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Estimating the energetic costs of undulatory swimming is important for biologists and
engineers alike. To calculate these costs it is crucial to evaluate the drag forces originating
from skin friction. This topic has been controversial for decades, some claiming that
animals use ingenious mechanisms to reduce the drag and others hypothesising that
undulatory swimming motions induce a drag increase because of the compression of the
boundary layers. In this paper, we examine this latter hypothesis, known as the ‘Bone–
Lighthill boundary-layer thinning hypothesis’, by analysing the skin friction in different
model problems. First, we study analytically the longitudinal drag on a yawed cylinder
in a uniform flow by using the approximation of the momentum equations in the laminar
boundary layers. This allows to demonstrate and generalise a result first observed semi-
empirically by G.I. Taylor in the 1950’s: the longitudinal drag scales as the square root of
the normal velocity component. This scaling arises because the fluid particles accelerate
as they move around the cylinder. Next we propose an analogue two-dimensional problem
where the same scaling law is recovered by artificially accelerating the flow in a channel
of finite height. This two-dimensional problem is then simulated numerically to assess the
robustness of the analytical results when inhomogeneities and unsteadiness are present.
It is shown that spatial or temporal changes in the normal velocity usually tend to
increase the skin friction compared to the ideal steady case. Finally, these results are
discussed in the context of swimming energetics. We find that the undulatory motions
of swimming animals increase their skin-friction drag by an amount that closely depends
on the geometry and the motion. For the model problem considered in this paper the
increase is of the order of 20%.

1. Introduction
Over the past 75 years, there has been much interest and controversy about the ener-

getic cost of swimming. These studies were initiated by the famous paper of Gray (1936)
who suggested that the large velocities achieved by swimming dolphins could not be ex-
plained by the available muscle power unless drag reduction mechanisms were at play,
a result known as the Gray’s paradox (see the recent review by Fish 2006, for a fresh
perspective). In fact, this early attempt to estimate the swimming energetics proved to
be incorrect for two reasons. First, the velocities were observed on animals swimming
along the side of a boat, and the dolphins are known to make use of the boat wake
energy, a phenomenon called wave-riding (Williams et al. 1992; Weihs 2004). Second,
dolphins were only observed during a short period of time and the measured velocities
thus corresponded to burst or sprint speeds for which specific muscle fibres are employed
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(Weis-Fogh & Alexander 1977). These specific fibres have much higher power outputs
than regular fibres or the human muscle fibres used by Gray (1936) as a model.

Although Gray’s paradox was flawed, it has inspired a considerable amount of studies
on the energetics of swimming and, in particular, on drag reduction mechanisms (Gero
1952; Fish & Hui 1991; Fish 2006). Several mechanisms have been suggested including
the optimisation of the animal shape (Hertel 1966), the use of compliant skin (Kramer
1960; Carpenter et al. 2000), the presence of ridges, folds, or riblets (Aleyev 1977; Walsh
1990; Choi et al. 1993; Bechert et al. 1997), the release of secretions (Rosen & Cornford
1971; Hoyt 1975), the heating of the boundary layer (Webb 1975), or its relaminarisation
induced by the swimming motion (Barrett et al. 1999).

Generally, none of these mechanisms have proved to decrease the drag by more than
5%, and the attempts to replicate them on bio-inspired vehicles have usually failed. The
only exceptions seem to be the use of polymer additives to transport oil in pipelines, or
water in fire hoses (Bhushan 2009), and the swimsuits used by professional swimmers
before their ban in 2009—but even in this case, it may just have been an effect of their
buoyancy.

While many scientists focused on the drag reduction mechanisms employed by aquatic
animals, Lighthill and others proposed that drag may actually be enhanced by the swim-
ming motion. Using potential flow theory, Lighthill (1971) showed that the average thrust
force generated by the animal’s undulatory motion could be calculated from the kine-
matics of the caudal fin alone. Then, using kinematics data of Bainbridge (1963) on the
dace (Leuciscus leuciscus), he showed that this calculated thrust was approximately four
times larger than the drag on a rigid body of similar shape. The explanation proposed by
Lighthill (1971), quoting discussions with Bone, is what is sometimes called the ‘Bone–
Lighthill boundary-layer thinning hypothesis’. The best way to introduce this hypothesis
is to quote Lighthill (1971) (notations have been slightly changed to be coherent with
the present paper):

“The possibility that large drag augmentation may result from [lateral move-
ments] is suggested by calculations of boundary-layer thicknesses on highly sim-
plified assumptions. For example, a Blasius boundary layer (with uniform external
stream velocity U‖) has a ‘frictional boundary-layer thickness’ δL (defined so that
skin friction is µU‖/δL) equal to 3

√
νx/U‖ at a distance x from the leading edge.

We may compare with this value a frictional boundary-layer thickness δL for a
flat section of depth s moving perpendicular to itself with velocity U⊥, which is
0.6
√
νs/U⊥ on the side towards which the section is moving.”

Following Lighthill (1971) and using the same methodology, other authors have shown,
for different species, that the calculated thrust was between two and ten times larger than
the drag of a motionless animal (Alexander 1977; Webb 1975; Videler 1981). Additionally,
Weihs (1974) showed that fish could make use of this phenomenon by adopting a ‘burst-
and-coast’ swimming gait.

However, the Bone–Lighthill hypothesis have always appeared somewhat mysterious
since the calculation of the ‘frictional boundary-layer thickness’, δL = 0.6

√
νs/U⊥, has

never been detailed. One important point in this hypothesis is that the resulting enhanced
drag is now proportional to

√
U⊥, where U⊥ is the normal velocity. It is remarkable that

the same scaling was obtained by Taylor (1952) when he analysed semi-empirically the
longitudinal drag on a yawed cylinder in uniform flow. But the link between these two
results remains to be established.

It is sometimes argued that the reactive model of Lighthill (1971) overestimates the
thrust (Hess & Videler 1984; Anderson et al. 2001; Shirgaonkar et al. 2009) and that
drag enhancement may not be as dramatic as a two- to ten-fold increase. Nevertheless,
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Anderson et al. (2001) have carefully measured the boundary-layer velocity profiles on
swimming fish and confirmed that skin-friction drag could be enhanced because of motion
by a factor of 1.5–1.9 for scup and 3–5 for dogfish. Numerical simulations of Borazjani &
Sotiropoulos (2008) have also shown increase of skin-friction drag by swimming motion
but with much smaller factors.

The Bone–Lighthill hypothesis of drag enhancement conflicts with Gray’s paradox and
the suggested mechanisms of drag reduction. This discrepancy is sometimes attributed
to the fact that drag is ill-defined. Schultz & Webb (2002), Fish & Lauder (2006), and
Shirgaonkar et al. (2009), among others, argued that when an aquatic animal is swimming
at constant mean velocity, there is no general way to separate drag and thrust since they
balance on average. In our opinion, this argument can be disputed. It may be true that
pressure drag is difficult to define since thrust also arises from pressure forces, but skin-
friction drag can always be defined—if not measured—and knowing whether this drag is
enhanced or reduced during swimming motion is of fundamental importance to evaluate
the energetic costs of swimming.

In this paper, to address this question, we use combined theoretical and numerical
approaches on simplified models. The theoretical aspects involve laminar boundary-layer
theory, as described in the classical book of Schlichting (1979). The boundary-layer equa-
tions are based on a simplified locally parallel flow assumption for which scaling laws for
the drag coefficient can be derived. The reliability of these theoretical prediction can be
assessed by computing quasi-steady states for the full non-parallel Navier–Stokes sys-
tem for the flow along a plate subject to uniform translational motion. The transient
regime when the plate is set into motion is characterised by performing time-dependent
Navier–Stokes simulations.

More specifically, the outline of this paper is as follows. In §2 the model problem of a
yawed elliptic cylinder in a uniform flow is addressed using a boundary-layer approach
and a drag coefficient expression is derived. The plate with finite width as a limiting case
of the cylinder is considered in §3, and it is shown, that this three-dimensional flow is
equivalent to a two-dimensional problem with a plate moving in the vertical direction
and accelerating outer flow. The scaling of the ‘Bone-Lighthill boundary-layer thinning
hypothesis’ is retrieved and its reliability is assessed in §4 by considering the full Navier–
Stokes system, computing quasi-steady states for different parameters associated with
the two-dimensional problem as well as time-dependent solutions. The expression of the
theoretical drag coefficient is applied in §5 to a model of undulatory swimming and the
equivalent two-dimensional Navier–Stokes time integration is performed. The results are
summarised and discussed in §6 and a tentative interpretation of the results in the context
of swimming energetics is provided.

2. Three-dimensional problem
Consider the problem illustrated in figure 1 of a yawed elliptic cylinder in a uniform

flow. This problem was originally analysed by Taylor (1952) and used to discuss the
swimming gaits of elongated animals. To calculate the longitudinal component of the
skin friction drag, classical methods of boundary layer theory (Schlichting 1979) are used
here. First, the potential flow is obtained by conformal mapping of the flow around a
circular cylinder. Then the boundary-layer equations are made dimensionless and this
provides the natural scaling of the longitudinal drag. Finally, the full boundary-layer
problem is solved by using the momentum equations and proper ansatz for the velocity
profiles.
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Figure 1. Sketch of the three-dimensional problem: (a) an elliptic cylinder is inclined with
angle α in a uniform flow of velocity U∞; (b) in the plane perpendicular to the cylinder axis,
the boundary-layer problem is two-dimensional. The boundary layer of thickness δ is developing
starting from the stagnation point until it separates at angle θs. In the boundary layer, we define
the local curvilinear coordinate system ξ-η.

2.1. Potential flow

Decomposing the uniform velocity U∞ onto its tangential and normal components, U‖
and U⊥, as illustrated in figure 1a, the potential flow problem can be solved as follows.
In the tangential direction, the outer potential flow is unchanged and is equal to U‖. In
the normal direction, the potential flow around the cylinder with elliptic cross-section is
obtained by conformal mapping techniques as illustrated in figure 2. This calculation can
be found in any good textbook (e.g. Batchelor 1967), and will be briefly recalled here.

In the Z-plane, the complex potential around the circular cylinder of radius c is given
by

w(Z) = −U⊥Z − U⊥ c
2

Z
, (2.1)

and the conformal mapping from the Z-plane into the ζ-plane is given by the transfor-
mation

ζ = Z +
λ2

Z
, (2.2)

where c = (a+ b)/2 and λ = 1
2

√
a2 − b2, with a and b the two semi-axis of the ellipse in

the directions parallel and normal to the flow respectively.
The complex flow velocity in the ζ-plane is then obtained by differentiating the complex

potential with respect to ζ (where ζ = y + iz)

q =
dw
dζ

=
dw
dZ

dZ
dζ

=
c2 − Z2

Z2 − λ2
U⊥. (2.3)

Finally, the potential flow velocity at the surface of the elliptic cylinder, Qe, is obtained
by assuming that Z = c eiθ and taking the norm of (2.3), which yields

Qe(θ) = |q| = (1 + b/a)| sin θ|√
1− (1− b2/a2) cos2 θ

U⊥, (2.4)

where the symmetries with respect to the Oy and Oz axes appear as expected.
To solve the boundary-layer inner problem, we will use the coordinates ξ-η attached

to the surface (see figure 1b). We will then need the stretching function dξ/dθ given by
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Figure 2. Sketch of the conformal mapping. The flow around a disc is transformed into the
flow around an ellipse through the conformal transformation from the Z-plane into the z-plane.
This method is used to obtain the tangential potential velocity Qxe on the cylinder wall.

the norm of dζ/dθ when Z = c eiθ

dξ
dθ

=
∣∣∣∣dζdθ

∣∣∣∣ = a
√

1− (1− b2/a2) cos2 θ. (2.5)

For a given elliptic cross-section, a typical length ` is defined as the diameter of the
‘equivalent’ circular cylinder, such that this equivalent cylinder has the same surface as
the elliptic cylinder

` =

{
4
πaE(1− b2/a2) for b 6 a,
4
π bE(1− a2/b2) for b > a,

(2.6)

where E is the complete elliptic integral of the second kind.

2.2. Boundary-layer equations
Using the fact that the problem is independent of x, the boundary-layer equations can
be written in the (ξ, η, x) coordinates as

uξ
∂uξ
∂ξ

+ uη
∂uξ
∂η

= Qe
dQe
dξ

+ ν
∂2uξ
∂η2

, (2.7a)

uξ
∂ux
∂ξ

+ uη
∂ux
∂η

= ν
∂2ux
∂η2

, (2.7b)

∂uξ
∂ξ

+
∂uη
∂η

= 0. (2.7c)

The problem can be made dimensionless by using U⊥ and ` as characteristic velocity and
length scales. Rescaling the variables as follows

ξ∗ =
ξ

`
, η∗ =

Re
1
2
⊥η
`

, u∗ξ =
uξ
U⊥

, u∗η =
Re

1
2
⊥uη
U⊥

, u∗x =
ux
U‖
, qe =

Qe
U⊥

, (2.8)

where the Reynolds number is

Re⊥ =
U⊥`
ν
, (2.9)

the dimensionless boundary-layer equations become

u∗ξ
∂u∗ξ
∂ξ∗

+ u∗η
∂u∗ξ
∂η∗

= qe
dqe
dξ∗

+
∂2u∗ξ
∂η∗2

, (2.10a)

u∗ξ
∂u∗x
∂ξ∗

+ u∗η
∂u∗x
∂η∗

=
∂2u∗x
∂η∗2

, (2.10b)

∂u∗ξ
∂ξ∗

+
∂u∗η
∂η∗

= 0. (2.10c)
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and the problem now only depends on the aspect ratio of the elliptical cross-section b/a
through qe(ξ∗). Note that u∗ξ and u∗η do not depend on u∗x, such that the two-dimensional
problem for (u∗ξ , u

∗
η), given by (2.10a,c), can be first solved in the ξ-η plane, and then,

its solution can be used to solve the linear problem (2.10b) for u∗x.
From these dimensionless equations, it appears that the longitudinal drag force per

unit length of cylinder is given by

D‖ =
∫ π`

0

µ

(
∂ux
∂η

)
η=0

dξ = µU‖Re
1
2
⊥C3D, (2.11)

where C3D is a longitudinal drag coefficient that depends only on the aspect ratio of the
ellipse b/a and is given in dimensionless variables by

C3D

(
b

a

)
=
∫ π

0

(
∂u∗x
∂η∗

)
η∗=0

dξ∗, (2.12)

This longitudinal drag can also be rewritten using the incident angle α (see figure 1a) as

D‖ = ρU2
∞`C3DRe−

1
2

` cosα sin
1
2 α, (2.13)

where the Reynolds number Re` is now

Re` =
U∞`
ν

. (2.14)

Equation (2.13) makes apparent the similarity with the semi-empirical formula of Taylor
(1952), numbered (2.22) in his paper.

The boundary-layer equations (2.10a–c) can be solved using the approximate method
of the momentum equations (Schlichting 1979; Wild 1949; Sears 1948), as it is detailed
in Appendix A. The results of this calculation are illustrated in figure 3 where the drag
coefficient C3D is plotted as a function of the aspect ratio b/a. The coefficient C3D takes
its maximal value, C3D = 1.792, for the aspect ratio b/a = 0.48, but surprisingly, varies
very little, and is approximately equal to C3D ≈ 1.8 on the whole range of aspect ratios.
This value is 30% smaller than the empirical value used by Taylor (1952), C3D = 2.7,
which he found by fitting the data of Relf & Powell (1917) on a yawed circular cylinder
at Re ≈ 8000. The reasons of this discrepancy are not fully understood. It could be due
to the outer velocity profile on the cylinder that is not the solution of the potential flow
problem or contributions of the surface situated beyond the separation line which are
neglected in the present analysis. It could also be errors in the measurements, effects of
the turbulence level in the wind tunnel, or roughness of the cylinder surface. In addition
boundary layers along a yawed cylinder are known to be unstable (Poll 1985). In a
flow configuration above a critical Reynolds number, the instability is evidenced by an
undulating separation line. This instability is however unlikely to affect significantly the
skin friction along the axial direction, as long as the mean position of the separation line
is not affected.

As already pointed out by Taylor (1952), the present three-dimensional problem of a
yawed cylinder in uniform flow is analogous to the problem of heat transfer of a cylinder in
crossflow. This analogy is explored in Appendix B for the case of an elliptic cross-section.

The main result of this section is that the longitudinal drag per unit length is given by
(2.11), with a longitudinal drag coefficient C3D ≈ 1.8. Therefore, the skin-friction drag
will increase as the square root of the normal velocity component, a result of crucial
importance to evaluate the energetic costs of undulatory swimming.
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Figure 4. Three-dimensional problems of a plate of span s = 2H in a uniform flow U‖ moving
at velocity U⊥ in the direction normal to its surface.

3. Two-dimensional problem
Consider now the three-dimensional problem illustrated in figure 4, which is simply

the limit of the yawed cylinder analysed above in §2 when the aspect ratio b/a tends to
infinity, with a change of framework such that now the plate is moving at the normal
velocity U⊥ in a uniform parallel flow U‖. The potential flow Ue at the surface of this
plate is given by substituting a = 0 and b = H into (2.3), which yields

Ue(y = 0, z) = (U‖, U⊥, U⊥z/
√
H2 − z2). (3.1)

To illustrate this outer flow, its streamlines, as seen from above the plate, are drawn
in figure 5a in the particular case U⊥ = U‖. It is important to note that this flow is
associated with an acceleration along the streamlines as fluid particles get around the
plate (figure 5b). This acceleration leads to a favourable pressure gradient, a thinner
boundary layer thickness, and thus an enhancement of skin friction.

An alternative way to understand this skin friction enhancement is to remark that, for
this three-dimensional problem, the mid-plane Oxy is a plane of symmetry, in which the
z-component of the velocity field vanishes. In this mid-plane, applying the conservation
of mass in y = 0 and z = 0, one finds that the y-component of the outer potential flow
scales as Ve = U⊥(1 − y/H) near the plate (i.e. for y � H). Hence the fluid particles
experience an acceleration towards the plate as they move around the plate, which then
yields a compression of the boundary layer and an increase of skin friction drag. Natu-
rally, these two interpretations of the skin friction enhancement either by invoking the
acceleration of fluid particles along their streamlines, or by invoking the compression in
the vertical direction cannot be dissociated as they are linked by the conservation of
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Figure 6. Two-dimensional problem of the flow in a channel of height H with the bottom wall
moving at velocity U⊥. This problem is the two dimensional analogue of the three-dimensional
problem pictured in figure 4.

mass. These accelerations in the vertical and horizontal directions, which are instrumen-
tal in enhancing the skin friction, are inherently linked to the three-dimensional nature
of the problem. Yet, an analog two-dimension problem can be formulated where these
accelerations are recovered by confining the flow between the upward moving plate and
an upper free boundary at height H (figure 6).

In this two-dimensional problem, we are looking for the skin friction on the bottom
wall of a channel of height H when this wall is moving upward with a prescribed velocity.
We will consider the case where this upward velocity can be written

v(x, y = 0) = U⊥ ψ(x), (3.2)

with ψ a dimensionless function of order 1. The outer flow field, Ue = U‖ +∇φ, can be
found by solving a Laplace problem for the potential φ. This is classically achieved by use
of the conformal mapping X + iY = eπ(x+iy)/H which transforms the channel geometry
of height H into the upper half plane (cf. Batchelor (1967), §6.5). Green’s representation
theorem can then be used in the transformed domain to provide the value of φ on the
bottom wall for any graph ψ(x) as

φ(x, y = 0) =
U⊥
π

∫ ∞
−∞

ψ(ξ) ln
∣∣∣eπ(x−ξ)/H − 1

∣∣∣dξ, (3.3)



Skin friction on a moving wall 9

where the logarithm function is the Green function of the Laplace equation.
In particular, when ψ = Θ(x), with Θ the Heaviside step function, the streamwise

component of the outer flow is found by taking the x-derivative of (3.3) and is equal to

Ue(x, y = 0) = U‖ +
U⊥
π

ln
∣∣∣eπx/H − 1

∣∣∣ , (3.4)

which yields the following approximation

Ue(x, y) ≈ U‖ +
U⊥x
H

Θ(x), Ve(x, y) ≈ U⊥
(

1− y

H

)
Θ(x). (3.5)

The analogy with the three-dimensional problem of figure 4 appears through the same
vertical potential velocity Ve as in the mid-plane of the three-dimensional problem, and
through a similar acceleration along the streamwise direction.

The analog two-dimensional problem that we have proposed here can be solved fol-
lowing a method similar to that of §2.2, where the momentum equations can be used to
calculate the drag force (cf. Schlichting 1979, p.206–214). When the acceleration dUe/dx
varies slowly compared to the typical y-scale, the drag force per unit surface on the
bottom plate reduces to

τ(x) ≈ 1.20µUe

√
dUe
dx

1
ν
, (3.6)

which gives, taking dUe/dx = U⊥/H, a drag force per unit x (assuming a span s = 2H
as in figure 4)

D‖ = 2.39µUe

√
U⊥H
ν

= 2.12µUeRe
1
2
⊥, (3.7)

where Re⊥ is given by (2.9), with ` = 4H/π here. Equation (3.7) is similar to (2.11), and
therefore an analogous drag coefficient can be defined for the two-dimensional problem
studied here, which depends on x in general

C2D(x) =
τ

µUe

√
πνH

U⊥
, (3.8)

In this approximation, this drag coefficient is C2D = 2.12, close to the value C3D ≈ 1.8
found for the three-dimensional case of §2.

Using U‖ and δ1 (the displacement thickness in x = 0), as characteristic velocity and
length to make the problem dimensionless, such that, in particular,

U∗e =
Ue
U‖
, U∗⊥ =

U⊥
U‖

, H∗ =
H

δ1
, Re =

U‖δ1
ν

, (3.9)

the dimensionless shearing stress along the plate can also be calculated

cf (x) =
τ(x)
ρU2
‖

= C2DU
∗
e

√
U∗⊥

πH∗Re
. (3.10)

Note that the expression (3.6) can be rewritten as

τ ≈ µUe
δL
, with δL = 0.84

√
νH

U⊥
= 0.59

√
νs

U⊥
. (3.11)

assuming again that the span is s = 2H. Here δL is the ‘frictional boundary-layer thick-
ness’ used by Lighthill (1971) and its expression is exactly the same as the one he used
(see the quotation of Lighthill’s paper in §1). It is thus likely that Lighthill (1971) used
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the same two-dimensional problem to find the scaling of δL in the case of a normal
component of the velocity.

4. Two-dimensional Navier–Stokes solution
The theoretical predictions and the corresponding scaling for the skin-friction (3.6) are

based on the boundary-layer approximation, under the assumption of a locally parallel
flow in the streamwise x-direction. To assess the reliability of these hypotheses, the
nonlinear Navier–Stokes system is now considered in the two-dimensional domain of
height H∗ and plate velocity U∗⊥, given by

0 6 x 6 L, ϕ(x, t) 6 y 6 H∗ with ϕ(x, t) = U∗⊥ t Ψ(x). (4.1)

This domain is identical to the two-dimensional flow geometry considered in the previous
section, for t = 0 (cf. figure 6). The domain is necessarily of finite length L and incoming
boundary-layer flow is assumed at x = 0. In the following only the non-dimensional key
parameters (3.9) are written with asterisks, which are omitted for all other variables for
simplicity, the reference velocity still being U‖ and the reference length scale being the
displacement thickness δ1 of the incoming flow at x = 0. The numerical procedure uses
the mapping

ȳ =
y − ϕ(x, t)
H∗ − ϕ(x, t)

H∗ (4.2)

which transforms the moving domain into the fixed geometry 0 6 x 6 L, 0 6 ȳ 6 H∗.
The gradient and the time derivative in the transformed system are

∇ = (∇x,∇y) =
(
∂

∂x
+
ȳ −H∗
H∗ − ϕ

∂ϕ

∂x

∂

∂ȳ
,

H∗

H∗ − ϕ
∂

∂ȳ

)
, (4.3a)

∂/∂t =
∂

∂t
+
ȳ −H∗
H∗ − ϕ

∂ϕ

∂t

∂

∂ȳ
, with

∂ϕ

∂t
= U∗⊥Ψ(x),

∂ϕ

∂x
= U∗⊥tΨ

′(x). (4.3b)

Performing the mapping, the Navier–Stokes equations become

∂u

∂t
+
ȳ −H∗
H∗ − ϕ U

∗
⊥Ψ(x)

∂u

∂ȳ
+ (u · ∇)u = −∇xp+

1
Re
∇2u (4.4a)

∂v

∂t
+
ȳ −H∗
H∗ − ϕ U

∗
⊥Ψ(x)

∂v

∂ȳ
+ (u · ∇)v = −∇yp+

1
Re
∇2v (4.4b)

∇xu+∇yv = 0, (4.4c)

with u = (u, v), the velocities u and v being the streamwise and wall-normal compo-
nents respectively, and Re the Reynolds number as defined by (3.9). The dimensionless
Navier–Stokes equations (4.4a–c) will be solved numerically in the following for different
values of the channel height H∗, the normal velocity U∗⊥, and the Reynolds number Re.
These equations are supplemented with the following boundary conditions. At the lower
boundary the fluid velocity field has to match the wall velocity, such that

u(x, 0) = 0, v(x, 0) = U∗⊥Ψ(x), 0 6 x 6 L. (4.5)

In the analogy between the three- and two-dimensional problem discussed in §3, the
conditions at the upper free slip boundary (cf. figure 6) are

∂u

∂ȳ
(x,H∗) = 0, v(x,H∗) = 0, 0 6 x 6 L. (4.6)

At inflow x = 0, an incoming Blasius boundary-layer profile (with displacement thickness
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equal to one) is prescribed whereas at outflow x = L the Neumann boundary condition
∇xu = 0 is used to avoid upstream effects due to the finite length of the domain.

4.1. Quasi-steady states
The first numerical simulations address qusi-steady states. These equilibrium states of
the system are sought by setting ∂u/∂t = 0 in (4.4a–c). The solution procedure is
similar to the one described in Ehrenstein & Gallaire (2008) for a boundary-layer flow
along a bump geometry, the system being discretised using Chebyshev-collocation and
a grid-stretching is performed in y to take into account the boundary-layer structure
near the wall. To avoid clustering of the points at inflow and outflow, an algebraic one-
parameter coordinate transformation (cf. Peyret 2002, p. 306), is used to achieve a quasi-
uniform distribution in x. In a manner similar to Ehrenstein & Gallaire (2008), the
coupled nonlinear system (4.4) is then solved by using a quasi-Newton method known
as the Broyden rank-one update procedure (Stoer & Bulirsch 1992). In this procedure,
only one complete QR-decomposition of the nonlinear system’s Jacobian matrix has to
be performed when starting an iteration cycle: the operators for the subsequent linear
systems are updated, using an affine approximation of the nonlinear function, so that
the corresponding QR-decompositions can be computed with little extra-cost (Stoer &
Bulirsch 1992). It can be shown that this procedure converges superlinearly for initial
guesses close to an equilibrium state.

A computational domain of length L ≈ 300 has been considered. In the previous sec-
tion, the outer flow field (3.5) has been obtained assuming the ideal case in which the
graph Ψ(x) is the Heaviside step function. However, for the numerical solution in the
finite domain, Ψ(x) has to evolve continuously from 0 to 1 within small buffer regions
near inflow and outflow. The graph that has been used is shown in figure 7a. Equi-
librium flow states are obtained starting with U∗⊥ = 0 and considering as initial guess
the streamwise-independent Blasius profile: performing the quasi-Newton iterations, the
system converges to the flat plate Navier–Stokes solution. The wall velocity U∗⊥ is then
progressively increased to compute the successive equilibrium states.

For a given velocity U∗⊥, the moving boundary ϕ(x, t) = U∗⊥tΨ(x) can be at different
heights at different times t. In the analogy between the three and two-dimensional prob-
lems detailed in §3, the domain height has been associated with the plate span s = 2H
(figure 4). Consequently, for a given incoming flow with displacement thickness δ1, the
dimensionless distance between the plate and the top of the domain is to be constant
and equal to H∗. It means that the metric terms in the operators (4.3) can be taken at
t = 0, which makes the problem both simpler and closer to the analysis of §3.

We first present the results of numerical simulations corresponding to a domain height
H∗ = 90 and Reynolds number Re = 200. For these computations, 200 collocation points
have been used in x and 60 points in y. The wall velocity has been increased progressively
up to U∗⊥ = 0.5. For the graph Ψ(x) considered, the theoretical potential outer solution
can be computed integrating numerically equation (3.3) and the corresponding U∗e is
then obtained by taking the x-derivative. The graph is shown in figure 7b together with
the Navier–Stokes streamwise velocity at y = H∗. The idealised solution (3.5) for the
Heaviside step function is depicted as well. As can be seen, besides transient regions near
inflow and outflow of length approximately 30, the outer flow taking into account the
graph Ψ fits well the approximation (3.5). In particular, the acceleration of the numerical
outer flow far from the moving wall is seen to be almost identical with the theoretical
prediction in the region 50 6 x 6 250.

The computed velocity profiles at x = 127 are compared for different wall velocities
in figure 8. The streamwise velocity exhibits a gradient near the wall which increases
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(a) (b)

Figure 7. (a): Graph Ψ for the moving plate. (b): Potential outer flow U∗e for U∗⊥ = 0.5,H∗ = 90,
Re = 200; streamwise velocity for the Navier–Stokes solution at y = H∗ (—), x-derivative
of potential solution (3.3) for Ψ(x) (− − −), approximation (3.4) for Heaviside step function
(−.− .−).

(a) (b)

(c)

Figure 8. Flow profiles at x = 127 for different plate velocities with U∗⊥ = 0 (�), U∗⊥ = 0.1 (◦),
U∗⊥ = 0.3 (M), U∗⊥ = 0.5 (O). Flow case Re = 200 and H∗ = 90. Streamwise velocity u(y) (a),
wall-normal velocity v(y) (b), streamwise velocity near the wall (c).

with U∗⊥ leading to an enhancement of skin friction. The wall-normal velocity exhibits,
outside a small region near the wall, the expected almost linear decrease to the imposed
zero value at H∗ = 90. For the numerical steady states the dimensionless shearing stress
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Figure 9. Skin friction for the flow at Re = 200 and height H∗ = 90 for U∗⊥ = 0 (—), U∗⊥ = 0.05
(−−−) and U∗⊥ = 0.1 (−.− .−). The small circles are the values for the boundary-layer theory.

along the plate is

cf (x) =
τ(x)
ρU2
‖

=
1

Re
∂u

∂y
(x, 0) (4.7)

and the result for H∗ = 90 at small wall velocities U∗⊥ = 0.05, 0.1 is shown in figure 9.
Near outflow for x > 280 there is an overshoot in the skin-friction values when U∗⊥ 6= 0,
which is a finite-domain effect associated with the gradient of Ψ(x). It appears that
whenever U∗⊥ > 0 the flow experiences higher skin friction than for a fixed wall. In this
latter case, using the theoretical expression of the boundary-layer displacement thickness
δ1(x) = γ

√
νx/U‖, with γ = 1.7208, for the Blasius similarity solution, the skin friction

is τ(x) = µcU∞/δ1(x) with c ≈ 0.57 (Schlichting 1979). The local Reynolds number can
be expressed in terms of the Reynolds number Re (based on the displacement thickness
at inflow x = 0) used in the computations and the dimensionless skin friction as predicted
by boundary-layer theory is

cf,B(x) =
0.57

Re
√

1 + γ2x/Re
(4.8)

where x is the dimensionless distance from inflow. In figure 9 the skin friction cf for
U∗⊥ = 0 as resulting from the Navier–Stokes solution is shown as the solid line. The
graph (4.8) is plotted as well (with circles) and the two curves are seen to be very close.
The small difference is due to inflow effects, the imposed Blasius profile at inflow being
not an exact solution of the Navier–Stokes equations.

4.2. Skin-friction scaling for the moving plate
The theoretical drag force prediction given by (3.6) is obtained when the potential outer
flow is approximated by (3.5), which corresponds to a constant slope U⊥/H for x > 0
and the Heaviside step function for Ψ in (3.3). For the graph Ψ used in the numerical
simulations (figure 7a), the integral in formula (3.3) is solved numerically and Ue as well as
its derivative U ′e can be computed (an example being shown in figure 7b). Three different
domain heights H∗ = 30, 60, 90 have been considered and the inverse of the normalised
outer flow gradient (U ′e(x)/U⊥)−1 is shown in figure 10 (the outflow region x > 280 being
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Figure 10. Inverse of the normalised first derivative of the potential outer solution (U ′e/U⊥)−1

for domain height H∗ = 30 (—), H∗ = 60 (−−−), H∗ = 90 (−.− .−).

discarded). The curves with an almost singular behaviour near inflow progressively tend
towards a constant value, which for the different heights is approximately H∗. To take
into account the transient region near inflow when comparing theory and the Navier–
Stokes computation, in the theoretical drag force formula (3.6) we rather use dU∗e /dx
instead of U∗⊥/H

∗, that is

cf,Ue
(x) =

τ(x)
ρU2
‖

=
1.2√
Re

√
dU∗e (x)

dx
U∗e (x). (4.9)

For the three heights considered, steady-states have been computed for three different
wall velocities U∗⊥ = 0.1, 0.3, 0.5. Figure 11 shows the computed skin friction, in com-
parison with the theoretical result (4.9). The theoretical predictions meet the computed
values at some distance from inflow which roughly scales with the domain height H∗. For
the smallest wall velocity, U∗⊥ = 0.1, the theory and computations fit almost perfectly,
besides a transient region near inflow. For higher wall velocities (U∗⊥ = 0.3 and 0.5), the
transient behaviour near inflow is underestimated by the theoretical curves (in particular
for the largest height H∗ = 90), whereas more downstream the shearing stress is slightly
overpredicted. Overall, the theoretical formula (4.9) may be considered as reliable, in
particular for lower heights of the domain.

Similar computations have also been performed at Re = 600, with the same heights
H∗ and velocities U∗⊥. To summarise the different results, the drag coefficient has been
computed according to the formula (3.8), by writing τ = cf (x)ρU2

‖ with cf (x) the skin-
friction as resulting from the Navier–Stokes computations. Taking again dU∗e /dx instead
of U∗⊥/H

∗, the two-dimensional drag coefficient is given by

C2D(x) =
cf (x)
U∗e

√
πRe

dU∗e /dx
, cf (x) =

1
Re

∂u

∂y
(x, 0). (4.10)

Figure 12 shows the evolution of C2D(x) along the plate. After a transient whose length
scales like H∗, the drag coefficient converges towards a mean value C2D ≈ 2.1 , for all
values of H∗ and U∗⊥, and whether Re = 200 or Re = 600. This clearly demonstrates
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(b)

(c)

Figure 11. Computed skin friction for the flow at Re = 200, for U∗⊥ = 0.1 (—), U∗⊥ = 0.3
(−−−) and U∗⊥ = 0.5 (−.− .−), for domain height H∗ = 30 (a), H∗ = 60 (b) and H∗ = 90 (c).
The theoretical predictions are drawn as well for U∗⊥ = 0.1 (�), U∗⊥ = 0.3 (◦) and U∗⊥ = 0.5 (M).
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Figure 12. Computed drag coefficient (4.10) for H∗ = 30 (—), H∗ = 60 (−−−) and H∗ = 90
(−.−.−). For each height H∗, the wall-velocities U∗⊥ = 0.1, 0.3, 0.5 have been considered. Results
at Re = 200 (a) and Re = 600 (b).

the reliability of a constant drag-coefficient approximation and consequently the scaling
(3.11) proposed by Lighthill (1971) for the idealised case in the absence of transient
effects.

4.3. Time-dependent solution along the moving plate
In the previous section, the skin-friction computations assumed the coupled fluid-plate
system to be in a quasi-steady state. To characterise the transient regime when the plate
is set into motion, a time-dependent Navier–Stokes simulation has also been performed.
For this purpose, the time-dependent Navier–Stokes integration procedure described in
Marquillie & Ehrenstein (2003) is used, and is adapted to account for moving boundaries,
as in Gobert et al. (2010). In this latter work, the coupling between the fluid and an elastic
wall was considered. Details of the procedure can be found in these two references. The
discretization uses fourth-order finite-differences in x, Chebyshev-collocation in y, and a
semi-implicit time-marching. A fractional time step procedure ensures a divergence-free
velocity field. The procedure has been designed for boundary-layer type computations
and it uses a simplified mapping y = ȳ + ϕ(x, t) with a fixed lower boundary ȳ = 0 in
the transformed domain 0 6 ȳ 6 H∗. This simplification is justified for boundary-layer
flows, provided that the domain is sufficiently high to recover an outer flow field at H∗

independent of the vertical coordinate. This is true for the streamwise velocity u given
the condition ∂u/∂y = 0 at the top of the domain and the gradient with respect to y
of v is approximately U∗⊥/H

∗, which for the case considered hereafter (H∗ = 60 and
U∗⊥ = 0.3) is small. A large domain 0 6 x 6 920 has been considered and the moving
boundary is again ϕ(x, t) = U∗⊥tΨ(x) with a graph Ψ(x) similar to the one shown in
figure 7a, such that Ψ(x) = 1 in the region 30 6 x 6 600 (in other words, a relatively
large outflow buffer region of length 300 has been considered to avoid upstream effects
during the time integration).

According to the mapping used for the time-dependent simulation, the transformed
gradient and time derivative are

∇ =
(
∂

∂x
− ∂ϕ

∂x

∂

∂ȳ
,
∂

∂ȳ

)
, ∂/∂t =

∂

∂t
− ∂ϕ

∂t

∂

∂ȳ
. (4.11)

The moving boundary ϕ(x, t) = U∗⊥ t Ψ(x) is uniform in the domain 30 6 x 6 600, but
its streamwise gradient becomes increasingly stiff in the buffer region when progressing
in time. This difficulty is overcome in the time-dependent computation by simply setting
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Figure 13. Frozen plate height computation with H∗ = 60,Re = 200. Skin-friction at t = 20
(—), t = 60 (− − −−), t = 100 (−. − .−), in comparison with the equilibrium state result (◦)
for U∗⊥ = 0.3.

∂ϕ(x, t)/∂x to zero in (4.11) and owing to the mapping y = ȳ+ϕ(x, t), the upper bound-
ary thus remains at a constant height H∗ from the ascending plate. This is precisely the
quasi-steady configuration considered in §4.1. The time-integration has been performed
at Re = 200 with 6150 discretization points in x and 80 collocation points in y.

First, a time-integration has been performed for the flow along the flat plate with
zero wall velocity until a steady state is reached. Using this boundary-layer solution as
the initial condition, the plate is set into motion with the velocity U∗⊥ = 0.3 and the
skin-friction along the plate at successive times is shown in figure 13. The equilibrium
state result (for the smaller domain 0 6 x 6 280) is shown as well and the transient
regime in time can be estimated to last until t ≈ 60. For large times, due to the time-
independent forcing term ∂ϕ/∂t = U∗⊥Ψ(x) with a sharp gradient at inflow, the solution
will ultimately exhibit an asymptotic instability during the time-integration procedure.

According to these time-dependent simulations, the increase in skin friction predicted
by the steady state analysis appears to be a lower bound reached only after a transient.
The question is now to understand to what extend this skin friction enhancement predic-
tion is retrieved for a more realistic swimming behaviour, such as an undulatory rather
than uniform motion.

5. Skin friction for an undulatory swimming motion
Consider a flat rectangular plate of aspect ratio s/L = 1/5 performing an undulatory

motion similar to a fish swimming at velocity U (figure 14)

y(r, t) = Ar cos (k(r − V t)) , (5.1)

where r is the curvilinear coordinate along the plate length, A is the dimensionless
amplitude of beating (A = 0.1 in this example), V is the wave speed of the undulations
(V = 1.5U) and k is the wavenumber (k = 2π/L). These values give a Strouhal number,
St = AV kL/πU = 0.3, typical for a large number of fish and cetaceans with similar
aspect ratios (Eloy 2012).
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Figure 14. Sketch of the rectangular plate performing an undulatory motion in a uniform
flow U .
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Figure 15. Comparison of the Blasius drag DBlasius given by (5.4) (dashed line) and the mean
longitudinal D‖ due to the normal velocity given by (5.3) (solid line) along the length of the
plate.

In the linear limit, the normal velocity of the plate with respect to the fluid is

U⊥ =
∂y

∂t
+ U

∂y

∂x
= AU

[
π
x

L
sin (k(x− V t)) + cos (k(x− V t))

]
, (5.2)

thus varying from about 0.1U to 0.3U from head to tail. The longitudinal drag per unit
length due to this normal velocity is given by (2.11), which can rewritten using the fact
that ` = 2s/π for a flat plate and that C3D ≈ 1.8, as

D‖ ≈ 1.4µURe
1
2
s

√
|U⊥|
U

, (5.3)

where Res = Us/ν is the Reynolds number based on the span. This drag force can be
compared to the Blasius drag on the same flat plate when it is motionless

DBlasius = 0.664µURe
1
2
s

√
s

x
. (5.4)

These two drag forces are of same order when s/x ≈ 4U⊥/U ≈ 0.4, which means that
the drag will be dominated by effects of the normal velocity on the last 60% of the plate.

A more precise comparison can be carried out by taking into account the nonlinear
geometrical effects and by calculating the time-average drag, as illustrated in figure 15.
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In this figure, it is seen that indeed the effects of the normal component of the velocity
are dominant on the last 56% of the plate. The total drag can be estimated by taking
the time and space average of the maximum between DBlasius and D‖. It results in a 23%
increase compared to the Blasius drag alone that would act on a motionless plate. Note
that this drag enhancement is not only due to the ‘thinning’ of the boundary layer but
also the to the acceleration of the tangential component of the outer velocity U‖, as it
was originally remarked by Anderson et al. (2001).

To asses numerically the validity of this drag increase, we again consider the anal-
ogy between the three and two-dimensional problem (cf. figures 4 and 6), the height of
the two-dimensional domain H being half the plate span s. To mimic the aspect ratio
between width and length of the plate, a two-dimensional domain of length 10H is to
be considered for the Navier–Stokes computation. The displacement thickness δ1 of the
incoming Blasius profile is again considered as reference length and for the same domain
as in section 4.3, that is H∗ = 60 and 0 6 x 6 920, the time-dependent Navier–Stokes
solution has been computed for a dimensionless wall velocity

U∗⊥(x, t) = 0.1π
x

L∗
sin (k(x− 1.5t)) Ψ(x) (5.5)

with k = 2π/L∗ and L∗ = 10H∗ = 600, which corresponds to the case considered above
in (5.1). Again a buffer region is introduced through the graph Ψ(x). The inhomogeneity
in space associated with the plate motion is discarded to account for the analogy between
the theoretical formula (5.3) and the two-dimension unsteady computation, that is in the
mapping (4.11), ∂ϕ/∂x = 0 and ∂ϕ/∂t = U∗⊥(x, t).

The period of the plate motion is T = 400 and the time-dependent Navier–Stokes
integration has been performed, starting with the motionless flat plate steady state as
initial condition, for the Reynolds number Re = 200. The equivalent Reynolds number
ReL based on the plate’s length is of order 105 for which three-dimensional Navier-
Stokes computations for the undulatory geometry with finite end effects would be hardly
possible. Note that this corresponds to a typical Reynolds number for swimming fishes
with length 20− 30 cm.

After a transient time a periodic regime is retrieved and the solution has been computed
for several cycles. The plate velocity and the corresponding instantaneous skin friction
are shown in figure 16 at two instants. As expected, skin-friction enhancement as well
as skin-friction reduction (with respect to a motionless plate value), are observed along
the plate. The time-average of the skin friction < cf > has been computed for different
periodic cycles and the result is shown in figure 17. The computations for two successive
cycles almost superimpose, which confirms the periodic behaviour of this Navier–Stokes
solution. For x > 150 the mean skin friction lies above the value for the motionless plate
and a 35% increase is predicted further downstream. Integrating the shear stress along
the plate, one finds an increase with respect to the Blasius drag of roughly 20% that
confirms the scaling obtained above with a simple analytical approach based on formula
(5.3).

6. Discussion
In this paper, we have addressed how the skin friction on an object is modified when

the outer flow velocity is no longer parallel to its surface but has a normal component as
well. A classical example is the calculation of the longitudinal drag on a yawed cylinder
immersed in a uniform flow, first studied by G.I. Taylor (1952). We have shown that, in
this ideal case, the boundary layer thickness scales as

√
νs/U⊥, where s is the span and
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(a) (b)

Figure 16. (a) Periodic plate velocity U∗⊥(x, t) at t = t0 (solid line) and t = t0 + T/2 (dashed
line) and (b) corresponding skin friction along x (circles are results for a motionless flat plate).

Figure 17. Time-averaged < cf > skin friction over two successive periodic cycles (solid and
dashed lines), in comparison with the skin friction for a motionless plate (◦).

U⊥ the normal component of the outer velocity, as it was originally proposed by Taylor
(1952). In this context, a drag coefficient has been defined, and it has been calculated
to be approximately equal to C3D ≈ 1.8 for elliptic cylinders. This longitudinal drag is
intimately due to the acceleration of fluid particles as they move around the cylinder.
As such, it is inherently a three-dimensional effect. However, an analog two-dimensional
problem can be conceived if the flow is artificially accelerated along the longitudinal
direction. We have proposed such a flow, where the acceleration is achieved by a channel
of finite height, and have shown that a similar scaling can be obtained. In this two-
dimensional problem, a drag coefficient similar to the three-dimensional case can be
calculated using boundary-layer theory and we have found C2D = 2.1. These results
confirm the ‘Bone–Lighthill boundary-layer thinning hypothesis’ (Lighthill 1971) in the
ideal case of a uniform and steady problem.

These analytical results, based on the boundary-layer approximation with an outer
potential flow varying slowly in the streamwise direction, have been shown to be rela-
tively robust by comparing them with steady states solutions of the full Navier–Stokes
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equations. Transient effects, due to non-uniform acceleration of the potential outer flow
near the leading edge of the moving plate, are however underestimated by the theoretical
prediction, in particular for the larger values of the domain height, corresponding to large
spans in three-dimensions. In addition, time-dependent computations have shown that
transient effects during the upward motion against the incoming boundary-layer flow en-
hance skin-friction, in comparison with the quasi-steady state which is reached only after
some time. Generally speaking, Navier–Stokes simulations have shown that non-uniform
wall velocities and transient effects tend to slightly enhance skin-friction in comparison
with the uniform and quasi-steady case assumed in the theoretical analysis.

In an attempt to generalise these results obtained for uniform plate motions to more re-
alistic swimming motions, an undulatory plate velocity mimicking the swimming motion
of a fish has been used in the the theoretical formula and a 23% increase of skin-friction
drag has been predicted. The corresponding two-dimensional numerical simulation ex-
hibits instantaneous enhancement or reduction of the shearing stress during the undu-
lating cycle, but, on average, an enhancement of the skin-friction drag of the same order
of magnitude is observed.

In summary, the simple three-dimensional example chosen and the two-dimensional
numerical simulations have shown that one can expect a drag enhancement due to the
motion of the swimming animal. This confirms the hypothesis of ‘boundary-layer thin-
ning’ proposed by Bone and Lighthill (Lighthill 1971). In practice, this enhancement will
closely depend on the particular geometry and on the motion. In our computations the
theoretical value of skin friction increase for a model of undulatory motion is of 23 % and
the same order of magnitude is retrieved in the time-dependent two-dimensional compu-
tation. This increase is below the measurements of Anderson et al. (2001) on the scups
where they find an increase by a factor of 1.5–1.9. Even though our model predictions
are to be considered as a lower bound, skin friction increases by factors between 4 and
10, as proposed by Lighthill (1971); Alexander (1977); Webb (1975); Videler (1981) seem
however unlikely.

C. E. acknowledges support from the European Commission through a Marie Curie
fellowship (PIOF-GA-2009-252542).

Appendix A. Momentum equation
The boundary-layer equations (2.10a–c) are classically solved by using an integral form

(Schlichting 1979). To do so, the displacement and momentum thicknesses are defined
(all variables are now dimensionless and the asterisks have been dropped for simplicity)

δ1 =
∫ ∞

0

(
1− uξ

qe

)
dη, (displacement thickness) (A 1a)

δ2 =
∫ ∞

0

uξ
qe

(
1− uξ

qe

)
dη, (momentum thickness) (A 1b)

δ‖ =
∫ ∞

0

uξ
qe

(1− ux) dη. (longitudinal displacement thickness) (A 1c)

The boundary-layer equations (2.10a–c) then reduces to two equations by integration
along η:

q2e
dδ2
dξ

+ (δ1 + 2δ2) qe
dqe
dξ

= τ⊥ =
(
∂uξ
∂η

)
η=0

, (A 2a)
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d(qeδ‖)

dξ
= τ‖ =

(
∂ux
∂η

)
η=0

, (A 2b)

which are called the momentum equations.
These momentum equations can be solved by assuming a certain ansatz for uξ and

ux. Following Pohlhausen (1921), these functions are assumed to be the following fourth-
order polynomials (see also Schlichting 1979)

uξ
qe

=
(
2ζ − 2ζ3 + ζ4

)
+

Λ
6
(
ζ − 3ζ2 + 3ζ3 − ζ4

)
, (A 3a)

ux = 2χ− 2χ3 + χ4, (A 3b)

where ζ = η/δ, χ = η/δz, and Λ = δ2dqe/dξ. The dimensions δ and δz are the thicknesses
above which uξ/qe and ux are respectively equal to one. These fourth-order polynomial
are chosen such that the proper boundary conditions are satisfied in δ = δz = 0 and in
δ = 1, δz = 1.

Inserting the ansatz (A 3a,b) into (A 2a,b) allows one to solve the complete system.
Following Schlichting (1979), a good approximation of the solution can be found by
observing that Λ is solution of the fifth-order polynomial

Λ
(

1
63

(
37
5
− Λ

15
− Λ2

144

))2

≈ dqe
dξ

0.47
q6e

∫ ξ

0

q5edξ, (A 4)

which admits a unique solution provided that −12 < Λ < 12. For Λ < −12, the skin
friction τ⊥ becomes negative and this corresponds to the separation of the boundary
layer. This separation occurs for a given angle θs, beyond which the boundary layer
calculation cannot be performed. For Λ > 12, the tangential velocity in the boundary
becomes larger than in the outer potential flow (i.e. max(u/qe) > 1) and the boundary
layer can no longer be assumed steady.

Once (A 4) is solved, the ansatz (A 3a,b) can be used to integrate numerically (A 2b),
where γ(ξ) = δz/δ > 1 remains the only unknown. The longitudinal drag coefficient is
then found as

C3D =
∫ θs

−θs

τ‖dξ = 2
[
qeδ‖

]
θ=θs

. (A 5)

This calculation leads to the results of figure 3 where C3D is shown to vary very little
with b/a. Note that, for aspect ratios larger than b/a & 2.1, the present method is not
applicable because Λ takes values over 12, which means that an inflection point is present
in the profile uξ(η) and the boundary-layer flow is no longer stable.

Appendix B. Analogy with a heat transfer problem
The three-dimensional problem of a yawed cylinder in uniform flow is analogous to the

problem of heat transfer of a cylinder in crossflow, as first noted by Taylor (1952). Using
the same dimensionless variables, the only difference in the dimensionless boundary layer
equations is that (2.10b) is to be replaced by

u∗ξ
∂T ∗

∂ξ∗
+ u∗η

∂T ∗

∂η∗
=

1
Pr

∂2T ∗

∂η∗2
, (B 1)

where T ∗ = (T − Tw)/(T∞ − Tw) is the dimensionless temperature (with Tw and T∞
the temperatures on the cylinder wall and at infinity respectively), and Pr = ν/α is the
Prandtl number based on the thermal diffusivity α. With this dimensionless temperature,
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Figure 18. Equivalent drag coefficient C3D in the forced heat transfer problem, with Pr = 0.7.
The present boundary-layer calculation (labelled ‘theory’) is compared with the experiments
of Ota & Nishiyama (1984) with cylinder of aspect ratios 1/3, 1/2, 1, 2, and 3, and Reynolds
numbers Re` = 104 or 4× 104 as labelled (open symbols). The filled symbols correspond to the
experiments of Žukauskas & Žiugžda (1985) for which 104 < Re` < 105.

the boundary conditions are exactly the same as for the longitudinal velocity u∗x, i.e.
T ∗ = 0 in η∗ = 0 and T ∗ = 1 for η∗ → ∞. Therefore, for Pr = 1, the two problem are
analogous.

One can define an analogue of the drag coefficient C3D for the heat transfer problem
which satisfies

Nu =
1
π
C3D

(
b

a
,Pr

)
Re

1
2
` , (B 2)

where Nu is the average Nusselt number based on the characteristic length `, and C3D

now also depends on Pr . There is a large amount of literature devoted to the correlation
between Nu, Re`, and Pr for circular cylinder. The state-of-the-art probably corresponds
to the Churchill–Bernstein empirical equation (Churchill & Bernstein 1977)

Nu = 0.3 +
0.62Re

1
2
` Pr

1
3(

1 + (0.4/Pr)
2
3

) 1
4

(
1 +

(
Re`

282000

) 5
8
) 4

5

, (B 3)

which is valid over a wide range of Reynolds and Prandtl numbers, as long as PrRe` > 0.2.
For Pr = 1 and Reynolds numbers typical of swimming animals, 103 < Re` < 106, the
Churchill–Bernstein equation simplifies to

Nu ≈ 0.556Re
1
2
` , (B 4)

which gives C3D = 1.75, remarkably close to the calculation detailed in Appendix A that
gives C3D = 1.78 for b/a = 1.

There have been relatively few studies of forced heat transfer on elliptical cylinder.
Ota & Nishiyama (1984) and Žukauskas & Žiugžda (1985) performed experiments with
air, for which Pr = 0.7, and the results are compared with the present boundary-layer
calculation in figure 18. While there is a reasonable agreement for a circular cylinder (i.e.
b/a = 1), the variation with the ellipse aspect ratio b/a is not recovered. We do not have
any explanation for this discrepancy.
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It should be noted that Khan et al. (2005) performed a boundary-layer calculation
similar to what is presented here for b/a 6 1, and in the limit of asymptotically large
Pr . In their analysis, they find that C3D increases when b/a decreases, in agreement with
the experiments of Ota & Nishiyama (1984) and Žukauskas & Žiugžda (1985). However,
their calculation should not be valid in the regime of the experiments for which Pr = 0.7,
and the present analysis should in principle give a much more accurate result.
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