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A cylinder undergoes precession when it rotates around its axis and this axis itself
rotates around another direction. In a precessing cylinder full of fluid, a steady and
axisymmetric component of the azimuthal flow is generally present. This component is
called a zonal flow. Although zonal flows have been often observed in experiments and
numerical simulations, their origin has eluded theoretical approaches so far. Here, we
develop an asymptotic analysis to calculate the zonal flow forced in a resonant precessing
cylinder, that is when the harmonic response is dominated by a single Kelvin mode.
We find that the zonal flow originates from three different sources: (1) the nonlinear
interaction of the inviscid Kelvin mode with its viscous correction; (2) the steady and
axisymmetric response to the nonlinear interaction of the Kelvin mode with itself; and
(3) the nonlinear interactions in the end boundary layers. In a precessing cylinder,
two additional sources arise due to the equatorial Coriolis force and the forced shear
flow. However, they cancel exactly. The study thus generalises to any Kelvin mode,
forced by precession or any other mechanism. The present theoretical predictions of the
zonal flow are confirmed by comparison with numerical simulations and experimental
results. We also show numerically that the zonal flow is always retrograde in a resonant
precessing cylinder (m = 1) or when it results from resonant Kelvin modes of azimuthal
wavenumbers m = 2, 3, and presumably higher.

1. Introduction
The zonal flow denotes the steady axisymmetric flow that is generated by the nonlinear

interactions of unsteady motions in a rotating fluid. Its structure strongly depends on
the geometry, the boundary conditions and the forcing. In the present study, we provide
an analytic expression for the zonal flow obtained in a precessing cylinder at resonance,
that is when the harmonic response is dominated by a single Kelvin mode.

The flow in a precessing cylinder has been examined in an engineering context for
its interesting mixing properties (Meunier 2020) and for its importance in the stability
of gyroscopes (Stewartson 1959; Gans 1984; Lambelin et al. 2009). But most works
have been motivated by geophysical and astrophysical applications. Planets generally
rotate and interact gravitationally with neighboring stars, planets or satellites. These
interactions may lead to periodic variations of the shape, to changes in the direction of the
rotation axis, or to oscillations of the planet’s rotation rate. They correspond to harmonic
forcing with three different azimuthal wavenumbers: tide (m = 2), precession, nutation,
and latitudinal libration (m = 1), and longitudinal libration (m = 0), respectively. As
recently reviewed in Le Bars et al. (2015), these forcings can drive important flows in
the liquid core of planets. The question whether they can drive a dynamo has been the
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subject of many studies (e.g., Malkus 1968; Tilgner 2005; Wu & Roberts 2009, 2013;
Cébron & Hollerbach 2014).

The flow in a precessing spheroid has been first described by the inviscid solution of
Sloudsky (1895) and Poincaré (1910). Busse (1968) then considered the viscous torque
generated by the boundary layers to predict the slow down of the solid body rotation
(see also Hollerbach & Kerswell 1995; Kerswell 1995). This non-linear theory, which has
been validated experimentally (Noir et al. 2001; Horimoto et al. 2018; Nobili et al. 2021),
predicts a hysteresis cycle between two solutions for strong ellipticity or large tilt angles.
In these studies, the zonal flow plays a crucial role.

In parallel to these studies on spherical geometries akin to planets or satellites,
considerable efforts have been devoted to the more academic case of a precessing cylinder.
The early experiment of McEwan (1970) modelled the precessional forcing by a rotating
tilted top. McEwan (1970) showed that the flow becomes resonant when the forcing
frequency is equal to the frequency of an inertial eigenmode, known as a Kelvin mode
(Kelvin 1880). This resonance leads to a flow much larger than in the spheroidal geometry.
This was later observed experimentally for precessing cylinders (e.g., Manasseh 1992,
1994, 1996; Kobine 1995, 1996). In these early experiments, the flow was characterised
mainly based on direct visualisations, measurements of torque, energy dissipation rate,
and point-wise velocity.

At moderate Ekman numbers, Gans (1970) showed experimentally and theoretically
that the amplitude of the resonant Kelvin mode is saturated by viscosity. Indeed, Ekman
pumping damps the Kelvin mode, leading to a maximal resonant amplitude proportional
to the tilt angle divided by the square root of the Ekman number. However, at small
Ekman numbers, viscous effects can become weaker than nonlinear effects and Meunier
et al. (2008) showed that the maximal amplitude is then proportional to the tilt angle
to the power 1

3 .
At resonance, Kobine (1996) and Meunier et al. (2008) observed experimentally that

a strong zonal flow is generated by the forced Kelvin mode. This zonal flow induces
a detuning of the resonance, which saturates the amplitude of the Kelvin mode. It
was also argued that the zonal flow can destabilise the base flow through a centrifugal
instability (Kobine 1996; Giesecke et al. 2018) or a shear instability (Jiang et al. 2015).
To better understand the mechanism of saturation and these potential instabilities, it is
thus important to determine the zonal flow produced.

In both the tilted top experiments and the precessing experiments, the flow can become
unstable for tilt angles as small as few degrees. McEwan (1970) proposed that a forced
Kelvin mode can trigger a triadic resonance with two free Kelvin modes, leading to a
parametric instability. Mason & Kerswell (2002) investigated theoretically this instability
inside a plane fluid layer in the limit of weak precession. They found that the triadic
resonances indeed generate two free modes. Moreover, the triggered modes can also be
unstable and further result in a secondary instability and then a tertiary instability and
so on (Kerswell 1999). The onset of precessional turbulence, its ‘breakdown’, can thus be
interpreted in the light of interactions between Kelvin modes.

Lagrange et al. (2011, 2016) have confirmed this triadic resonance scenario through
experiments in precessing cylinders. To predict the onset of triadic resonances, Lagrange
et al. (2011, 2016) also proposed a weakly nonlinear theory, which includes viscous effects
and a heuristic model of the slow growth of a zonal flow due to the unstable modes. This
latter effect leads to a detuning of the resonant mode, which in turn damps the triadic
resonance instability (see also Herault et al. 2019), and eventually cause intermittent
cycles of growth and decay of the unstable flow. Numerical simulations recently confirmed
this weakly nonlinear dynamics (Albrecht et al. 2015, 2018; Marques & Lopez 2015; Lopez



Zonal flow in a resonant precessing cylinder 3

& Marques 2018) and have emphasised the central role played by the zonal flow in this
dynamics.

In geophysical fluid dynamics, a zonal flow is defined as an axisymmetric azimuthal
velocity. This zonal flow has also been called mean streaming flow (Albrecht et al. 2020)
since it is mostly generated by streaming through the action of Reynolds stresses (Riley
2001). It is important to note that this zonal flow may not be invariant along the
axial direction. For example, Waleffe (1989) showed that a Kelvin mode of amplitude
A generates a nonlinear flow at order |A|2 with an axial wavenumber twice as large as
the Kelvin mode wavenumber (see also Meunier et al. 2008).

The particular case of a zonal flow invariant along the axis is called a geostrophic
flow, because it is a solution of the geostrophic balance between the Coriolis force and
the pressure gradient. Greenspan (1969) proved mathematically that a geostrophic flow
cannot be generated by a nonlinear interaction of an inertial mode of amplitude A with
itself in the limit of small Ekman and Rossby numbers. However, Meunier et al. (2008)
showed that a geostrophic flow can be weakly forced by the Ekman boundary layers at
order |A|2Ek1/2 (where Ek is the Ekman number based on the radius and the angular
velocity of the cylinder). This flow is saturated by viscous damping when its amplitude
becomes an order larger in Ek−1/2 than the forcing, i.e. for an amplitude proportional
to |A|2 similar to a classical streaming flow. This mechanism makes the prediction of the
geostrophic flow quite difficult, because it implies many sources of forcing at an order
Ek1/2 smaller than the resulting azimuthal flow.

In this paper, we calculate the zonal flow forced by a Kelvin mode, by focusing on a
resonant precessing fluid cylinder at small Ekman numbers and weak precession. We first
derive the flow forced by precession in §2 and introduce the properties of the geostrophic
flow in §3. We then calculate, with an asymptotic approach, the five components of the
zonal flow in §4. The proposed theoretical solution is then compared to the numerical
results of Albrecht et al. (2020) in §5 and the experimental results of Meunier et al. (2008)
in §6. The sign of the angular momentum of the zonal flow (prograde or retrograde) is
discussed in §7. Finally, some conclusions are drawn in §8.

2. Precessing cylinder
Consider a cylinder of radius R and height H, whose axis is along ẑ (Figure 1). This

cylinder is entirely filled with a Newtonian fluid of density ρ and kinematic viscosity ν.
The cylinder rotates at angular velocity Ω0 around its axis ẑ, which also precesses at
angular velocity Ωp around the vertical axis ẑL. We denote by ϕ the tilt angle, i.e. the
angle between ẑ and ẑL.

To make the problem dimensionless, we useR, ρ andΩ = Ω0+Ωp cosϕ as characteristic
dimensions of length, density and frequency. The problem is associated to four dimen-
sionless numbers: (1) the aspect ratio, h = H/R; (2) the forcing frequency, ω = Ω0/Ω;
(3) the forcing amplitude, ε = Ωp sinϕ/Ω; and (4) the Ekman number, Ek = ν/Ω2R.
Dimensionless quantities will now be noted with lowercase letters. The dimensionless flow
velocity in the cylinder framework (O, x̂, ŷ, ẑ) is denoted by u = U/ (RΩ). We will use
the cylindrical coordinates (r, θ, z), where z = 0 corresponds to the mid-height of the
cylinder and the position vector will be noted r.

In the cylinder framework, the dimensionless Navier–Stokes equations are (Meunier
et al. 2008; Lagrange et al. 2011)

∂u

∂t
+ 2ẑ × u+ ∇p = −2ε ωr cos(ωt+ θ) ẑ − 2ε δ × u− u ·∇u+ Ek ∇2u, (2.1a)
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Figure 1. Schematic representation of a fluid-filled precessing cylinder, with radius R and
height H. The cylinder rotates at angular velocity Ω0 around ẑ, which itself also precesses at
angular velocity Ωp around the vertical axis ẑL in the laboratory frame. The precession angle
between these two axes is ϕ.

∇ · u = 0, (2.1b)

with δ = cos(ωt) x̂− sin(ωt) ŷ. On the left hand side of (2.1a), the first term is inertia,
the second term is the Coriolis force and p is a dimensionless pressure field including all
potential terms (Meunier et al. 2008). On the right hand side of (2.1a), the first term is
the forcing due to precession, the second term is the equatorial Coriolis force, the third
term is the convective nonlinear term, and the last term is the viscous force.

We will now consider the asymptotic limits of small Ekman number Ek and small
forcing ε, which is achieved when the tilt angle is small or the Poincaré number Ωp/Ω0

is small. We will seek a solution of the Navier–Stokes equations expressed as a series in
powers of these small quantities Ek and ε.

2.1. Inviscid solution
The base flow u(0) forced by precession can be found by solving the Navier-Stokes

equations (2.1a,b) at first order in ε. Following Lagrange et al. (2016), we only keep the
first term on the right hand side of (2.1). The solution u(0) is then composed of two
parts: a particular solution in the form of a horizontal shear flow and a sum of Kelvin
modes of azimuthal wavenumber m = 1, which are the solutions of the homogeneous
equation. Thus

u(0) = ε

ushear +

∞∑
j=1

Ajvj

 ei(ωt+mθ) + c.c., (2.2)

with c.c. meaning ‘complex conjugate’. In (2.2), ushear = ωz(ir̂ − θ̂)/(2 − ω) is the
horizontal shear, Aj are the amplitudes of Kelvin modes of axial wavenumber kj =
(2j − 1)π/h, and vj their associated velocity fields given by

vj =

 iu sin (kjz)
v sin (kjz)

iw cos (kjz)

 , (2.3)
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with u, v and w, real functions of r

u(r) =
−1

4− ω2

(
ωδJ ′m (δr) +

2m

r
Jm (δr)

)
, (2.4a)

v(r) =
1

4− ω2

(
2δJ ′m (δr) +

ωm

r
Jm (δr)

)
, (2.4b)

w(r) =
k

ω
Jm (δr) , (2.4c)

Jm the Bessel function of the first kind, δ = kj(4/ω
2 − 1)1/2 playing the role of a radial

wavenumber, and primes noting differentiation.
Here, we will assume that the forcing is resonant. This occurs when the forcing

frequency takes particular values, ω = ωn,j , such that u(1) = 0 for a particular Kelvin
mode. In that case, this Kelvin mode amplitude Aj is asymptotically large and the radial
wavenumber takes the value δ = δn,j = kj(4/ω

2
n,j − 1)1/2. Each resonance is associated

to a couple of strictly positive integers (n, j): n numbers the radial wavenumber δ (the
function u(r) has exactly n zeros for 0 < r 6 1), and j numbers the axial wavenumber kj
such that kj = (2j−1)π/h. In Meunier et al. (2008), we also referred to these resonances
by the phrase “j-th resonance of the n-th Kelvin mode”.

At resonance, the amplitude Aj of the resonant Kelvin mode can be calculated by
either invoking viscous effects, in which case Aj = O(Ek−1/2), or by invoking nonlinear
effects, in which case Aj = O(ε−2/3) (Meunier et al. 2008). In either case, the base flow
is dominated by this single resonant Kelvin mode of amplitude A = Aj

u(0) ≈ Av ei(ωt+mθ) + c.c., (2.5)

whose velocity field v is given by (2.3) and we have dropped the indices j for simplicity.

2.2. Viscous solution
The base flow given in (2.5) is a solution of the inviscid problem. To satisfy the viscous

boundary condition on the walls, it has to be complemented by a boundary-layer solution
confined in the wall regions of thickness O(Ek1/2). The total flow at leading order is then

u
(0)
tot. = A (v + ṽ) ei(ωt+mθ) + c.c.. (2.6)

The viscous solution ṽ can be expressed as a series in powers of Ek1/2. This viscous
solution has a non-zero axial component w̃ on the end walls at order Ek1/2, forced
through Ekman pumping (Meunier et al. 2008)

w̃(z = −h/2) = Ek1/2k2
i− 1

2
√

2ω2

(
2 + ω

(2− ω)1/2
+ i

2− ω
(2 + ω)1/2

)
Jm(δr) sin(kh/2), (2.7)

with an opposite flow on the upper wall in z = h/2.
To balance these non-zero axial flows on the end walls, the inviscid solution has to be

corrected at order Ek1/2. A simple way to achieve this correction is to write the axial
wavenumber as a series in powers of Ek1/2

k = k(0) + Ek1/2k(1) + · · · , with k(0) = (2j − 1)π/h, (2.8)

and

k(1) =
k(0)√
2ωh

(1 + i)

(
2 + ω

(2− ω)1/2
+ i

2− ω
(2 + ω)1/2

)
. (2.9)

A similar correction exists for the radial wavenumber δ since it is proportional to k.
When there is no ambiguity, we will refer to k(0) as k in the following.
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3. Geostrophic flow
The geostrophic flow v0 is an axisymmetric and steady solution of the linearised

Navier–Stokes equation. It thus satisfies the homogeneous equations

2 ẑ × v0 + ∇p0 = 0, ∇ · v0 = 0, (3.1)

whose solution is

v0 = A0v0(r) θ̂, (3.2)

where v0(r) can be any function satisfying v0(0) = 0. Note that the general solution
could also include an axial flow w0(r) independent of z, which is zero in our case because
of the boundary conditions on the end walls.

Similarly to Kelvin modes, this solution of the inviscid problem has to be complemented
by a boundary-layer solution in the regions close to the end walls. In these regions of
thickness O(Ek1/2), the total flow is given by

u0 = v0(r, z) + ṽ0(r, z̃) + c.c., with z̃ = Ek−1/2
(
z +

h

2

)
, (3.3)

for the lower wall.
Using this rescaled variable z̃ and solving the linearised Navier–Stokes equation with

the proper boundary conditions (ṽ0 = −v0(z = −h/2) for z̃ = 0 and ṽ0 → 0 for z̃ →∞),
one can write the solution as a series in powers of Ek1/2

ṽ0 = ṽ
(0)
0 + Ek1/2ṽ

(1)
0 + · · · , (3.4)

the leading order solution is

ṽ
(0)
0 (r, z̃) = −A0

2
v0(r)

 ie−(1+i)z̃ − ie−(1−i)z̃

e−(1+i)z̃ + e−(1−i)z̃

0

 . (3.5)

At next order, an axial flow is forced by Ekman pumping

w̃
(1)
0 (r, z̃) = −A0

2r

d (rv0)

dr

(
1

(1− i)
e−(1+i)z̃ +

1

(1 + i)
e−(1−i)z̃

)
, (3.6)

which means that there is an inflow of order O(Ek1/2v0) on the lower wall of velocity

w̃0(z = −h/2) = −Ek1/2A0

2r

d (rv0)

dr
, (3.7)

and, by symmetry, there is the opposite flow on the upper wall.
The important point here is that the inviscid geostrophic flow v0 is not directly

forced, since (3.1) is homogeneous. But the geostrophic mode can be indirectly forced by
symmetric inflows on the cylinder end walls (i.e. w(z = h/2) = −w(z = −h/2)). As we
shall see in the next section, non-zero symmetric inflows can be created by the precession
and the forced Kelvin mode. To cancel these inflows, opposite inflows of the form w̃0 are
needed such that w̃0(z = −h/2) = −w(z = −h/2). It means that a geostrophic flow v0

can be forced at an order Ek−1/2 higher than the non-zero inflow w(z = h/2) through
(3.7).

We will now see how non-zero symmetric inflows can be created in precessing flows by
four different mechanisms.
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4. Forcing of the geostrophic flow
4.1. Interaction between equatorial Coriolis force and the Kelvin mode

The first type of flow that forces a geostrophic flow is vk, the axisymmetric and steady
solution of the linearised Navier–Stokes equation forced by the equatorial Coriolis force,
i.e. the second term on the right-hand side of (2.1). It thus satisfies the following equations

2 ẑ × vk + ∇pk = Fk, ∇ · vk = 0, with Fk = εAd× v, (4.1)

and d = −r̂+ i θ̂. A particular solution of this forced equation gives an axial component
of velocity

wk = −i εA
1

2kr

d(rw)

dr
sin(kz). (4.2)

In order to cancel the resulting inflow on the end walls, a geostrophic flow is necessary
such that its viscous part satisfies w̃0 = −wk on the lower wall. Using (3.7), it then leads
to a geostrophic flow of order Ek−1/2 higher than vk itself, with azimuthal velocity

(u0)k = −εEk−1/2Im(A)
2w

k
sin(kh/2) θ̂, (4.3)

with sin(kh/2) = (−1)j−1, because k = (2j − 1)π/h. Note that velocities noted with the
bold letter ‘u’, like (u0)k, refer to the real component of the flow and include the complex
conjugate, contrarily to velocities denoted by a bold ‘v’, like vk for instance.

4.2. Interaction between the Kelvin mode and the shear flow
The second flow that forces a geostrophic flow is vshear, the flow forced by the nonlinear

interaction of the Kelvin mode with the shear flow. This flow is a solution of

2 ẑ × vshear + ∇pshear = Fshear, ∇ · vshear = 0, (4.4)

with
Fshear = −ε(Aushear ·∇v + Āv ·∇ushear). (4.5)

The component Fshear · θ̂ has a non-zero real part, which yields through the incom-
pressibility condition to a non-zero axial component of vshear

wshear = ε Im(A)
1

2kr

∂(rqshear)

∂r
, (4.6)

with

qshear = −w(r) sin(kz) + w(r)
2δωz

(2− ω)
√

4− ω2
cos(kz). (4.7)

At the end walls z = ±h/2, this axial flow balances exactly the axial flow wk given by
(4.2). It means that a geostrophic flow is created that cancels (u0)k

(u0)shear = − (u0)k , (4.8)

with (u0)k given by (4.3).

4.3. Interaction of the Kelvin mode with itself in the bulk
The third flow that forces a geostrophic flow is the mode v2k, the axisymmetric

and steady solution of the linearised Navier–Stokes equation forced by the nonlinear
interactions of the Kelvin mode with itself, which satisfies

2 ẑ × v2k + ∇p2k = F2k, ∇ · v2k = 0, with F2k = −|A|2 v ·∇v. (4.9)
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Note that the radial and axial components of the forcing are much larger than the
azimuthal component, which vanishes for an inviscid Kelvin mode. The azimuthal com-
ponent F2k · θ̂ is O(|A|2Ek1/2) because of the viscous correction of the Kelvin mode given
in (2.8). This azimuthal component of the forcing is treated below in §4.3.2 through the
component (u0)Ek of the geostrophic flow. We will first examine the geostrophic flow due
to the radial and axial forcing.

4.3.1. Forcing at order |A|2

At leading order |A|2, a particular solution of (4.9) has been given by Waleffe (1989)

v2k = −|A|2v2k(r) cos(kh) cos (2kz) θ̂, with v2k(r) =
k

ω

(
1

2k

d(uv)

dr
− vw

)
, (4.10)

with u, v and w the radial functions of the Kelvin mode, given in (2.4).
The velocity v2k is solution of the inviscid problem. Although this solution seems to

violate the statement of Greenspan (1969) that no geostrophic flow can be generated by
an inviscid inertial mode, in fact it does not, since v2k is a non-geostrophic zonal flow
(because of its dependence on z). The associated boundary layer solution can be found
by the same method as the one described above for the geostrophic flow in §3. It yields
an inflow on the lower wall that can be written

w̃2k(z = −h/2) = |A|2Ek1/2 1

2r

d (rv2k)

dr
. (4.11)

To cancel this inflow, a geostrophic flow is necessary that will produce the opposite
flow. This geostrophic flow is found using (3.7) and can be written

(u0)2k = 2 |A|2v2k(r) θ̂, (4.12)

Note that the sum of the flow v2k and the above geostrophic flow gives a real component
of the velocity

u2k + (u0)2k = 2 |A|2v2k(r) (1− cos(kh) cos (2kz)) θ̂, (4.13)

that cancels for z = ±h/2.

4.3.2. Forcing at order |A|2Ek1/2

At order |A|2Ek1/2, the inviscid Kelvin mode interacts nonlinearly with its viscous
correction, which can be obtained by a series expansion of k in powers of Ek1/2 given
in (2.9). This nonlinear interaction can also be viewed as the interaction between the
Kelvin mode and the flow resulting from Ekman pumping at the end walls. It yields a
non-zero azimuthal forcing F2k · θ̂ = O(|A|2Ek1/2).

Through (4.9), this forcing gives rise to a radial velocity uEk = 1
2F2k · θ̂. This radial

component induces an axial flow wEk through the incompressibility condition

wEk (z = −h/2) = |A|2Ek1/2 1

2r

d (rvEk )

dr
, with vEk (r) =

h

ω
uw Im

(
k(1)

)
, (4.14)

where k(1) is the correction to the axial wavenumber given in (2.9) and vEk is found by
integrating F2k · θ̂ between z = −h/2 and 0 (see also (5.3) below).

To cancel this flow, a geostrophic flow (u0)Ek is necessary

(u0)Ek = 2|A|2vEk (r) θ̂. (4.15)
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4.4. Interactions of the Kelvin mode with itself in the boundary layers
Last, we consider the flow ṽBL forced in the end wall boundary layers through nonlinear

interactions of the viscous Kelvin mode with itself. Without loss of generality, we consider
the lower wall boundary layer of thickness O(Ek1/2). In this boundary layer, at leading
order, the total flow v

(0)
tot. can be written as the sum of the inviscid solution and its viscous

correction

v
(0)
tot. = A sin (−kh/2)

 iutot.
vtot.

Ek1/2iwtot.

 ei(ωt+mθ), (4.16)

where utot., vtot. and wtot. are functions of r and z̃, the rescaled vertical coordinate given
by (3.3). These functions are given by (A 1a–c) in Appendix A.

Through nonlinear interaction with itself, this flow acts as a steady and axisymmetric
forcing of the linearised Navier–Stokes equations

Ek−1/2
∂p̃BL

∂z̃
ẑ + 2 ẑ × ṽBL +

∂p̃BL

∂r
r̂ − ∂2ṽBL

∂z̃2
= FBL, (4.17a)

Ek−1/2
∂w̃BL

∂z̃
+

1

r

∂ (rũBL)

∂r
= 0. (4.17b)

where the forcing term can be written as

FBL(r, z̃) = −v(0)
tot. ·∇v

(0)
tot. = |A|2

∑
i

 ai + ciz̃
ibi + idiz̃

O(Ek1/2)

 e−κiz̃, (4.18)

with the scalars κi and the functions of r, ai, bi, ci, and di, are given in Appendix A.
Equations (4.17a–b) can be solved by expanding ṽBL in a series of powers of Ek1/2

and using the boundary conditions, ṽBL = 0 for z̃ = 0 and z̃ → ∞. The solution at
relevant order is given by (A 7) in Appendix A. This solution implies a non-zero axial
flow w̃BL at order |A|2Ek1/2 on the lower end wall. To cancel this inflow, a geostrophic
flow is necessary at order |A|2 such that

(u0)BL = 2|A|2vBL(r) θ̂, (4.19)

with

vBL(r) = Re

[∑
i

aiκi + ibi(κi + 2))

κi(κi(κi + 2) + 2)
+ 2

ci(κi + 1)κ2i + idi(κi(κi + 2)2 + 2)

κ2i (κi(κi + 2) + 2)2

]
. (4.20)

4.5. Total geostrophic flow
We now have calculated the 5 components of the geostrophic flows originating from 5

different inflows at the end walls. These components of the geostrophic flow, noted (u0)k,
(u0)shear, (u0)2k, (u0)Ek and (u0)BL, are given respectively by (4.3), (4.8),(4.12), (4.15)
and (4.19). Summing them up gives the total forced geostrophic flow

u0 = (u0)k + (u0)shear + (u0)2k + (u0)Ek + (u0)BL = A0v0(r) θ̂, (4.21)

with
A0 = |A|2, v0(r) = 2v2k(r) + 2vEk (r) + 2vBL(r), (4.22)

and v2k, vEk and vBL given by (4.10), (4.14) and (4.20).
Note that the components (u0)k and (u0)shear exactly cancel each other, such that

the amplitude of the geostrophic flow is proportional to |A|2 and does not include any
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terms proportional to εAEk−1/2. Because these two terms balance exactly, the resulting
geostrophic flow does not depend on the precessional forcing anymore. The present results
are thus applicable to any Kelvin mode, independently of the way it has been forced.
In particular, as we shall see below, our calculations of the geostrophic flow is valid for
Kelvin modes of arbitrary azimuthal wavenumber m.

4.6. Weakly non-linear amplitude equations

So far, we have calculated the amplitude of the geostrophic flow A0 in the steady
regime, and we have found A0 = |A|2. Based on this calculation and following the weakly
nonlinear calculation in Meunier et al. (2008), we can easily obtain the weakly non-linear
amplitude equations describing transient regimes.

To obtain the dynamic equations for A and A0, we have to correct the term describing
non-linear interaction between the geostrophic flow and the Kelvin mode. In Meunier
et al. (2008), we did not take into account the components (u0)2k and (u0)Ek of the
geostrophic flow and there was also an error in the calculation of (u0)Ek (in particular,
the term w4z̃ appearing in (A 1c) was missing). At resonance, the dynamic amplitude
equations are then given by

dA

dt
= ε if −

(
Ek1/2µ+ Ek ν

)
A+ i

(
σ|A|2 + ξA0

)
A, (4.23a)

dA0

dt
= Ek1/2 2

h

(
|A|2 −A0

)
, (4.23b)

where the first 4 coefficients, f , µ, ν and σ, can be calculated from Meunier et al. (2008)
and are given in Table 1 for different resonances. The coefficient f corresponds to the
forcing by precession while µ and ν correspond to the Ekman and volume damping.
The coefficient σ corresponds to the non-linear coupling of the Kelvin mode with the
non-geostrophic flow v2k and with an unsteady elliptic flow noted v2ω in Meunier et al.
(2008).

The weakly nonlinear coefficient ξ, accounting for the nonlinear coupling between the
Kelvin mode and the geostrophic flow, can be calculated as follows. We first calculate
the nonlinear interaction of the Kelvin mode with the geostrophic flow: u0 ·∇v+v ·∇u0.
We then project this forcing onto the Kelvin mode using the natural Hermitian product
over the cylinder volume. The coefficient ξ is simply this Hermitian product normalised
by the norm of the Kelvin mode (which is nothing else than its kinetic energy). It can
be written ξ = X/E with

X = 2πh|A|2
∫ 1

0

(
2k

ω
uw v0 − uv

1

r

d(rv0)

dr

)
r dr, (4.24)

E the kinetic energy of the mode

E = 2πh|A|2 2k2 +m(2m− ω)

(4− ω2)ω2
Jm(δ)2, (4.25)

and v0(r) given by (4.22). The values of ξ for the first nine resonances are plotted in
figure 2. It shows that ξ scales as −h−4 for h� 1, changes sign for h = O(1) and scales
as h for h� 1.

This weakly nonlinear analysis will be used below to predict the amplitude A0 of the
geostrophic flow when nonlinear effects are not negligible.
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Table 1. Coefficients appearing in the weakly nonlinear amplitude equations (4.23) for
different resonances (n, j) and different aspect ratios h.

(n, j) h ωn,j f µ ν σ ξ

(1, 1) 1.62 1.181 0.452 1.86− 0.42i 10.78 0.13 −2.94
(1, 1) 1.8 1.088 0.467 1.80− 0.27i 10.29 −0.06 −2.31
(1, 1) 2 0.996 0.469 1.73− 0.13i 9.96 0.23 −1.84
(2, 1) 2 0.510 −0.074 1.58 + 0.11i 37.99 −10.69 0.14
(3, 1) 2 0.339 0.025 1.47 + 0.16i 85.90 −59.92 43.03
(1, 2) 2 1.774 −0.042 0.84− 0.40i 28.24 7.80 −40.97
(2, 2) 2 1.285 0.021 1.40− 0.26i 53.77 9.96 −53.06
(3, 2) 2 0.946 −0.009 1.52− 0.09i 99.28 2.54 −84.55
(1, 3) 2 1.911 −0.007 0.50− 0.32i 67.56 50.93 −255.44
(2, 3) 2 1.632 −0.006 1.05− 0.39i 92.60 66.39 −225.67
(3, 3) 2 1.339 0.004 1.34− 0.28i 137.55 61.01 −272.52

Figure 2. Value of the weakly nonlinear coefficient ξ as a function of the aspect ratio h. The
value is given for different resonances (n, j) as noted in the legend and we use the convention of
a solid line for ξ negative and a dashed line for ξ positive.

5. Comparison with numerical results
We first examine the resonance (n = 1, j = 1), which occurs when the radial velocity

u(r) of the resonant Kelvin mode has one zero for 0 < r 6 1 (this zero being in r = 1)
and when the wavenumber is k = π/h.

In order to compare our theoretical results with the numerical results of Albrecht et al.
(2020), we focus on the aspect ratio h = 1.62 for which the (1, 1) resonance is obtained
at a forcing frequency ω1,1 = 1.181 (table 1). The tilt angle is small, ϕ = 0.4◦, and
corresponds to a forcing amplitude ε = −0.00127, such that there is no instability in the
numerical simulations at Ek = 1.538× 10−4.

For these parameters, the forced Kelvin mode is mainly saturated by viscous effects
and we can neglect nonlinear terms in (4.23a). The Kelvin mode amplitude is then

A =
εif

Ek1/2µ+ Ek ν
(5.1)

where the coefficients f , µ and ν, given in table 1, correspond to A = 0.0047− 0.0221 i.
Using this value and (4.25), the total kinetic energy is found to be E = 0.0025. This
kinetic energy is approximately 30% lower than the kinetic energy found in numerical
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Figure 3. Forcing terms of the different components of the geostrophic flow. The columns are,
from left to right, the radial (a, d), azimuthal (b, e), and axial (c, f) components of the forcing
terms. The components of the forcing term Fk given in (4.1) are shown in a–c. The components
of the forcing term FNL = Fshear +F2k +FBL given in (4.5), (4.9) and (4.18) are shown in d–f.
The dashed line shows the level line for zero. The parameters are h = 1.62, Ek = 1.5 × 10−4,
ω = 1.181 and ε = −0.00127. To ease the comparison with figure 6 of Albrecht et al. (2020), we
use the same contours.

simulations by isolating the azimuthal wavenumber m = 1 (Albrecht et al. 2020).
Equation (5.1) thus underestimates the amplitude A by about 14% in this case.

5.1. Spatial structure of the forcing
In the Navier–Stokes equations, the interaction of the forced Kelvin mode with the

time-dependent precession forcing gives rise to a forcing term Fk given in (4.1). This
term is noted Cinv in the paper of Albrecht et al. (2020). The three components of Fk
along r̂, θ̂ and ẑ are plotted in figure 3a–c. They are in excellent agreement with the
numerical results of Albrecht et al. (2020) (see their figures 6d–f ). The largest component
is the θ-component, which has a unique negative lobe with a minimum value equal to
−5.4 × 10−5, while in the numerical simulations this value is approximately −6 × 10−5

(Albrecht et al. 2020). A small difference between the numerics and the theory is also
found for the axial component: the numerical results have a 20% smaller amplitude; they
exhibit small undulations of the iso-contours (probably due to inertial waves of small
amplitudes emitted from the corners); and, in the simulations, this term vanishes at the
top and the bottom because of the viscous boundary layers.

The nonlinear forcing terms can be gathered into a single forcing term FNL = Fshear +
F2k + FBL, which is noted Rinv in Albrecht et al. (2020). The three components of FNL

are plotted in figure 3d–f. The forcing FNL gathers all nonlinear interactions of the forced
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Figure 4. Azimuthal forcing terms of the different components of the geostrophic flow: (a)
Fshear · θ̂; (b) F2k · θ̂; (c) FBL · θ̂; (d) FNL · θ̂, with FNL = Fshear + F2k + FBL. Parameters are
the same as in figure 3.

flow with itself, including the Kelvin mode at order A, but also the particular shear flow
solution at a lower order O(ε), given by (2.2), and the viscous correction to the Kelvin
mode, also at a lower order O(AEk1/2), obtained by a series expansion of the wavenumber
k given in (2.9). Figure 3d–f shows an excellent agreement with the numerical results of
Albrecht et al. (2020) plotted in their figures 6g–i. The largest component of FNL is the
axial component and it exhibits a negative and a positive lobe with a maximum value of
3.6× 10−3, while it is of 5× 10−3 in the simulations. The radial component has a weak
dependence on z and the azimuthal component is of order Ek1/2 weaker than the other
components, except for FBL in the boundary layers.

The azimuthal component of the axisymmetric forcing, Faz. = F · θ̂, plays a particular
role here because it induces a geostrophic flow at an order Ek−1/2 higher than itself.
The reason is that Faz. directly forces a radial flow through the θ-projection of the
Navier–Stokes equation, uaz. = 1

2Faz., which itself forces an axial flow through the
incompressibility condition

waz.(r, z) = −
∫

1

r

∂(ruaz.)

∂r
dz. (5.2)

To cancel the z-odd part of this flow on the end walls, a geostrophic flow is necessary
such that (w̃0)az. = −waz. in z = −h/2. This axial flow then yields a geostrophic flow

(v0)az.(r) = Ek−1/2
∫ 0

−h/2
Faz. dz. (5.3)

The θ-component of the axisymmetric forcing Faz. therefore induces a geostrophic flow
at order Faz.Ek−1/2, which is found to be proportional to the z-average of Faz.. Here, we
note that this reasoning allows us to show that the non-linear interactions between two
Kelvin modes of different axial wavenumbers do not force a geostrophic flow. For instance,
consider a non-resonant Kelvin mode of real amplitude Ai = O(ε) and wavenumber ki =
(2i− 1)π/h interacting with the resonant Kelvin mode of amplitude A and wavenumber
k = (2j − 1)π/h. The non-linear interactions will yield a non-zero azimuthal forcing Faz.

with terms proportional to ε Im(A) cos(k ± ki)z. However, using (5.3), we see that this
forcing does not give rise to any geostrophic flow because the sum or difference of axial
wavenumbers, (k ± ki), will always be an integer multiple of 2π/h and will have a zero
average along z.

The azimuthal components of the different forcing terms are plotted in figures 3b,e and
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Figure 5. Mean azimuthal flow generated by different sources. (a)
Velocity (u0)k given by (4.3) and induced by the forcing Fk. (b) Velocity
(u0)shear + u2k + (u0)2k + (u0)Ek + (u0)BL = u2k + u0 − (u0)k given by (4.8), (4.13),
(4.14) and (4.19) and induced by the nonlinear forcing term FNL. (c) Total azimuthal velocity
u2k + u0 induced by all sources. Parameters are the same as in figures 3 and 4.

4a–d. It shows that Fk · θ̂ and FNL · θ̂ are both negative (except near r = 1 for FNL · θ̂),
even if the components Fshear · θ̂ and FBL · θ̂ have positive average along z.

5.2. Zonal flow
The geostrophic flow (u0)k produced in response to Fk is plotted in figure 5a. Its

azimuthal velocity is always negative with a minimum value equal to −2.2 × 10−3 in
good agreement with the minimum value of about −2.5 × 10−3 found numerically by
Albrecht et al. (2020) (see their figure 6o). However, in the numerical simulations, the
azimuthal velocity vanishes at r = 1 in order to satisfy the no-slip boundary conditions
whereas it remains negative in the present theory.

The azimuthal flow (u0)shear + u2k + (u0)2k + (u0)Ek + (u0)BL = u2k + u0 − (u0)k
in response to the nonlinear forcing term FNL is plotted in figure 5b. It exhibits two
negative lobes of azimuthal velocity with a minimal value equal to −1.6 × 10−3. This
value can be compared to the value of −2.5× 10−3 found numerically by Albrecht et al.
(2020) (their figure 6s), and the difference can be explained by the 30% difference in the
Kelvin mode kinetic energy.

Adding all responses yields the zonal flow u2k+u0 (figure 5c). It is almost everywhere
negative except near the lateral wall around the equator. The velocity distribution
is quantitatively similar to that found numerically by Albrecht et al. (2020) in their
figure 6k. We find a minimum value of −3.3 × 10−3, close to the numerical value of
−4.5× 10−3 with again a difference that can mainly be imputed to the 30% difference in
kinetic energy.

Averaging this total flow over the height of the cylinder filters out the non-geostrophic
response u2k leading to the total geostrophic flow u0. This geostrophic flow, plotted
in figure 6 as a black solid line, is in excellent agreement with the numerical result of
Albrecht et al. (2020) plotted as a black dotted line. This geostrophic flow contains several
terms, the Coriolis term (u0)k being exactly opposite to the shear term (u0)shear. Apart
from these two terms, the dominant contribution comes from the nonlinear coupling
between the inviscid Kelvin mode and its viscous correction in the bulk (u0)Ek , which is
retrograde. This flow is weakly compensated by the geostrophic adaptation (u0)2k to the
zonal flow vit2k and by the nonlinear coupling in the boundary layers (u0)BL. We note
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Figure 6. Geostrophic flow generated by different sources. The components (u0)k, (u0)shear,
(u0)2k, (u0)Ek and (u0)BL, given by (4.3), (4.8), (4.12), (4.15) and (4.19), are represented by
solid lines. They sum up to form the total geostrophic flow u0 (black solid line). The velocity is
normalized by the kinetic energy of the Kelvin mode E. The dotted black line show the numerical
results of Albrecht et al. (2020) for the same parameters (see their figure 10). Parameters are
the same as in figures 3 and 5.

Figure 7. Ratio between the kinetic energy E0 of the zonal flow u2k + u0 and the squared
kinetic energy E of the forced Kelvin mode. This ratio is plotted as a function of the aspect
ratio h for the (1, 1) resonance. The symbols correspond to the numerical results obtained by
Albrecht et al. (2020) for Ek = 2× 10−4. The solid line corresponds to the present theory.

here that (u0)2k and (u0)BL are approximately equal for the parameters chosen. This is
merely incidental.

5.3. Dependence of the zonal flow on the aspect ratio h
We have shown that, in the steady case, the geostrophic flow is proportional to |A|2.

This was also found numerically by Albrecht et al. (2020): in their figure 11c, they showed
that the ratio between the kinetic energy of the azimuthal flow E0 and the square of the
kinetic energy of the Kelvin mode E2 is nearly independent of the Ekman number and
the tilt angle. Here, we show that E0 is proportional to |A|4, while E given by (4.25) is
proportional to |A|2, which is consistent with the observation of Albrecht et al. (2020).

Although the ratio E0/E
2 is independent on the forcing amplitude ε and Ekman

number Ek , it depends on the aspect ratio h. This is because the aspect ratio influences
the resonant frequency ωn,j and the radial wavenumber δn,j . In figure 7, we compare the
quantity E0/E

2 extracted from Albrecht et al. (2020) to our prediction, when h is varied.
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Figure 8. Mean azimuthal velocity profiles of the (1, 1) resonance. Symbols are the experimental
results of Meunier et al. (2008) measured at z = h/4, while the solid lines represent the
velocity profiles predicted: |A|2v0 given by (4.22) in blue and |A|2 (v0)vol. given by (6.3) in
black. Parameters are: h = 1.8, ω = 1.088, ε = −0.0031 and three different Ekman numbers: (a)
Ek = 8.1× 10−4; (b) Ek = 2.0× 10−4; and (c) Ek = 0.81× 10−4.

The theoretical prediction is found to be in excellent agreement with these numerical
results although the theory tends to slightly underestimate the axisymmetric flow in the
limit of small and large aspect ratios. This may be due to the presence of the boundary
layers on the cylinder side walls.

6. Comparison with experimental results
We shall now compare the present theoretical predictions with the experimental results

of Meunier et al. (2008).
We start with the (1, 1) resonance. The aspect ratio is h = 1.8, giving a resonant

frequency ω1,1 = 1.088 (table 1). The tilt angle is ϕ = 2◦, which corresponds to a
forcing amplitude ε = −0.0031. The mean azimuthal velocity has been measured for
three moderate Ekman numbers at z = h/4 (figure 8). In each case, the azimuthal
velocity is negative meaning that the zonal flow is retrograde.

We first compute the amplitudes of the Kelvin mode and geostrophic flow by looking for
the fixed point (A,A0) of the weakly nonlinear amplitude equations (4.23). We then plot
the resulting geostrophic flow u0 for two cases: first we consider the profile v0 obtained
in section 4 and given by (4.22), second we take into account viscous effects onto the
geostrophic flow by proceeding as follows. We decompose v0(r) into Bessel functions of
the first kind

v0(r) =

∞∑
i=1

AiJ1(dir), such that J1(di) = 0. (6.1)

where the amplitudes Ai can be calculated as

Ai =
2

J2
0 (di)

∫ 1

0

v0(r)J1(dir) r dr. (6.2)

This decomposition is analogue to a Fourier decomposition. The di’s are the zeros of J1
ordered in ascending order. They play the role of radial wavenumbers for the geostrophic
flow and satisfy di ∼ iπ for large i.

When the geostrophic flow v0 is decomposed as in (6.1), the viscous term of the Navier–
Stokes equations, Ek ∇2u0, gives rise to an azimuthal forcing Faz. = −

∑
iAid

2
iJ1(dir),

which itself yields a geostrophic flow Ek1/2Faz.h/2 through the reasoning explained above
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Figure 9. Same as figure 8 for the (2, 1) resonance. Parameters are: h = 2, ω = 0.510,
ε = −0.0086, z = h/4 and (a) Ek = 2.66× 10−4; (b) Ek = 1.33× 10−4; and (c)

Ek = 0.66× 10−4.

in §5.1. The corrected azimuthal flow taking into account this effect is then given by

(v0)vol. (r) =

∞∑
i=1

Ai

1 + Ek1/2d2ih/2
J1(dir). (6.3)

This way to incorporate viscous effects has been first introduced in Meunier et al.
(2008). It accounts for both the side wall boundary layer and the Ekman pumping from
end walls. In the limit of small Ek , we recover at leading order the O(Ek1/4) side wall
boundary layer obtained by Wang (1970) (see appendix B). The O(Ek1/2) correction
induced by the Ekman pumping in the bulk depends however on the Bessel decomposition
(6.1) of v0. This correction is the smallest if the spectral content of v0 is mainly on
small radial wavenumbers. For the geostrophic flows plotted in figure 8, the smallest
wavenumber d1 is dominant. Viscous effects are therefore expected to be negligible as
soon as the Ekman number is asymptotically small compared to d−41 h−2 ≈ 10−3.

This is the case in figure 8c and in the numerical simulations shown in the previous
section, but not for the case of figures 8a. Note that, in the limit Ek � d−41 h−2, the flow
is generally unstable unless the tilt angle is extremely small, which is difficult to achieve
experimentally.

Comparing the experimental velocity profiles and the theoretical predictions in figure 8
shows a good agreement. Both profiles have the same bell shape with a minimum
value reached around r ≈ 0.4. The amplitude is underpredicted by 30% for the lower
Ekman number and overpredicted by a factor almost 2 for the highest value. This latter
discrepancy may be due to large nonlinear effects and an instability of the Kelvin mode.

The comparison for the (2, 1) resonance is shown in figure 9. In this case, the viscous
effects on the geostrophic flow are even more pronounced than for the (1, 1) resonance
in figure 8. This is because of the importance of the second amplitude A2 in the Bessel
series (6.1). The agreement between theory and experiment is excellent both qualitatively
and quantitatively. Both profiles are negative with two local minima: the largest one is
around r = 0.25 and the second one around r = 0.75. The amplitudes predicted by
(v0)vol. compare well with experimental results for the two largest values of the Ekman
number. For the smallest Ekman number, as for the first resonance, the discrepancy may
be due to nonlinearities or an instability.



18 D. Gao, P. Meunier, S. Le Dizès and C. Eloy

Figure 10. Angular momentumM0 of the geostrophic flow normalised by the kinetic energy of
the Kelvin mode E for a resonant precessing cylinder (m = 1). In (a), the angular momentum is
plotted as a function of the aspect ratio h for different resonances as mentioned in the legend. In
(b), the angular momentum is plotted as contours in the (k, ω)-plane. The green zone corresponds
to positive values of the angular momentum, but this zone is not accessible due to the dispersion
relation. The black lines show this dispersion relation for the first three resonances: (1, ·) thick
line; (2, ·) medium line; and (3, ·) thin line (the higher resonances have lower ω).

7. Retrograde sign of the geostrophic flow
So far, we have found that the geostrophic flow is always retrograde. This is a classical

observation in precessing flows, where precession tends to slow down the solid body
rotation (Kobine 1996; Meunier et al. 2008). Although this seems intuitive, there is no
proof of this result so far. In fact, nothing prevents precession from spinning up the solid
body rotation because the precessional motion injects energy in the system. For instance,
this is what would happen if only the nonlinear term (u0)BL was considered for the (1, 1)
resonance (figure 6).

To assess whether the zonal flow u0+u2k is always retrograde, we calculate its angular
momentum defined as

M0 = ẑ ·
∫
V

r × (u0 + u2k) dV = 2πhA0

∫ 1

0

r2v0(r) dr, (7.1)

which in fact only depends on the geostrophic component u0, the non-geostrophic part
u2k being periodic along z. In figure 10a, we see that this angular momentum (normalized
by the kinetic energy of the Kelvin mode E) is always negative for the range of aspect
ratios and resonances chosen.

The angular momentum (M0)BL due to the component (v0)BL of the geostrophic flow
is complex, but if we first focus on the components (v0)2k and (v0)Ek of the geostrophic
flow, we can show that their associated angular momenta simplify into

(M0)2k
E

= 1−mωk2 +m(mω − 2)

2k2 +m(2m− ω)
. (7.2)

(M0)Ek

E
= −hm

k
Im
(
k(1)

)
= − m√

2ω

(
2 + ω

(2− ω)1/2
+

2− ω
(2 + ω)1/2

)
, (7.3)

where E is the kinetic energy of the Kelvin mode given by (4.25). The ratio (M0)Ek/(mE)
is a function of ω only that is always negative on the interval 0 < ω < 2. With some
calculation, it can also be shown that the sum (M0)2k + (M0)Ek is always negative for
m > 1, k > 0 and 0 < ω < 2.

To show numerically that the total angular momentum is always retrograde, we use
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Figure 11. Same as figure 10 for the Kelvin modes of azimuthal wavenumber m = 2.

Figure 12. Same as figure 10 for the Kelvin modes of azimuthal wavenumber m = 0. In this
case, the ratio between the angular momentum M0 and the kinetic energy E is only a function
of ω represented in (b). It changes sign for ω ≈ 1.48.

the fact that the ratio (M0)BL/E is a function of k and ω only. Although this function
is too complex to reproduce here, it can be easily plotted. We can thus plot the total
angular momentum M0/E in the (k, ω)-plane for m = 1 (figure 10b). In this plane, we
see that the angular momentum is everywhere negative, except in a small region for small
k and 0.8 . ω < 2 (green region in figure 10b). However, this region is not reachable by
any resonance, because k and ω are linked by the dispersion relation u(1) = 0 with u
given in (2.4a). This dispersion relation is plotted as black lines in figure 10b for the first
three resonances. For higher resonances, the angular frequency continue to decrease and
moves further aways from the zone of positive angular momentum. It thus shows that
the angular momentum is always retrograde for m = 1 and 0 < ω < 2.

Although the calculations presented in this paper focused on Kelvin modes of azimuthal
wavenumber m = 1 forced by precession, they are easily generalisable to different
azimuthal wavenumbers. In figure 11, we consider the azimuthal wavenumber m = 2.
It shows again that a resonant Kelvin modes always forces a retrograde geostrophic flow.
In this case, it is even simpler because, contrarily to m = 1, there is no region of positive
angular momentum in the (k, ω)-plane.

The situation is different for the azimuthal wavenumber m = 0 (figure 12). In this
case, the sign of the angular momentum M0 is positive for ω . 1.48 and negative for
ω & 1.48 (figure 12b). It thus means that the geostrophic flow will be retrograde in the
limit of small aspect ratio but prograde in the limit of large aspect ratio (figure 12a).
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The figures 10b and 11b show numerically that the geostrophic flow is always retrograde
for azimuthal wavenumbers m = 1, 2 and for forcing frequency in the interval 0 < ω < 2.
The situation is similar for m = 3 (not shown here) and presumably for higher values
of the azimuthal wavenumber. But again, this is difficult to prove mathematically given
the complexity of (M0)BL.

Note that for negative forcing frequency (ω < 0), the geostrophic flow could be
prograde. This corresponds to the particular case of a cylinder rotating around its axis
with a frequency 0 < Ω0 < −Ωp, with Ωp < 0 the precession frequency. Usually,
experiments and numerical simulations do not consider this limit and rather focus on
proper frequencies larger than precession frequencies (|Ω0| > |Ωp|).

8. Conclusion
In this paper, we have provided an analytic expression of the zonal flow in a precessional

cylinder at resonance. In this regime, the harmonic response is dominated by a single
Kelvin mode of amplitude A, azimuthal wavenumber m = 1 and axial wavenumber k.
We have identified five contributions to the zonal flow.

The first contribution, noted (u0)k, and given by (4.3), comes from the interaction of
the Kelvin mode with the equatorial Coriolis force. The second contribution comes from
the interaction of the Kelvin mode with the axial shear (i.e. the particular solution to
the Poincaré forcing). Surprisingly, its expression is exactly opposite to (u0)k whatever
the Kelvin mode. As a consequence, these two first contributions, which are specific to
the precessing cylinder, cancel each other.

The three other contributions come from the interaction of the Kelvin mode with itself.
They are therefore not specific to the precessing cylinder and their expressions have been
provided for any k and m. The first one corresponds to the steady and axisymmetric
term u2k of amplitude |A|2 and axial wavenumber 2k, which is forced by the nonlinear
interaction of the inviscid Kelvin mode with itself. This inviscid (non-geostrophic) zonal
flow exhibits a non-zero azimuthal velocity on the end walls. It must be complemented
by a geostrophic flow (u0)2k to satisfy the no-slip boundary condition. The sum of these
two terms is given analytically in (4.13).

The second Kelvin mode source of zonal flow comes from the nonlinear interaction of
the inviscid Kelvin mode with its viscous correction in the bulk. This weak forcing of
order |A|2Ek1/2 generates an axial flow of order |A|2Ek1/2 with non-zero velocity at the
end walls. Such a flow must thus be compensated by the Ekman pumping of a geostrophic
flow, (u0)Ek , of order |A|2 given in (4.15).

Finally, the third Kelvin mode contribution to the zonal flow comes from the nonlinear
self-interaction of the flow inside the end wall boundary layers. It generates a non-zero
axial flow at the end walls, of order |A|2Ek1/2, which again must be compensated by a
geostrophic flow of order |A|2, given analytically in (4.19).

We have used these expressions to derive the coupled equations that describe the
slow dynamics of the Kelvin mode amplitude and the geostrophic flow amplitude. These
equations also provide the saturation amplitude of the Kelvin mode. The variation of the
nonlinear coefficient coming from the interaction with the zonal flow has been analysed
as a function of the cylinder aspect ratio for the first nine resonances.

The present results have been compared to the numerical simulations of Albrecht
et al. (2020) and to the experimental measurements of Meunier et al. (2008). A good
agreement has been observed, especially when the viscous correction to the zonal flow
was considered.

We have also computed the angular momentum of the zonal flow to assess whether it
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is prograde (positive angular momentum) or retrograde (negative angular momentum).
This has allowed us to show numerically that the zonal flow is always retrograde for
m = 1, 2, or 3, and presumably for larger m.

The zonal flow has been calculated for any Kelvin mode. Our results can thus be
applied to other azimuthal forcing, such as libration. This m = 0 forcing has been
studied in a cylinder by Wang (1970); Noir et al. (2010); Busse (2010); Lopez & Marques
(2011); Sauret et al. (2012). Wang (1970) provided an expression for the zonal flow
far from resonant conditions. The present work is expected to apply when a Kelvin
mode is resonantly excited. If this mode is the dominant harmonic response, the three
contributions that have been calculated here can be used to compute the zonal flow.
Contrarily to precession, we have seen that the zonal flow generated by Kelvin modes
with m = 0 is not necessarily retrograde. We have in particular shown that it becomes
prograde for large aspect ratios.

Our results should also be useful to describe the dynamics of interacting Kelvin modes.
Having a good description of the zonal flow they generate is indeed essential to predict
correctly the evolution of their amplitudes. It would therefore be interesting to revisit, in
light of the present results, the weakly nonlinear analyses that have been published on
the elliptic instability (Waleffe 1989; Mason & Kerswell 1999; Eloy et al. 2003) and on
other parametric instabilities in a cylinder (Kerswell 1999; Racz & Scott 2008; Lagrange
et al. 2011, 2016). Our calculation gives a way to estimate the geostrophic feedback. This
would certainly help to gain insight into the transition between wave turbulence and
geostrophic turbulence when the Ekman number is increased (Le Reun et al. 2019).

Our analysis has considered Kelvin modes in a cylinder but a similar approach can
be developed in a sphere. Kelvin modes are well known in this geometry (Bryan 1889;
Greenspan 1968) and they can also be resonantly excited (Aldridge & Toomre 1969).
The zonal flow that is generated by their interaction in the bulk and in the boundary
layer can be calculated by the same method. It gives us a hope to possibly predict the
complex zonal flow that has been observed in this geometry when a Kelvin mode is
resonantly excited (Morize et al. 2010). Note however that for other geometries as the
spherical shell, one would have to consider the presence of internal shear layers (Kerswell
1995; Le Dizès & Le Bars 2017) and attractors (Rieutord & Valdettaro 1997, 2018) in
the harmonic response to possibly describe the induced zonal flow (Tilgner 2007; Favier
et al. 2014; Lin & Noir 2020; Le Dizès 2020).
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ical results. Donglai Gao thanks the Chinese Science Council for financing a two-year
scholarship.
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Appendix A. Coefficients of nonlinear interactions
The functions needed to express the total velocity flow appearing in (4.16) are

utot. = u1e−κ1z̃ + u2e−κ2z̃ + u, (A 1a)

vtot. = u1e−κ1z̃ − u2e−κ2z̃ + v, (A 1b)

wtot. = w1e−κ1z̃ + w2e−κ2z̃ + w3 + w4z̃, (A 1c)

with

κ1 = (1 + i)
√

1 + ω/2, κ2 = (1− i)
√

1− ω/2. (A 2)
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and the radial functions

u1 = −(u+ v)/2, (A 3a)
u2 = −(u− v)/2, (A 3b)
w1 = ((1 +m)u1 + ru′1)/(rκ1), (A 3c)
w2 = ((1−m)u2 + ru′2/(rκ2), (A 3d)
w3 = −w1 − w2, (A 3e)
w4 = −kw, (A 3f )

where u, v and w are given in (2.4).
The scalars κi needed to compute ṽBL in (4.19) are given by (A 2) and

κ3 = κ̄1 + κ1, κ4 = κ̄2 + κ2, κ5 = κ̄1 + κ2, (A 4)

The radial functions ai and bi are given by

a1 = u1(κ1w̄3 − u′ + (m+ 2)v/r) + u(mu1/r − u′1), (A 5a)
a2 = u2(κ2w̄3 − u′ + (m− 2)v/r)− u(mu2/r + u′2), (A 5b)
a3 = u1 (κ1w̄1 + u′1 − 4κ1u

′
1/κ3 + (1 +m)u1/r) , (A 5c)

a4 = u2 (κ2w̄2 + u′2 − 4κ2u
′
2/κ4 + (1−m)u2/r) , (A 5d)

a5 = κ̄1u1w2 + κ2u2w̄1 − 2u1u2/r − u1u′2 − u′1u2, (A 5e)
b1 = −u1(κ1w̄3 + v′ + v/r) + u(u1/r + u′1), (A 5f )
b2 = u2(κ2w̄3 − v′ − v/r)− u(u2/r + u′2), (A 5g)
b3 = u1 (−κ1w̄1 + u′1 + (m+ 1)u1/r) , (A 5h)
b4 = u2 (κ2w̄2 − u′2 + (m− 1)u2/r) , (A 5i)
b5 = a5, (A 5j )

and the radial functions ci, di by

c1 = κ1u1w4; c2 = κ2u2w4; c3 = c4 = c5 = 0, (A 6a)
d1 = −κ1u1w4; d2 = κ2u2w4; d3 = d4 = d5 = 0, (A 6b)

where radial dependence is expressed through the functions ui, vi and wi given in (A 3).
The forced flow in the lower boundary layer ṽBL is expended in powers of Ek1/2 as

ṽBL = |A|2ṽ(0)
BL + |A|2Ek1/2ṽ

(1)
BL + · · · . At leading order, the solution is

ũ
(0)
BL =

5∑
i=1

(αi + α̌iz̃) e−κiz̃ − αi + iβi
2

e−(1+i)z̃ − αi − iβi
2

e−(1−i)z̃, (A 7a)

ṽ
(0)
BL =

5∑
i=1

(
βi + β̌iz̃

)
e−κiz̃ +

iαi − βi
2

e−(1+i)z̃ − iαi + βi
2

e−(1−i)z̃, (A 7b)

w̃
(0)
BL = 0, (A 7c)

where the first term in the sum correspond to the particular solution of the forced Navier-
Stokes equations and the second and third terms are solutions of the homogeneous
equations and ensure that ũ(0)BL and ṽ

(0)
BL are zero in z̃ = 0 and ∞. The functions αi,
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Figure 13. Viscous effects on the geostrophic flow v0 = r2 for different Ekman numbers (as
labelled). (a) We compare (v0)vol. (solid lines) and (v0)Wang (dotted lines) to the geostrophic
flow v0 = r2, plotted as a black line. (b) Difference in the bulk: ((v0)vol. − (v0)Wang)/Ek

1/2

versus r. (c) Difference in the boundary layer: ((v0)vol. − (v0)Wang)/Ek
1/2 versus (r− 1)/Ek1/4.

α̌i, βi and β̌i depend on r and are given by

αi =
aiκ

2
i (κ

4
i + 4)− 2ciκi(κ

4
i − 4) + i

(
2bi(κ

4
i + 4)− 8diκ

2
i

)
(κ4i + 4)2

, (A 8a)

α̌i =
−ciκ2i + 2idi

κ4i + 4
, (A 8b)

βi = −
2ai(κ

4
i + 4) + 8ciκ

2
i + i

(
biκ

2
i (κ

4
i + 4) + 2diκi(κ

4
i − 4)

)
(κ4i + 4)2

, (A 8c)

β̌i = −2ci + idiκ
2
i

κ4i + 4
. (A 8d)

At next order, the incompressibility condition yields

w̃
(1)
BL(r, z̃) = −1

r

∫ ∂
(
rũ

(0)
BL

)
∂r

dz̃, (A 9)

which can be simply derived from (A7a).

Appendix B. Viscous effects on the geostrophic flow
In this appendix, we compare (v0)vol., our viscous approximation for the geostrophic

mode given in (6.3), with the solution

(v0)Wang (r) = v0(r)
(

1− e−(1−r)/dBL

)
, with dBL = Ek1/4

√
h/2, (B 1)

obtained by Wang (1970) using a boundary layer approach.
For this comparison, we use a simple geostrophic flow v0(r) = r2. In figure 13a,

we plot both (v0)vol. and (v0)Wang for this geostrophic flow for different values of the
Ekman number. Although some differences are visible when the Ekman number is
moderately small (Ek ≈ 10−4), these differences vanish when Ek is asymptotically small.
In figure 13b and c, we demonstrate that they are O(Ek1/2) in the bulk and O(Ek1/4) in
the side wall boundary layer, respectively. We indeed see that for small Ekman numbers
((v0)vol.−(v0)Wang)/Ek1/2 becomes constant in the bulk, while ((v0)vol.−(v0)Wang)/Ek1/4
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converges close to the wall to a function of the boundary layer variable (r − 1)/Ek1/4

independent of Ek .
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