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aENSTA Paristech, Unité de Mécanique, Chemin de la Hunière, 91761 Palaiseau, France
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Abstract

When a cantilevered plate lies in an axial flow, it is known to exhibit self-
sustained oscillations once a critical flow velocity is reached. This flutter in-
stability has been investigated theoretically, numerically and experimentally by
different authors, showing that the critical velocity is always underestimated by
two-dimensional models. However, it is generally admitted that if the plate is
confined in the spanwise direction by walls, three-dimensionality of the flow is
reduced and the two-dimensional models can apply. The aim of this article is to
quantify this phenomenon by analyzing the effect of the clearance between the
plate and the side walls on the flutter instability. To do so, the pressure distri-
bution around an infinite-length plate is first solved in the Fourier space, which
allows to develop an empirical model for the pressure jump. This empirical
model is then used in real space to compute instability thresholds as a function
of the channel clearance, the plate aspect ratio and mass ratio. Our main result
shows that, as the value of the clearance is reduced, the convergence towards the
two-dimensional limit is so slow that this limit is unattainable experimentally.

Keywords: Flow-induced vibration, Cantilevered plate, Flutter instability,
Channel flow.

1. Introduction

Cantilevered plates in axial flow are known to exhibit self-sustained oscilla-
tions once a critical flow velocity is reached. This phenomenon has been the
main focus of a large amount of studies, motivated by applications in biome-
chanics (Aurégan and Depollier, 1995; Huang, 1995), paper industry (Watanabe
et al., 2002b), aerospace and nuclear engineering (Guo and Paidoussis, 2000) or
aeronautics (Kornecki et al., 1976). Plates are usually differentiated from flags
through the restoring force that maintains the structure in the flat equilibrium
position. The restoring force is due to elastic bending rigidity for plates, while
it is a tensile force induced by fluid friction and flag weight in the flag case.
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A plate of infinite span and infinite length in a potential flow has been proven
to be unstable at any non-zero flow velocity (Rayleigh, 1879). It was found since
then that taking into account the finite size of the plate (its span and/or chord)
tends to stabilize it, so that the critical velocity for flutter instability is no longer
zero but has a finite value.

Many studies have considered finite-length and infinite-span plates, which in-
volved a two-dimensional homogeneous flow around the structure, modeled as an
Euler-Bernoulli beam. Here, since the flow is considered to be two-dimensional,
independent of the spanwise coordinate, this approach is referred to as two-
dimensional. In the literature, one can distinguish two methods when solving
this problem. The first one, used by Kornecki et al. (1976), introduces circula-
tion around the plate and wake vortices so that the Kutta condition is satisfied
at the trailing edge, as done by Theodorsen (1935) in the context of airfoil flut-
ter. Huang (1995) and Watanabe et al. (2002a) used the same modeling and
provided complementary results on the linear stability of the plate. The second
approach was introduced by Guo and Paidoussis (2000) and consists in impos-
ing continuity of the pressure everywhere except across the plate. The pressure
distribution is then solved in the Fourier space, assuming that no singularity
exists at both leading and trailing edges of the plate. However, this model im-
plies an incoming “wake” regularizing the flow at the leading edge, which does
not happen in real situations. Yet, the two models give very similar results
provided the plate is long and flexible enough (Eloy et al., 2008; Michelin and
Llewellyn Smith, 2009).

Another asymptotic case can be considered when the plate span is small com-
pared to its chord. This so-called slender-body approach was first introduced by
Lighthill (1960) in his seminal paper on fish locomotion and recently applied by
Lemaitre et al. (2005) to address the flow-induced instability of slender plates
tensioned by gravity.

The flutter of cantilevered plates has been investigated experimentally by
Taneda (1968), Datta and Gottenberg (1975), Kornecki et al. (1976), Yam-
aguchi et al. (2000), Watanabe et al. (2002b) and Eloy et al. (2008). They
showed that the deflection of the plate during the self-sustained oscillations is
independent of the spanwise coordinate, validating the use of an Euler-Bernoulli
beam model for the plate deflection. However, the experimental values of crit-
ical velocity was always found to be higher than predicted by the theoretical
two-dimensional models. In the case of plates of small aspect ratio, the experi-
ments and slender-body theory have been compared by (Lemaitre et al., 2005).
The experimental critical velocity has also been found to be higher than the
theoretical one. In other words, plates in the experiments appear invariably
more stable than predicted.

Numerical simulations have been carried out to adress the instability thresh-
old in the two-dimensional case. In these simulations the plate is modeled with
an Euler-Bernoulli beam equation and the fluid is described either by the Navier-
Stokes equations (Watanabe et al., 2002a; Balint and Lucey, 2005; Howell et al.,
2009) or using vortex methods (Tang and Päıdoussis, 2007; Michelin et al., 2008;
Alben and Shelley, 2008). All these simulations recovered the instability thresh-
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old of the two-dimensional theoretical models. Additionally, these numerical
studies provided a better insight into the instability mechanism and the energy
exchange between the fluid and the flexible structure.

The discrepancy between theoretical and experimental values for the critical
velocity motivated the development of a three-dimensional model for the fluid
flow around the plate (Eloy et al., 2007, 2008). Here, the plate remained modeled
by an Euler-Bernoulli beam equation while the three-dimensional flow around
the plate was modeled using the same assumptions as in Guo and Paidoussis
(2000). This model was found to improve the prediction of critical velocities as
well as to provide a unified theory that fills the gap between two-dimensional
models and slender-body models.

Most of the works cited above have considered the flutter of a flexible plate in
an unbounded flow. Motivated by the study of snoring, some authors however
examined the effect of confinement. The two-dimensional problem of a plate
of infinite span in a channel flow has been modeled by Aurégan and Depollier
(1995) and Guo and Paidoussis (2000) and the channel flow confinement was
found to have a destabilizing effect. The limit of extremely low values of the
channel width leads to the so called leakage flow instability problem (Wu and
Kaneko, 2005). Comparatively, the channel flow confinement in the spanwise di-
rection was overlooked. In his experiments, Huang (1995) mentions a plate that
spans over the entire 6cm width of the channel with a small clearance of 2mm
on each side, in order to reduce the three-dimensionality of the flow. Aurégan
and Depollier (1995) noticed a discrepancy between their two-dimensional the-
ory and experiments, that they attributed to the clearance on the transverse
sides of the plate. To overcome this difference, they introduced in their model
an effective span 90% smaller than the real span. It is commonly admitted
that confining the flow in the spanwise direction limits the three-dimensional
effects. However, to the author’s knowledge, except the empirical correction
proposed by Aurégan and Depollier (1995), this effect has never been addressed
quantitatively.

The main objective of this paper is hence to quantify the effect of the clear-
ance between plate and channel walls on the instability thresholds. In section 2,
the problem of a finite span, finite chord plate in a finite height, infinite width
channel flow will be presented. Equations and boundary conditions satisfied by
the potential flow will be developed to obtain an Helmholtz problem for the
pressure jump in the Fourier space. This problem will be solved numerically
and theoretically in the third section and the data obtained will be used to
formulate an empirical model. In section 4, the instability thresholds will be
computed as function of the plate aspect ratio and the channel clearance using
this empirical model. Finally, the effect of the gap on the critical velocity will
be discussed in relation to experiments.
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Figure 1: Schematic view of a cantilevered plate in an axial potential flow bounded by two
rigid walls.

2. Formulation of the problem

2.1. Equation of motion

As sketched in Fig. 1, a cantilevered plate of length (or chord) L and height
(or span) H is considered. The plate is surrounded by an airflow of constant
velocity U in the X direction and bounded above and below by rigid walls at
a distance H + 2C, so that the gap between the plate and the walls is C (also
called the clearance in the text). The lateral plate deflection is noted W , and is
considered to be independent of the vertical coordinate Y , so that it is governed
by the linearized Euler-Bernoulli beam equation with an additional forcing term
due to the fluid pressure,

MWTT +DWXXXX = 〈[P ]〉, (1)

where D is the flexural rigidity of the plate, M its surface density and 〈[P ]〉
the mean value along the span H of the pressure jump across the plate (the
notation [P ] stands for P (Z = 0+) − P (Z = 0−)). Considering a finite length
L, boundary conditions will be those of a clamped-free beam, W = WX = 0 in
X = 0, and WXX = WXXX = 0 in X = L.

The following dimensionless quantities are introduced

x =
x

L
, y =

Y

L
, z =

Z

L
, w =

W

L
, t =

UT

L
, p =

P

ρU2
, (2)
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where ρ is the fluid density, so that the dimensionless equation of motion (1) is

wtt +
1

U∗2
wxxxx = M∗〈[p]〉, (3)

where U∗ and M∗ are the reduced velocity and mass ratio, defined as

U∗ =

√

M

D
LU, M∗ =

ρL

M
. (4)

With this choice of dimensionless parameters, the plate span is h = H/L, and
the gap is c = C/L.

2.2. Potential flow

Assuming a large Reynolds number, the flow around the plate is considered
to be potential. For the present linear model, this means that the vorticity is
entirely concentrated in the surface z = 0, both in the plate itself to model
the viscous boundary layers and in its wake where the vorticity is shed with
velocity U . Under these hypothesis, the perturbation pressure p(x, y, z, t) and
the perturbation potential φ(x, y, z, t) are related by the unsteady linearized
Bernoulli equation

p = −(∂t + ∂x)φ. (5)

Boundary conditions are given by the impermeability condition on the walls and
on the plate and yields a Neumann problem for the Laplace equation satisfied by
the potential φ. Applying the operator (∂t + ∂x) on these boundary conditions
gives another Neumann problem for the pertubation pressure

∆p = 0, (6)

[py]|y|=h/2+c = 0, (7)

[pz]z=0
= −(∂t + ∂x)2w for (x, y) ∈ D, (8)

where D is the plate area.

2.3. Problem in the Fourier space

To solve the set of equations (6–8), the pressure field is expressed in the
Fourier space such that

p =

∫ ∞

−∞

ψ(k, y, z)eikx dk, (9)

where ψ satisfy the following equations

(∂2
y + ∂2

z )ψ = k2ψ, (10)

[ψy]|y|=h/2+c = 0, (11)

[ψz ]z=0
= v(k) for |y| < h/2, (12)
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and v(k) is the Fourier transform of −(∂t + ∂x)2w
∫ ∞

−∞

v(k) eikx dk = −(∂t + ∂x)2w. (13)

The set of equation (10–12) defines the problem in the Fourier space. It is a two
dimensional problem where the field ψ is solution of the Helmoltz equation (10)
with Neumann boundary conditions (11–12). The problem being linear, for a
given wavenumber k, ψ is proportional to v(k) such that the average along the
span of the potential jump can always be written in the form

〈[ψ]〉 = −
2

k
g(k, h, c) v(k). (14)

The linear problem given by equations (10–12) will be solved in the next section
numerically and theoretically with the aim of evaluating the function g(k, h, c).

Taking the x-derivative of equation (9) and executing an inverse Fourier
transform yields

ψ =
1

2πik

∫ 1

0

∂xp e−ikx dx. (15)

Taking the jump across the surface z = 0 of the above equation and averaging
along the span gives

〈[ψ]〉 =
1

2πik

∫ 1

0

p′(ξ) e−ikξ dξ, (16)

where p′(x) = 〈[∂xp]〉 is the x-derivative of averaged pressure jump. Inserting
(14) and (16) into (13) and inverting the integral signs yields the following
integral equation for p′

1

2π
−

∫ 1

0

p′(ξ)G(x − ξ, h, c) dξ = (∂t + ∂x)2w, (17)

where

G(x, h, c) =

∫ ∞

0

sin(kx)

g(k, h, c)
dk, (18)

and the bar on the integral sign denotes that the Cauchy principal value should
be taken (see Mangler, 1951) as the kernel G has an inverse-power singularity
in x = 0. Solving the inverse problem (17) and integrating allows to find the
averaged pressure distribution for a given motion of the plate w(x, t).

It should be noted that the boundary condition in the Fourier space given
by equation (12) is only an approximation. Indeed, the Neumann boundary
condition given by equation (8) applies only on the plate area D and not in the
wake. Therefore, when expressed in the Fourier space, v(k) can slightly depend
on y in general. The approximation will be accurate however when the wake
behind the fluttering plate has the same properties as the flow over the plate.
This will be realized when the dimensionless frequency ω = ΩL/U is of order
unity (where Ω is the angular frequency) or in the asymptotic cases of large and
small aspect ratios.
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Figure 2: Schematic representation of the problem in the Fourier space.

3. Pressure jump in the Fourier space

In the Fourier space, rescaling all lengths by h/2, the rescaled perturbation
potential satisfies the following system

∆ϕ = κ2ϕ, (19)

[ϕy]|y|=1+d = 0, (20)

[ϕz ]z=0
= 1, for |y| < 1, (21)

where κ = kh/2, d = 2c/h and ϕ = 2ψ/hv(k). The first equation is the Helmoltz
equation (the ∆ is the Laplace operator in two-dimensions here), and the two
others are the boundary conditions on the plate and on the walls. This problem
is sketched in Fig. 2.

The goal of this section is to determine the function g now defined as

g(κ, d) = −
κ

2
〈[ϕ]〉 = −κ〈ϕ+〉. (22)

where ϕ+ is a shortcut for ϕ(z = 0+).
Before solving these equations in the general case, let us recall the results in

the two-dimensional and slender-body limit cases when the clearance is infinite.
The slender-body limit corresponds to κ ≪ 1 and can be deduced from the
results of Lighthill (1960)

ϕ+ ≃ −
√

1 − y2, for |y| < 1 and κ≪ 1. (23)

The two-dimensional limit corresponds to κ ≫ 1. In this situation, the pres-
sure potential is independent of the spanwise coordinate and the resolution of
equations (19-21) yields

ϕ+ ≃ −
1

κ
, for |y| < 1 and κ≫ 1. (24)

3.1. Numerical calculation

Numerical resolution of the Helmoltz problem defined by equations (19–
21) is now presented. First of all, the problem has to be of finite size to allow
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Figure 3: Equations and boundary conditions of the equivalent numerical problem after con-
sidering symmetry properties of the original problem.

implementation of a finite element method in the two-dimensional fluid domain.
A second gap e in the lateral direction z is hence introduced. The gap e has to
be large enough to ensure that the problem solved numerically is equivalent to
that of a plate in an infinite width channel. In practice, the value of e = 30 was
used in the numerical computations presented in the following. This assured
that the pressure distribution converged to that of an infinite domain in the z
direction at all the explored values of κ and d.

Next, two symmetry properties of the problem may be considered to simplify
its numerical resolution. Indeed, the problem, through its boundary conditions,
is symmetric with respect to the Oz-axis, and skew-symmetric with respect to
the Oy-axis. Due to the inviscid nature of the fluid, the problem is reduced to
y ≥ 0 and z ≥ 0 as sketched in Fig. 3b. The relevant boundary conditions
appear on the figure.

The numerical resolution of this classical Helmoltz problem has been done
with the help of the COMSOL software. The explored values of d and κ where
in the range [10−4, 5] and [10−4, 30] respectively.

Four typical results for the pressure potential ϕ are presented in Fig. 4. On
this figure, color levels of the quantity −κϕ are plotted in the fluid domain (fig-
ures above), and its value at z = 0 is plotted on the graphs below, as function
of y, so that the area below this curve corresponds to the function g defined
in equation (22). The behavior of −κϕ+ predicted by the slender-body and
two-dimensional models are also plotted. One can make some preliminary ob-
servations from these four typical cases. Indeed, comparing cases (a) and (b)
shows that increasing κ has for consequence to approach the two-dimensional
limit. Comparison of cases (b) and (c) shows that decreasing d towards zero has
the same effect. It appears however that even for a value of d as small as 10−4,
the numerical result differs significantly from the two-dimensional limit, when
κ = 1. Finally, difference between cases (b) and (d) illustrates the fact that
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Figure 4: Filled contours representing levels of −κϕ in the (y, z) space (above) and corre-
sponding values at z = 0+ plotted as function of y (below, bold lines), for four typical sets
of parameters κ and d; (a), κ = 5 and d = 0.3; (b), κ = 1 and d = 0.3; (c), κ = 1 and
d = 10−4; (d), κ = 0.1 and d = 0.3. Dashed lines and dashed-dotted lines indicates value of
−κϕ+ predicted by the slender-body and two-dimensional theories respectively [see equations
(23) and (24)]. The values have been multiplied by 8 in the color plot of case (d) in order to
improve the visibility.
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Figure 5: Value of g = −κ〈ϕ+〉 as function of d for different values of the non-dimensional
wavenumber κ. The values that have been effectively computed are given by marks. Horizontal
segments indicates the value of g in the slender body limit. This limit correctly approximates
the behavior of g for small values of κ (. 0.1).

decreasing κ has for consequence to approach the slender-body limit. These
observations will be addressed more quantitatively in the following.

The value of g resulting from systematic numerical computations is now
plotted in Fig. 5 as a function of the gap d for different values of the wavenumber
κ between 10−3 and 1. Although accessible, higher values of κ have not been
explored numerically because it requires strong mesh refinements. This limit
will be addressed in the next section with an analytical approach. The values
predicted by the slender-body theory are also plotted in Fig. 5 for comparison.
The asymptotic limit for large d is recovered by the slender-body theory when
κ is small enough, say κ < 0.3.

We are now looking for an empirical model describing the value of g for small
κ and any value of the clearance d. In Fig. 6, the value of 4g/πκ− 1 is plotted
against d and shows that all points gather on a single curve when κ is smaller
than 0.1. This means that g is of the form

gSB(κ, d) =
κπ

4fSB(d)
, for κ≪ 1, (25)
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Figure 6: Value of 4g/πκ− 1 as function of d with a log-linear scale, for different values of the
non-dimensional wavenumber κ. Dashed line corresponds to the best linear fit of the dataset
when κ ≤ 0.1. Solid line is the approximation for g given by equation (25).
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Figure 7: Schematic representation of the equivalent problem in the Fourier space using the
mirror symmetry.

where fSB can be determined by fitting the numerical results

fSB(d) ≈

[

1 + 0.805 ln

(

d+ 0.189

d

)]−1

. (26)

Equation (25) describes the extension of the slender-body theory to account for
the presence of the walls. It is valid for any value of the clearance d as long as κ
is small enough (κ < 0.1), that is when the wavelength of the deflection is large
compared to the plate span.

3.2. Theoretical calculation

As illustrated in Fig. 7, the Helmotlz problem of a plate moving at constant
velocity between two boundaries given by equations (19-21) can be transformed
by replacing the walls by mirror symmetry planes. The equivalent problem is
thus an infinite number of similar plates separated by a distance 2d all moving
at the same constant velocity v.

Using the Green’s representation theorem, the perturbation potential satis-
fies

ϕ(y, z) =

∫

Sp

[ϕ](η) [∂ζH(y, z, η, ζ)]ζ=0
dη, (27)

where Sp is the plate surfaces, [ϕ] is the potential jump across the plate (i.e.
[ϕ](y) = ϕ(y, 0+)−ϕ(y, 0−) and H is the Green function of the Helmoltz equa-
tion in two dimensions

H(y, z, η, ζ) =
1

2π
K0

(

κ
√

(y − η)2 + (z − ζ)2
)

, (28)

with Kν the modified Bessel function of the second kind.
Differentiating equation (27) with respect to z and taking the limit z = 0

yields

[ϕz ]z=0
= ×

∫

Sp

[ϕ](η)F (|y − η|)dη = 1, for |y| < 1, (29)

where the cross on the integral sign stands for the integration in the finite part
sense (Hadamard, 1932; Mangler, 1951) and the kernel is

F (y) =
κK1(κy)

2πy
. (30)

12



Here the integration is not defined in the usual sense because the kernel F (y)
behaves like 1/(2πy2) in the limit of small y.

The inverse problem (29) can be solved numerically for a given value of
the wavenumber κ. To do that, the potential jump [ϕ] is expanded on even
Chebyshev polynomials of the second kind such that

[ϕ](y) =
√

1 − y2

∞
∑

i=1

AiU2i−2(y), (31)

where the prefactor
√

1 − y2 ensures the correct behavior as |y| → 1. Inserting
the expansion (31) into equation (29) and evaluating the discrete scalar product
with the Chebyshev polynomials of the first kind Tj(y) leads to a linear system
for the vector (Ai) which can be solved numerically. The averaged potential
jump along the plate span is then given by 〈[ϕ]〉y = −πA1/2 and therefore the
function g is

g(κ, d) =
πκ

4
A1(κ, d). (32)

The theoretical method described here to calculate the averaged potential
jump 〈[ϕ]〉 is complementary to the numerical method described above. It allows
to carry out the calculation in the limit of large wavenumber κ and small gap d
with the product κd asymptotically small. When κ is small however, the number
of plate replicas needed to obtain an accurate calculation of the potential varies
as 1/κ. The present theoretical method is therefore not pertinent in this limit.

Examples of such calculations are given in Fig. 8 where the averaged poten-
tial jump is given as a function of the gap d for different wavenumbers κ. For
large clearance d, the large span approximation obtained by Eloy et al. (2007)
is recovered

g(κ, d) ≃ 1 −
1

2κ
, for d≫ 1, κ≫ 1. (33)

Let us now estimate the function of g in the limit large κ for any value of d.
In Fig. 9, (1− g/2κ) is plotted as a function of κd with a logarithmic scale. All
the points gather on a single curve showing that, in the large-span limit, g is of
the form

gLS(κ, d) ≃ 1 −
f(κd)

2κ
, for κ≫ 1. (34)

where f(κd) behaves as a power law for small values of κd. An empirical eval-
uation of this function can be found by fitting the results and yields

f(x) ≈

(

1 +
0.18

x2

)−0.075

. (35)

The equation (34), where f is given by (35), will be referred to as the large
span approximation for g(κ, d), valid for any value of the clearance d and large
value of the wavenumber κ, that is when the deflection wavelength is small
compared to the plate span.
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Figure 8: Function g as a function of the gap d for different values of the wavenumber κ. The
horizontal lines correspond to the limit d ≫ 1 and the segments between symbols are just
guides for the eye.
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Figure 10: Complete dataset of the numerical and theoretical values of the averaged pressure
jump g, plotted as function of the empirical model ge given by equation (36); (*), numerical
data; (o), theoretical data.

3.3. Empirical model for the pressure jump

In sections 3.1 and 3.2 we have derived empirical models for the function
g(κ, d), valid for small and large values of κ respectively. A good approximation
for all values of κ can be obtained from a composite extension of these two
empirical models,

ge(κ, d) = 1 −

[

1

1 − gLS
+ exp

(

gSB −
1

1 − gLS

)]−1

, (36)

where the functions gSB and gLS are given by the equations (25) and (34)
respectively.

To assess the validity of the above approximation for g, the entire dataset of
numerical and theoretical values of the pressure jump g is plotted as a function
of ge in Fig. 10. All symbols lie on the line g = ge, indicating that the empir-
ical model given by equation (36) correctly predicts the pressure jump with a
maximum error of 8% at any value of κ and d.

To solve the problem in the real space, the Fourier transform of 1/ge is now
evaluated to obtain the kernel G given by equation (18). It yields

G(x, h, c) ≈
1

x
+ sgn(x)

[

π

2

fLS (|x|/c)

h+ 2|x|
+

(

4

h
−

4

h+ 2|x|

)

fSB(2c/h)

]

, (37)
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where the function fSB is given by equation (26) and

fLS(x) ≈ (1 + 0.5x)−0.16 . (38)

The functions fSB and fLS describe in the slender-body and large-span limit the
effect of channel confinement. For an asymptotically large channel (i.e. c≫ 1),
these functions are equal to one and the kernel G(x, h, c) found in Eloy et al.
(2007, 2008) is recovered. On the other hand, when the clearance c goes to zero,
these two functions decrease and therefore the kernel G tends to 1/x which is
the two-dimensional limit.

4. Stability analysis

4.1. Galerkin decomposition

Similarly to what was done by Eloy et al. (2007, 2008), the stability analysis
is performed by assuming a complex frequency ω, and decomposing the plate
deformation on Galerkin modes

w(x, t) = eiωt
∑

i

aiwi(x), (39)

where the spatial Galerkin modes wi(x) are the eigenmodes of a clamped-free
beam in vacuo in order to satisfy the boundary conditions in x = 0 and x = 1.

Inserting the decomposition (39) into equation of motion (3) and executing
scalar products with the modes wj(x) yields a linear problem for the unknown
amplitude vector {ai}. This eigenvalue problem admits a non trivial solution
only if the determinant of the linear operator is zero which is achieved for discrete
values of the complex frequency {ωi}. The real part of these frequency gives
the angular frequency of the oscillations and its imaginary part gives the mode
growth rate σ = −ℑ(ω). For a given eigenmode, the growth rate is a function of
the dimensionless parameters of the problem: the reduced velocity U∗, the mass
ration M∗, the aspect ratio h and the dimensionless clearance c. The aim of the
stability analysis is to find, for a given set of parameters (M∗, h, c), the critical
value of the reduced velocity U∗

c(M
∗, h, c) above which at least one mode is

unstable (i.e. has a positive growth rate σ).

4.2. Solution for the pressure

The solution for the inverse problem (17) is sought for a given Galerkin mode
wi

1

2π
−

∫ 1

0

p′i(ξ)G(x − ξ, h, c) dξ = (iω + dx)
2
wi, (40)

where G is given by (37), by expanding p′i on Chebyshev polynomials such that

p′i(x) =

∞
∑

j=1

Aij
Tj(2x− 1)
√

x(1 − x)
, (41)
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Figure 11: Critical velocity as a function of the aspect ratio h for a mass ratio M∗ = 0.5. The
different symbols correspond to different gaps: c = ∞ (circle), c = 1 (star), c = 10−2 (crosse),
c = 10−4 (plus); and the dashed line corresponds to the two-dimensional limit h = ∞.

thus assuming an inverse square-root singularity at the leading and trailing edge
for p′i. In this expansion, Tj are the Chebyshev polynomials of the first kind.

Inserting (41) into equation (40) and applying a scalar product with the
Chebyshev polynomials of the second kind Uk(2x− 1) leads to a linear problem
forAij which is solved numerically for given values of the geometrical parameters
h and c. The averaged pressure jump 〈[pi]〉 is then found by integrating p′i given
by equation (41). This leads to no singularity on the leading and trailing edges
(as the averaged pressure jump goes as x1/2). As it has been discussed in Eloy
et al. (2008), it is not physically correct as one expects the pressure jump to
have an inverse square-root singularity at the leading edge. However, it has been
shown in the same paper that taking into account this leaging-edge singularity
do not modify greatly the stability characteristics as the leading edge is clamped
and the pressure forces do not work at this position.

In practice, 15 Galerkin modes and 20 Chebyshev polynomials have been
used in the following computations.

4.3. Results

Now that the average pressure jump 〈[pi]〉 for a given Galerkin mode wi can
be found by inverting the problem (40), we are able to compute the eigenmodes
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Figure 12: Critical velocity as a function of the mass ratio M∗ for an aspect ratio h = 1.
The different thicknesses correspond to different gaps: c = ∞ (thick), c = 10−2 (medium),
c = 10−4 (thin); and the dashed line corresponds to the two-dimensional limit h = ∞.

of the equation of motion (3) and their complex eigenfrequecies ω. Looking at
the imaginary part of the eigenfrequencies, the critical velocity U∗

c can also be
computed as a function of the dimensionless parametersM∗, h and c. Examples
of such calculations are showed in Figs. 11 and 12 where the critical velocity is
first plotted as a function of the aspect ratio for a fixed mass ratio, and then
as a function of the mass ratio for a given aspect ratio. Each time, the critical
velocity is computed for different values of the clearance c.

Figures 11 and 12 show the effect of confinement on the flutter instability.
The first thing to notice is that the characteristics of the instability are not
modified qualitatively by the presence of the walls. As expected, the thresh-
old converges smoothly towards the two-dimensional limit as the clearance is
reduced. It also appears that when the clearance c is larger than 1, the critical
velocity is the same as in the case of an open flow (c≫ 1). When c is reduced,
the critical velocity always lies between the open-flow and two-dimensional lim-
its and converges very slowly towards the two-dimensional limit.

For a relatively small mass ratio (M∗ = 0.5), Fig. 11 show the effect of the
aspect ratio on the instability. As it has already been discussed in Eloy et al.
(2008) for an open flow (c ≫ 1), if all the other parameters are kept constant,
the smaller the span is, the more stable is the system. This assertion holds
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also when the plate is confined between two walls and the clearance c is kept
constant.

For a square plate (h = 1), Fig. 12 show the influence of the mass ratio on
the instability threshold. This stability diagram exhibits several lobes corre-
sponding to different eigenmodes. For M∗ . 1.5, the second mode is the most
unstable (assuming that the modes are ordered with increasing frequency). Note
that, classically, the first mode is always stable for these clamped-free boundary
conditions (see Päıdoussis, 2004, for instance). For 1.5 . M∗ . 6, the third
eigenmode is the most unstable, and so on. The effect of confinement does not
modify this picture significantly. Figure 12 also show that for large mass ratios,
all the curves converge towards U∗

c ≈ 10, for all values of the clearance. This is
due to the fact that the number of mode wavelengths along the plate chord in-
creases as M∗ increases. The dimensionless wavenumber κ introduced in section
3 thus increases and the pressure jump converges towards its two-dimensional
limit.

5. Discussion

In this article, the effect of channel clearance on the flow-induced instability
of a cantilevered flat plate has been addressed. Numerical and theoretical cal-
culations were performed to obtain the pressure distribution around the plate
in the Fourier space as function of the various parameters. Using these numer-
ical and theoretical data, an empirical model for the pressure jump has been
derived. This model allowed to compute the eigenfrequencies of the coupled
flow-structure problem. Critical velocities for the flutter instability as a func-
tion of the different parameters of the problem have then been computed. As
expected, when the clearance is reduced to zero, the critical velocity was found
to approach the limit predicted by a two-dimensional model. However, this limit
was found to be reached only for very small values of the clearance. Indeed for
a value as small as c = 10−4, a large discrepancy between the two-dimensional
model and our empirical model persists. The mass ratio effect has also been
investigated, and it has been observed that the influence of the rigid walls is
more pronounced for relatively heavy and rigid plates (i.e. M∗ < 1).

These results raise the following question: for heavy and rigid plates, is the
comparison between two-dimensional models and experiments relevant ? In-
deed, the value of the clearance would have to be far smaller than 10−4, which
is unattainable experimentally. Among the works that investigated experimen-
tally the flutter of plates in channel flow, the values of the clearance can be
estimated to be O(1) (Yamaguchi et al., 2000) or O(10−2) (Huang, 1995). Our
results indicate that the flow in these experimental studies cannot be consid-
ered two-dimensional to correctly predict critical velocities for such values of
the clearance. In the work of Aurégan and Depollier (1995), the clearance has
a value of approximately 10−2 (Aurégan, 2010), and the same recommenda-
tion should apply. But here, the channel confinement in the Y -direction is also
important, which effect can be roughly estimated as an increase of the mass
ratio M∗. The present article shows that this has for consequence to reduce the
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influence of the channel clearance. A two-dimensional model has hence more
chances to give satisfying results in this case. Regarding the experimental work
of Watanabe et al. (2002b), our model is probably not applicable in this case
because the authors observed three-dimensional deformations of the paper sheet
when small clearance values of order 10−2 were attained. This is not compatible
with our one-dimensional deformation hypothesis. In conclusion, the only cases
where a two-dimensional approximation is pertinent are the very long and/or
very flexible plates (i.e. M∗ ≫ 1) or the soap film experiments such as the
experimental work of Zhang et al. (2000).

These observations indicates that an experimental work focusing on the ef-
fect of channel clearance would be necessary to complement the theoretical
results of the present article. Also, extending our model to take into account
the confinement in the transverse direction would bring some insight into the
instability phenomenon, and would fill the gap between the flag-type problem
and the snoring or leakage flow problems.
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