
it would be expected from an anguilliform swimmer and is, in fact, very similar to the
kinematics of the salmon-like bass (Jayne & Lauder 1995) shown in figure 13b. Accord-
ing to the experimental results of D’Août & Aerts (1999) and Ellerby et al. (2001), the
swimming mode envelope of eels can change depending on the swimming velocity, which
indicates that eels can likely switch from a salmon-like kinematics with the large curva-
tures localised in the posterior region for small swimming velocities to an anguilliform
kinematics without such a localisation for large swimming velocities. An example of the
latter kinematics is shown in figure 19d for the hagfish (Long et al. 2002).

Examining the results of the optimisation calculation, it can be seen that the most
efficient swimmers display two different kinematics whether the shape is constrained to
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Figure 19. Geometry and kinematics of very elongated swimmers. The parameters of the opti-
misation are the same as in the reference case except that the internal viscosity is µi = 103 Pa s
and the aspect ratio AR = 15. The first row (a) correspond to the most efficient kinematics
when the optimisation is performed with a frozen eel-like shape as pictured in the first two
columns. The second row (b) is the most efficient swimmer obtained by optimising both the
shape and the motion as in the rest of this paper. The two bottom rows correspond to biological
data: American eel (Anguilla rostrata) (Gillis 1998) (c) and Hagfish (Myxine glutinosa) (Long
et al. 2002) (d) The characteristics and performances of these swimmers are reported in table 6.

Species model (eel) model (free) eel hagfish
Aspect ratio AR 15 15 11 17
Reynolds number Re 105 105 6× 104 6.4× 104

Figure 19a 19b 19c 19d

Results E∗ 7.193 9.755 — —
U∗ 0.631 0.482 0.448 0.422
St 0.317 0.365 0.314 0.564
θmax 0.541 0.619 0.8 1.5
U/V 0.565 0.520 0.731 0.494
L/B 20.000 15.000 20 24
Im 0.645 0.709 — —

Table 6. Comparison between the characteristics of the most efficient swimmers of aspect ratio
AR = 15 and internal viscosity µi = 103 Pa s (one constrained to have an eel-like shape, the
other not), and two species of anguilliform fish, the American eel (Tytell & Lauder 2004) and
the hagfish (Long et al. 2002).

be eel-like or not (figure 19a,b). These two swimming modes are visually similar to the
two different kinematics observed on real elongated swimmers (figure 19c,d) and their
characteristics compare reasonably well, at least qualitatively (table 6). The difference
in kinematics when the shape is eel-like or not is likely due to the presence of a caudal
peduncle. When it is present, the extra cost of having a steep increase of the envelope
amplitude is decreased; without it, one expects a smoother envelope. Note that, in both
cases, the major part of the thrust still originates from the reactive forces (Im in table 6),
in agreement with the numerical simulations of Tytell et al. (2010) on eel-like swimmers
using a Navier–Stokes solver. Note also that the efficiency in the ‘free-shape’ case is
E∗ = 9.8, which is much smaller than the result E∗ = 16.2 obtained for an aspect ratio
AR = 6 and same internal viscosity µi = 103 Pa s (Appendix C). However, the volume of
the elongated swimmer is also much smaller, and if one was to compare optima of similar
volumes, the corresponding Reynolds number for AR = 6 would be Re ≈ 5 × 104 and



32 C. Eloy

the efficiency would then drop to E∗ ≈ 10.7 if one follows the scaling law E∗ ∼ Re0.6

found in § 5. Therefore, when this volume effect is taken into account, the efficiency of
the most efficient swimmers is almost constant as the aspect ratio is varied, and, as a
consequence, the penalisation in terms of efficiency of having a very elongated body is
not large.

6. Discussion
In this paper, a hydrodynamical model of swimming animals has been proposed based

on the elongated-body theory of Lighthill (1971) and extended to take into account some
important viscous effects. This proposed model includes reactive forces, resistive forces,
and the modification of the drag by the swimming motion. It is nonlinear and valid up
to the first nonlinear corrections. It also takes into account the dissipative viscoelastic
nature of the soft tissues. With this model, it has been shown that, when an animal is
swimming steadily by bending its backbone periodically, the different Fourier components
of Newton’s second law can be used to calculate efficiently and rapidly the full kinematics
and energetics of swimming.

The developed model has then been used to perform a bi-objective optimisation, where
swimmers with large efficiencies, large velocities, or any trade-offs between the two were
sought. This constrained bi-objective optimisation has been performed using an evolu-
tionary algorithm tailored to this specific problem, where the shape and the motion of the
swimmers are varied simultaneously. Interestingly, it has been found that the morphology
of the optimal swimmers could be divided into two distinct species: the first species is
reminiscent of tuna-like or salmon-like swimmers and is specialised in efficient swimming,
the second species is more elongated and is specialised in fast swimming. It has further
been shown that this division into two classes of swimmers is robust to any change of
the numerical parameters (aspect ratio, number of degrees of freedom) or physical pa-
rameters (Reynolds number, internal viscosity of the soft tissues). Then, focusing on the
efficient tuna-like species, it has been shown that its characteristics and performances
compare remarkably well with most aquatic species reported in the literature, except for
the Strouhal number that is generally larger for real fish than it is in the simulations.

The species of efficient swimmers found in the present simulations share the char-
acteristics evoked by Lighthill (1970) and summarised in § 1. Their morphologies show
a large anterior region separated from the caudal fin by a caudal peduncle of reduced
cross-section. The envelope of the swimming motion exhibits a minimal width over the
anterior region, then displays a steep increase in the peduncle region, and finally is almost
constant at the tail such that the tail incident angle is zero at the extrema of its motion.
As already pointed out by Lighthill (1970), the recoil motion produced by the periodic
torque exerted at the tail by the reactive forces is of major importance for this species.
Because of the internal viscosity and the important thickness of the anterior region, the
main body ahead of the peduncle remains almost rigid to avoid prohibitive viscoelas-
tic costs, such that the only way for this species to prevent inefficient recoil motions is
through inertia of the anterior region. This has interesting consequences on the optimal
morphologies. For instance, the ratio of the animal length to its maximal thickness, L/B,
is expected to be an increasing function of the Reynolds number as long as the boundary
layers remain laminar.

The second species discovered in the optimisation calculations, the group of fast swim-
mers, is more elongated than the efficient swimmers and make use of a different mecha-
nism to prevent unwanted recoil motions. These swimmers use bending to counterbalance
the torque applied at the tail such that, when seen in the laboratory framework, they
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seem to swim with their whole body following a sinusoidal path. To explore this point
further, specific calculations have been carried out with very elongated swimmers. These
calculations have shown that animals found in nature can be related to the most efficient
swimmers calculated in the optimisation calculations, even when the aspect ratio is large.
The second optimal species however, which is associated with large stride lengths, does
not seem to be related to any known animal. This shows that evolution is consistent
with the selection of high-efficiency swimmers. This can be understood by realising that,
keeping their stride length constant but increasing their tailbeat frequency, animals can
increase their swimming velocity.

The presence of a caudal peduncle for all the optimal swimmers calculated here raises
an interesting question. When examining the exchange of reactive energy between the
swimmer and the fluid, one finds that the average power given to the fluid at each cross-
section is

[
1
2m〈w2u〉]′, which, when integrated along the length of the swimmer, gives

the total reactive power in (2.28). This expression can take negative values when m′ is
negative, or equivalently when the depth decreases with s as it is the case just ahead
of the caudal peduncle. This means that these cross-sections receive, on average, energy
from the outer flow. The question here is whether the fish can ‘harvest’ this kinetic energy
of the fluid? If they cannot, then the presence of the peduncle may not be as beneficiary
and could explain why elongated fish such as eels do not exhibit one. To answer this
question, one would need to take into account the detailed internal mechanics of the
swimmers and, in particular, how the bending energy couples with the other sources of
energy, which is beyond the scope of the present study.

The presence or absence of a caudal peduncle is related to another important point of
elongated-body theory. When the fish’s depth decreases abruptly, as it is the case just
ahead of the peduncle or when ventral or dorsal fins are present, vorticity can be shed. As
formulated by Lighthill (1971), the nonlinear elongated-body theory does not take into
account this vorticity shedding. Wu (1971b) developed an extension of Lighthill’s theory
to model this effect; however, his approach is only valid in the linear regime and is difficult
to extend to the present nonlinear framework. To understand better the importance of
these contracting regions, a fully viscous numerical simulations at high Reynolds number
would be necessary.

As was already noted in § 1, Tokić & Yue (2012) have recently published a study sim-
ilar to the present one, where they also performed bi-objective optimisation calculations
by varying both the shape and the motion of elongated swimmers. They chose similar
performance variable: the swimming speed and the cost of transport (which is inversely
proportional to the efficiency used here). Compared to their study, the present paper
incorporates several important features such as resistive forces and the enhancement of
skin-friction drag due to the swimming motion. Another important difference is that the
present model is weakly nonlinear, which allows to predict the amplitude of the swim-
ming motion from hydrodynamic arguments only. The number of degrees of freedom is
also slightly larger here (22 instead of 9), which allows to consider more general swim-
ming motion, whereas Tokić & Yue (2012) have limited their study to bending waves
of constant phase velocity with wavelengths equal to one body length. To explain the
saturated amplitude of the motion without resorting to nonlinear effects, Tokić & Yue
(2012) introduced a model of muscle activity, which states that the available power at a
given section is proportional to the cross-section area. It is noteworthy that, despite the
numerous differences in the modelling, most of the conclusions are similar. In particular,
they found that the morphology of salmon-like swimmers is favoured when the cost of
transport is optimised. They also found that the large amplitudes of the swimming en-
velope are localised near the tail when efficiency is optimised, but not when swimming
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Figure 20. Results of the optimisation for different N varying from 5 to 9. The circles and
the attached labels correspond to the most efficient swimmers in each case. These particular
swimmers are pictured in figure 21 and their characteristics are reported in table 7.

velocity is maximised. However, they found that the thickness ratio, L/B, decreases with
the animal size, while the opposite conclusion was reached here.

C. E. acknowledges support from the European Commission (PIOF-GA-2009-252542).

Appendix A. Variation of the number of degrees of freedom
The robustness of the numerical optimisation can be tested by varying the number of

collocation points N between 5 and 9, the reference case corresponding to N = 6. The
results of these calculations lead to very similar Pareto fronts as illustrated in figure 20.
In particular, there are always two lobes corresponding to the efficient “species” and the
fast “species” respectively. As expected, as N is increased and thus as the number of
degrees of freedom is increased, the Pareto fronts obtained are generally better, i.e. the
individuals on the Pareto front with the larger N dominate the individuals of lower N .
There are few exceptions that may be due to insufficient convergence of the optimisation
for the largest N or to the position of the collocation points.

As the figure 21 and table 7 show, the characteristics of the most efficient swimmer
do not strongly depend on the number of collocation points N . In particular, the shape
is always roughly the same: an anterior region of large depth with a maximum width
B approximately equal to 10% of the length and a dimensionless volume V0 ≈ 0.8 (as
defined by (2.4)), a thin cross-section spanning over 2 or 3 degrees of freedom and a flat
tail of maximum span. The swimming motions are also very similar with the anterior
region being rigid and the curvature being concentrated on the thinnest cross-sections.

This parametric study therefore shows that the results are robust to changes in the
number of degrees of freedom. The value N = 6 chosen for the reference case gives
results that are representative of what can be obtained with a larger number of degrees
of freedom, with the advantageous property of converging faster.
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Figure 21. Geometry and kinematics of the most efficient swimmers when the number of
degrees of freedom is varied. Each line (a–f ) corresponds to a different value of N from 5 to 9.
The characteristics and performances of these swimmers are reported in table 7. The different
columns are the same as in figure 6.

Collocation points N 5 6 7 8 9
Figure 21a 21b 21c 21d 21e

Results E∗ 10.447 12.150 12.872 12.700 13.324
U∗ 0.652 0.702 0.726 0.829 0.803
St 0.220 0.229 0.221 0.221 0.243
Li 0.109 0.117 0.114 0.114 0.116
θmax 0.449 0.462 0.437 0.436 0.513
U/V 0.645 0.632 0.631 0.630 0.651
V0 0.734 0.852 0.873 0.829 0.829
Ip 0.172 0.220 0.183 0.152 0.195
ID 2.782 2.751 2.498 2.353 2.576
Iw 1.775 1.623 1.636 1.669 1.628
L/B 10.116 9.443 10.098 11.303 10.632
S∗ 1.155 1.363 1.246 1.241 1.461
Im 0.911 0.928 0.941 0.944 0.954

Table 7. Results of the parametric study when N is varied from 5 to 9. The other parameters
are the same as in the reference case: Re = 105, AR = 6, µi = 104 Pa s.

Appendix B. Variation of the aspect ratio
This Appendix addressed the influence of the aspect ratio AR on the characteristics

and performances of the most efficient swimmers. As shown in figure 22, there is a
slight advantage in having a lower aspect ratio, as the span of the tail increases in that
case and the available thrust is larger too. But, the most important conclusion of this
parametric study is that the main features of the Pareto front are conserved when aspect
ratio is varied. In particular, the two main “species”, the efficient swimmers and the fast
swimmers, are recovered for all aspect ratios and their swimming gaits share common
characteristics whatever the aspect ratio.

Examining the performances of the most efficient swimmers, it appears that their effi-
ciencies E∗ are also very similar (table 8), suggesting that aspect ratio is not a dominant
effect here. There are two reasons for this. First, this is because the reduction of the
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Figure 22. Results of the optimisation for different aspect ratios AR = 4, 5, 6, 7, and 8.
The most efficient swimmers in each case are pictured in figure 23 and their characteristics are
reported in table 8.

(a)
side view top view swimming motion

(b)

(c)

(d)

(e)

Figure 23. Geometry and kinematics of the most efficient swimmers when the aspect ratio is
varied: (a) AR = 4; (b) AR = 5; (c) AR = 6; (d) AR = 7; (e) AR = 8. The characteristics and
performances of these swimmers are reported in table 8.

tail span is accompanied by larger swimming amplitudes (the maximum incidence angle
θmax increases by more than 50% when aspect ratio is doubled as shown in table 8).
And second, because the minimum allowed thickness is inversely proportional to AR,
such that the swimmers with the largest aspect ratio are also the ones with the thinnest
cross-section at the caudal peduncle. The internal dissipation is thus reduced for these
swimmers, permitting larger curvature and hence larger amplitudes at a reduced cost.

The other observation that can be made by observing the dorsal views of the swimmers
in figure 23 is that their maximum width B varies only slightly as the aspect ratio is
modified. To explain this observation, one has to remember the conclusion reached above
when the Reynolds number was varied: the volume of the anterior region is needed as
an inertial ‘flywheel’ to prevent excessive pitching motions. In the present case, as the
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Aspect ratio AR 4 5 6 7 8
Figure 23a 23b 23c 23d 23e

Results E∗ 12.263 12.231 12.150 11.951 11.771
U∗ 0.751 0.716 0.702 0.705 0.646
St 0.171 0.201 0.229 0.263 0.290
Li 0.063 0.091 0.117 0.148 0.191
θmax 0.359 0.407 0.462 0.543 0.563
U/V 0.670 0.647 0.632 0.628 0.599
V0 0.560 0.749 0.852 0.994 1.233
Ip 0.208 0.228 0.220 0.215 0.240
ID 2.379 2.616 2.751 2.857 3.008
Iw 1.514 1.558 1.623 1.669 1.644
L/B 10.051 9.188 9.443 9.366 8.435
S∗ 1.166 1.242 1.363 1.422 1.454
Im 0.959 0.948 0.928 0.918 0.895

Table 8. Results of the parametric study when the aspect ratio AR is varied from 4 to 8. The
other parameters are the same as in the reference case: Re = 105, N = 6, µi = 104 Pa s.

aspect ratio is reduced, so are the thrust and the torque produced by the reactive forces
at the tail, and therefore the volume of the inertial anterior region does not have to be as
large as in the case of small aspect ratios. For the present Reynolds number, it appears
that the ‘thickness aspect ratio’ is approximately L/B ≈ 9 for all aspect ratios.

Table 8 shows that E∗ is a decreasing function of the aspect ratio. Therefore, if the op-
timisation calculations were performed without constraining the aspect ratio, one would
expect small aspect ratio to be favoured, which is not compatible with the elongated-body
assumption of the model.

Appendix C. Variation of the internal dissipation
Here, the dependence of the internal viscosity on the optimisation results is examined.

It should first be noted that the value used for the reference case, i.e. µi = 104 Pa s,
has been chosen from the book of Schneck (1992) who reports measurements on isolated
human muscle in the range 103 < µi < 104 Pa s. Approximately the same value, µi =
6×103 Pa s, has been used by Cheng et al. (1998) in their study of the internal mechanics
of undulatory swimming, and more recently Tokić & Yue (2012) used µi = 104 Pa s in
their optimisation model. To our knowledge, there has not been any direct measurement
of µi on swimming animals, the only data being indirect, such as the study of Long et al.
(2002), and thus hard to exploit in the present context.

In figure 24 are shown the results of the different optimisations as the internal viscosity
is varied in the range 102 < µi < 105 Pa s. As expected, the swimmers with the lowest
internal viscosities outperform the ones with higher viscosities, but the main features of
the Pareto front are conserved. As µi is varied, the most efficient swimmers pictured in
figure 25 exhibit a similar shape, the only difference being that the dorsal view is more
streamlined as the viscosity is decreased, but maintaining an almost constant thickness
such that L/B ≈ 9.5. This is also evidenced in table 9 by observing that S∗, which
measures the streamlining, is an increasing function of µi, whereas the volume V0 and
L/B are almost constant.

The swimming gaits of the different swimmers of figure 25 are also very similar, the only
difference being that lower viscosities allow larger curvatures and thus largee amplitudes
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Figure 24. Results of the optimisation for different internal viscosities varying from µi = 102 to
105 Pa s. The circles and the attached labels correspond to the most efficient swimmers in each
case. These particular swimmers are pictured in figure 25 and their characteristics are reported
in table 9.
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Figure 25. Geometry and kinematics of the most efficient swimmers when the internal viscosity
is varied: (a) µi = 102 Pa s; (b) µi = 3 × 102 Pa s; (c) µi = 103 Pa s; (d) µi = 3 × 103 Pa s; (e)
µi = 104 Pa s; (f ) µi = 3 × 104 Pa s; (g) µi = 105 Pa s. The characteristics and performances of
these swimmers are reported in table 9.

of the tail motion. Interestingly, this larger amplitude goes with larger stride length U∗

such that the Strouhal number of the most efficient swimmers remains almost constant
on the range 102 < µi < 104 Pa s (table 9). It should also be noted that for the smallest
values of the internal viscosity, µi = 102 Pa s (figure 25a), the anterior region of the
swimmer is not perfectly rigid anymore but exhibits slight curvatures.
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Viscosity µi (Pa s) 102 3× 102 103 3× 103 104 3× 104 105

Figure 25a 25b 25c 25d 25e 25f 25g

Results E∗ 18.095 17.498 16.174 14.344 12.150 9.950 7.724
U∗ 0.827 0.752 0.727 0.739 0.702 0.540 0.321
St 0.235 0.244 0.230 0.237 0.229 0.204 0.185
Li 0.110 0.113 0.107 0.109 0.117 0.119 0.120
θmax 0.493 0.513 0.480 0.501 0.462 0.353 0.213
U/V 0.661 0.650 0.651 0.657 0.632 0.565 0.396
V0 0.987 0.979 0.872 0.808 0.852 0.861 0.879
Ip 0.179 0.189 0.162 0.176 0.220 0.218 0.230
ID 2.356 2.436 2.425 2.561 2.751 2.777 2.788
Iw 1.606 1.598 1.660 1.671 1.623 1.636 1.609
L/B 9.349 9.261 10.142 10.363 9.443 9.440 9.211
S∗ 1.016 1.077 1.055 1.221 1.363 1.373 1.393
Im 0.947 0.952 0.938 0.938 0.928 0.927 0.958

Table 9. Results of the parametric study when internal viscosity is varied from µi = 102 to
105 Pa s. The other parameters are the same as in the reference case: Re = 105, AR = 6, N = 6.

In the present study, it has been assumed that the internal viscosity, µi, remains
constant as the Reynolds number is varied. This hypothesis makes sense if one thinks
about this internal viscosity as an inherent property of the biological tissues. With this
hypothesis, the ‘internal Reynolds number’ Rei constructed on µi scales as the Reynolds
number Re, and consequently the relative importance of internal dissipation grows as
Re is reduced. In other words, one expects, in that case, that small animals will be
far more affected by internal dissipation and will corresponds to the largest viscosities
studied here. An alternative hypothesis would be that the internal viscosity of the tissues
varies with the animal size such that Rei remains roughly constant. This would mean
that viscosity has been selected as a necessary mean for the controllability of the motion.
This hypothesis should be testable by measuring internal viscosity on animals of different
sizes. To this day, however, whether the former of the latter hypothesis applies remains
a largely open question.

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover, New
York.

Alexander, R. M. 1977 Swimming. In Mechanics and energetics of animal locomotion (ed.
R. M. Alexander & G. Goldspink), pp. 222–248. Chapman & Hall, London.

Anderson, E. J., McGillis, W. R. & Grosenbaugh, M. A. 2001 The boundary layer of
swimming fish. J. Exp. Biol. 204, 81–102.

Bainbridge, R. 1958 The speed of swimming of fish as related to size and to the frequency and
amplitude of the tail beat. J. Exp. Biol. 35, 109–133.

Bainbridge, R. 1963 Caudal fin and body movement in the propulsion of some fish. J. Exp.
Biol. 40, 23–56.

Blake, R. W. 1983 Fish locomotion. Cambridge Univ Press.
Blake, R. W. 2004 Fish functional design and swimming performance. J. Fish Biol. 65, 1193–

1222.
Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of

carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211,
1541.



40 C. Eloy
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