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Abstract. We study the influence of solid friction on the structure of the force network

sustaining a regular bidimensional granular piling. We show how the mechanical equations
describing local equilibrium may couple naturally with a stochastic variable. A Monte Carlo

method is designed to extract the force networks satisfying static equilibrium conditions. A

statistical ensemble is constructed and we study some of its structural and stochastic properties.
We address, in particular, the question of the vertical load transfer in two different cases i,e.

the response to a
localized force excess at the top of an horizontal piling and the distribution of

forces under a sand pile. Using this very simple mechanical model, we test the validity of the

passage to various stochastic descriptions as well as the existence of macroscopic constitutive

relations. We also address the question of the influence of a local friction bias on the macroscopic

static equilibrium conditions.

1. Introduction

The static mechanical properties of an assembly of non cohesive grains is a
long standing diffi-

cult problem. Since the pioneering experimental work of Dantu [1] (see also [2]), who visualized

large fluctuations and long range disordered structures of the force network, it has been recog-
nized that the passage to a continuous medium description would be an arduous task. More

recently, numerical simulations based on various algorithmic principles [3-7] have evidenced the

highly disordered character of the contact force distribution. Recent theoretical works have

proposed, on the base of phenomenology and symmetry properties, new sets of continuous

media equations describing transport of contact forces between the grains. These approaches
introduce, in a simple way, relevant granular features such as the directional propagation of

forces and also the existence of arches whenever a boundary is considered [8-10]; they come

as an alternative viewpoint to the standard way to close the mechanical equation in the static
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or quasi static situations, usually based on the assumption of local incipient failure [11]. But

so far, no explicit connection to fluctuating properties has been made. On the other hand,

an original point of view is proposed by Liu et al. [12j (see also Coppersmith et al. [13j) as-

suming a simple but suggestive stochastic representation of the force redistribution from one

layer of grains to the other. This model was designed to explain experimental measurements

on the vertical force distribution at the bottom of a three-dimensional container filled with

grains. Following this work, numerous stochastic models have been proposed in order to ren-

der the disordered character of the force propagation problem in a granular assembly [14,15j.
The problem is still the validation of these models on the basic point of view of mechanical

equations. Here,
we present some results obtained on the force distribution of regular, bidi-

mensional, arrays of grains. A fundamental aspect is the presence of static friction between

the grains which renders the problem multi-valued in the sense of the Coulomb representation
of solid contacts. This is a direct consequence of the Coulomb inequalities describing static

equilibrium. We purposely do not enter in a more refined description of the contact status

that could be based, for example, on a microscopic modelization of the real surfaces in contact

which is a difficult issue indeed (see for example [16,17j). This is the reason why we stay in

the frame work of the macroscopic Coulomb modelization. We use a
Monte Carlo method to

remove the solution degeneracies and we extract sets of exact solutions for the forces distri-

bution. Therefore, a statistical study of the force networks is possible and a bridge towards

a stochastic approach is discussed on rational mechanical grounds [18j. In this context, we

investigate the statistical properties of the force network, the response to a local force excess

and the problem of the stress distribution below a sand pile. We also address the question of

constitutive relations relating the stress tensor components.

2. Description of the Model

The piling we consider here is made of a mono-disperse and bidimensional array of hard cylin-
ders with a size and weight unity, piled in a triangular compact fashion (bidimensional

cannon

ball piling). This system would be close to the experimental set-up investigated by Travers

et al. [2j for regular cylinders. The contact is assumed to be at a constant angle 6
=

60° (see
Fig. 1a) thus, each bead receives two forces of contact from the upper layer and distributes

two contact forces to the layer downwards (See Fig. 1b). In this model, we explicitly neglect
the presence of active contacts between beads at the same depth, this situation would be con-

sistent with an angle of contact 6 slightly below 60°. Each locus of arriving and departing
forces is called a vertex. In this case, the structure of each vertex is quite simple but it is easy

to imagine that this notion might be generalized according to general disordered geometrical
properties of a granular contact network [19j. The contact forces are constrained by the solid

friction properties of the material captured in a static coefficient p defined in the Coulomb

sense.

The force system acting on one bead is represented in Figures 1b, c. The upper cases letters

stand for the forces upwards and the lower case letters stand for the forces downwards. The

system of equations describing static equilibrium of the central bead is:

(-Ni N2 + ni + n2 sine + (Ti T2 ti + t2) cos 6
=

1

(-Ni+N2+ni-n2)cos6+(-Ti-T2+ti+t2)sins=0 (1)

Ti+T2+ti+t2~0.

Note that
we consider here not only equilibrium for the two degrees of translation but also

explicitly the local rotational degree of freedom. This is usually expressed in the standard
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Fig. 1. Description of the force model. a) Sketch of the piling structure. b) Contact forces, the

arrows indicates the local positive axes. c) Horizontal and vertical charges.

mechanical equations of continuum media, at a coarsed grained level, via the symmetry of

the stress tensor (ja~zj
=

jaz~j). This condition, though necessary, might not be sufficient to

provide a relevant description of static equilibrium for a granular assembly which is notoriously
discontinuous at the granular level.

Now, we express the vertical and horizontal charges as a function of normal and tangential
contact forces. We have:

qi ~ ni sine ti cos 6 vertical force transmitted on bead 1 down,

q2 ~ n2 sine + t2 cos 6 vertical force transmitted on bead 2 down,

si = ni cos 6 + ti sine horizontal force transmitted on bead 1 down,

s2 = -n2 cos6 + t2 sine horizontal force transmitted on bead 2 down,

for the beads upwards, identical relations hold with upper case letters.

The core of the statistical model of Liu et al. [12j is that each grain redistributes between the

two neighbors downwards, the total amount of charge it has received from the layer just above.

We show to which extend this redistribution can be described in a simple stochastic fashion.

A fundamental quantity to monitor is the total vertical charge C received by the central bead

(see Fig. 1c). The charges received from the top beads 1 and 2 are respectively Qi and Q2 and

the charges transmitted on the beads 1 and 2 downwards are qi and q2 respectively. We have:

C=Qi+Q2+1=qi+q2. (2)

Here,
we assume the presence of gravity with a value of single bead weight taken as unity.

Another quantity is the horizontal charge Z, i.e. the projection of the contact forces received

from the top beads on the horizontal direction, respectively Si and 52. These forces are

transmitted on the beads downwards, respectively si and s2 and we have:

Z=Si+52=si+s2. (3)
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Therefore, in the horizontal and vertical charges representation, the equation system (1) yields
the following set of three equations and four unknowns (qi,q2, si, s2)1

81+82
~

Sl+52

~l + ~2 ~
Ql + Q2 + 1 (4)

~l ~2 (81 + 52) tan 6
#

Q2 Ql + (Sl + 52) tan 6.

From this system of equations, it appears that a natural choice for
a

free parameter would be

p = si s2, and provided this parameterization, qi, q2, si and s2 are perfectly determined by
the equation set:

~~ ~~ ~ ~ ~~~ ~ ~~~ ~ ~~~

q2 ~
Qi + tan 6 (Si + 52)

2

~~
~

~~~ ~ ~~ ~ ~~ ~~

~~ ~~~~~~~ ~'~'

From the two first equations, it appears that the values of qi and q2 depend explicitly on the

known values of Qi, Q2, Si, 52 land not on the arbitrary choice of p). Moreover, the choice

of the parameter p for each contact vertex cannot be made at random. It is limited by two

physical constraints. The first is due to the unilaterality of contact force, I.e. ni > 0 and

n2 > 0. Second is the constraint for the contact forces to be contained within the Coulomb

angle in order to define a static mechanical problem, i.e. it < pni and jt2) < pn2.
The unilaterality conditions yield:

In the case where the friction coefficient p < tan 6
,

the statisticity conditions are for the

contact1:

((1 + 2 tan~ 6)p + tan 6) (Si + 52) + 2 iv tan 6 + 1) Q2 + p tan 6 + 1
ti < vni ~ P <

~~~ ~ ~

(7)

(- ji + 2 tan~ e)p + tan e) (si + s2) + 2 1-IL tan 6 + ~) Q2 l~ ~~~ ~ ~ ~
ii > -pm ~ P >

tan e + p

and for the contact 2:

((1 + 2 tan2 6)p + tan 6) (Si + 52) + 2 iv tan 6 + 1) Qi + p tan 6 + 1
~~ ~ ~~~ ~ ~ ~

tan 6 p

18)

((1 + 2 tan~ 6)p tan 6) (Si + 52) + 2 (-p tans + 1) Qi v tan 6 + 1
t2 < pn2 ~ p >

~an +lL

Any set of contact forces which satisfies conditions of equation (5) provided the inequalities of

equations (6, 7, 8), defines a set of mechanically acceptable solutions for a vertex parametrized

by P.
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Fig. 2. Representation of the horizontal and vertical charge transmission in the q-s space. The

inset displays the geometrical configuration. a) sketches a low friction situation and b) sketches a high
friction configuration.

Note that this set may be empty for some values of Qi, Q2, Si, 52, meaning that inequations
(6, 7, 8) cannot be satisfied simultaneously. A mechanically acceptable solution has a simple
geometrical representation captured in Figure 2. In this picture, we display the contact forces

for beads 1 and 2 below (see inset) in the (q, s) space. The choice of si and s2, given qi and

q2 (defined exactly by Eq. (5)) is made within the Coulomb cone and thus yields a choice

confined to a bounded interval. In the inequalities (7, 8), appears a term tan 6 p which

diverges when p gets closer to tan 6. Figure 2b'displays a situation where p > tan 6, and from

this picture it is clear that the transversal force does not get any upper bound. Therefore, in

this case (tan 6 < p), the force scale is not fixed by the problem itself but by the history of the

piling preparation. This could be called an hyper-hysteretic problem where the piling history
is always relevant to fix the scale of the contact forces. Thus it is clear that beyond this limit,
the stochastic approach we aim to built here is bound to fail! In the following we assume to

operate below this limit.

3. Numerical Extraction of the Force Network

Now we propose a way to built a force network made of vertices of acceptable mechanical

solution. An analytical solution based on the previous, set of equations and inequations,
would be indeed a difficult task, except in the case where p =

0. This question has been

studied by several authors earlier [7, 20-22j. Ouagenouni et al. [7j have recently proposed an

original approach to study this problem and they have shown that, even for a regular piling,

a slight amount of geometrical disorder would lead to a unique non trivial force distribution.

Here, we propose to explore the space of solutions with p ~ 0, using a numerical Monte

Carlo method. Note that our kind of regular vertex configuration would lead, in the case

/J =
0, to no force mixing. Hence, the presence of friction is the only source of disorder here.

We extract sets of exact mechanical solutions for the force network using a random choice
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of the parameter p at each vertex within the constraints of macroscopic laws of contact. Note

that such a procedure seems arbitrary but is motivated by the true nature of solid-solid contact

forces which is a
difficult question. Using the Coulomb laws of dry friction, the exact value of

the contact force can be shown to depend in a complicated way on the dynamical history of

the piling preparation [16j. Since the effect of the history cannot be estimated, we made the

assumption that the different initial possible preparations can be rendered by assuming that

all p's could be taken at random without any correlation. Furthermore, it is not clear whether

some specific preparation conditions for a granular piling would imply a correlated choice of

this parameter field. But we leave this deep question out of the scope of the present paper, we

just tackle briefly this issue, on an example, in Sections 5 and 7. Usually, in molecular dynamics
simulations, one assumes that below the coulomb angle, an elastic type of contact prevails [5].

Here, we do not make such a choice. The method we propose bears many resemblance with

the contact mechanics algorithm that was initially designed by Moreau et al. [4j and which was

used to study the stress distribution in an assembly of polydisperse grains [6j.
Other important questions concern the boundary conditions. For the moment, we only

consider cyclic lateral boundaTy conditions supplemented with conditions of
a given force at

the top coming from a lid (including
a zero force, I.e. the free boundary condition). This

constraint is implemented by an initial layer with
a given vertical charge. For each layer,

the vertices are explored starting from a randomly chosen bead following
a nearest neighbor

progression in a randomly chosen direction. The process is iterated exploring deeper and

deeper layers. If a choice of p cannot be made coming from the fact that the inequalities
(6, 7, 8) do not provide any intersection, we use a numerical scheme which converges to a

solution rather rapidly when the total number of vertices is not too large (around 5000). The

procedure is implemented as follows. If no acceptable solution is found, we move backwards

(first in horizontal, then in vertical direction) and try again new sets of p's chosen at random.

To improve the search speed, the number of steps we move backwards for each failure case

increases with the number of failures. In addition, this number of steps is initialized each time

the algorithm reaches a depth beyond the maximum depth previously reached. This scheme

eliminates rapidly unwanted solutions. Thus, a large number of networks can be extracted and

this provides
a

statistical ensemble of realizations. Note that it is not clear mathematically
whether the Monte Carlo method described above is the most efficient to explore thoroughly

the solution space. This question is linked to the topological structure of the solution space,
another difficult question indeed. As it is usually done in the standard Monte Carlo method,

one could introduce a cost function to extract from all possible solutions the one with the lowest

"temperature". But since the effect of a real experimental preparation on the distribution of

the p's is unknown, the definition of a cost function would be hazardous. We rather keep all

mechanically possible events without introducing any weight on any of them other than the

weight inherent to the numerical algorithm used. The aim of the next chapters is to explore
the statistical properties of the network realization ensemble hence constructed and to define

a bridge with stochastic models.

4. Structural and Stochastic Properties of the Force Networks

In this Section, we investigate some structural properties of the force networks, we have gen-

erated. We are mostly interested in the vertical force transport properties I.e. the vertical

charge C. In Figure 3, we show three examples of networks of size 50 x 100, extracted with

three different coefficients of friction: p =
0.1, /J =

0.4 and p =
o-G- We monitor the relative

fluctuations with respect to the average charge (C(z)) (which grows linearly with the depth
z). The grey scale is set to display the largest rescaled forces f

=

C/(C(z)) as the darkest
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Fig. 3. Vertical charges distributions for a 50 x 100 cyclic piling. We displayed
a single realization

for three static friction coefficients p. The grey scale represents the rescaled charge f (as defined in

the text). The darkest tones are the larger forces: a) p =
0.2, b) p =

0A, c) p =
0.6.

tones. We observe clearly the presence of large force paths along lines at 6
=

60° and 6
=

120°

just like in the experiments on
regular packing by Travers et al. [2]. The use

of a large friction

coefficient yields a structure for which the direction of propagation of the large forces paths

is much more disordered. In Figure 4, we report the distribution of the vertical charge for

various friction coefficients. We display on a Log-normal scale, the force distribution Pi f),
rescaled such that f P(f)df

=

f IF( f)df
=

1. We choose such a rescaling of the probability
distribution function in order to be able to compare directly our results with the mean field

distribution proposed by Liu et al. [12j. This normalization yields an universal shape for Pi f)
independent of the depth at sufficiently large depths.

Furthermore, we establish a direct comparison with stochastic models presented in reference

[12]. We define the quantities fi
~

qi/C and )2
=

q2/C which are the fractions of total

vertical charge redistributed on each contact downwards. Liu et al. [12j have suggested that

the redistribution fractions fi and )2 could be taken from a flat distribution II(fj
=

1 in the

interval lo,1j. In the context of their model, a mean-field analytical solution (for a number of

contact per vertex N
=

2), yields the following force distribution:

P~~lf)
=

4f expl-2f). 191

However, we observe in Figure 4 that the distribution P( f) is modified by the value of p and, in

the limits of the numerical capacities, we could never obtain a distribution similar to the mean-

field distribution P~~(f). Also, we monitored the first moment af of the force distribution

and we observed that the saturation of this first moment takes a longer depth for lower friction

coefficients. But an important point to consider is that the value of the average fluctuation

is always of the order of magnitude of the average force. This result is consistent with many

measurements, either experimental [12j or numerical [6, 7j obtained for different friction and

geometry conditions. Nevertheless, contrarily to those previous claims
we never really got
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Fig. 4. Rescaled charge distribution Pi f) for different values of the friction coefficient p. The

statistics were made over 10, 000 pilings for each friction coefficient. The geometry used is 15 x 1000

(15 x 2000 for p =
0.2) and we only considered the bottom half of the piling to extract the distribution

Pi f). The inset is the small forces distribution in a log-log scale. The dashed line is the Mean Field

solution of equation (9).

an exponential decrease for large forces as the model of Liu et al, would fundamentally predict.
An extension of the theory of Liu et al. [12j has been proposed [23j dealing with a probability

distribution of the relative charges, II(@ such that II(@ ~ 0 when 1- fmax < f < )max and

II(@
=

0 otherwise. Note that fmax
=

1 corresponds to the original theory of Liu et al. [12j.
A central result of this scalar transport theory is that the force distribution should decay as:

~~~~
~

~~~~ ~~~ ~~~~ ° log N

~~11/fmax)
~~~~

The distributions tails of Figure 4 can be fitted with an apparent a. For example, we measured

nip
=

0.2)
=

1.77 + 0.01, alp
=

0.4)
=

1.50 + o.01. A direct look at the H(@ distribution

(see Fig. 5) does not corroborate the existence of
a fmax cut-off. This result is an indication

of another class of universality for the charge propagation statistics in the presence of solid

friction. It is likely to be a consequence of the underlying vectorial character of the force

equilibrium problem; we reconsider this issue on another perspective in Section 6.

Now we intend to provide a qualitative physical picture of the network organization by
monitoring the problem in terms of charge collection of two incoming charges. A qualitative
description of the situation encountered at each vertex where two charges cross, is sketched in

Figure 6. For a given bias (charge distribution unbalanced at the top) either, the larger force

collects the small one (Fig. 6a) or redistributes a fraction evenly of its value (Fig. 6b) or even

anti-collect (Fig. 6c). Such a situation is captured by the parameter fl
= (~ such that

)
=

( + ( ~Q2jQ~~ Hence fl > 1 represents a charge collection, 0 < fl < 1 a redistribution

and fl < 0 an
anti-collection. Recently more stochastic models of force propagation have
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depth
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Fig. 6. Interpretation of the collection parameter fl in terms of crossing vertical charges; fl > 1 is

a "collection", 0 < fl < 1 is a
"redistribution" and fl < 0 is an

"anti-collection".

been proposed [14,15j, which includes effectively a parameter of the type of p. These models

basically assume the capture of small charges by large charges, whenever the charges received

on the top on a bead is strongly unbalanced. This case would correspond to a situation

where p > 1. In Figure 7, we display the average value of the parameter (pi
as a function

of the rescaled charge f for three values of the friction coefficient /J =
0.2, p =

0,4 and

/J =
0.6. Note that, in order to avoid a undesired divergence of fl, we calculated the averaged

fl for jai Q2) / (Qi + Q2) larger than 0.1 only. Clearly, the average tendency is a charge
redistribution but an interesting self-organization property is evidenced: it seems that smaller

charges tend to cross each other with a weak tendency to redistribute but large charges show

a net tendency to redistribution. A transition to anti-collection properties is even possible for

larger friction (it would corresponds to a negative (fill. Actually, we also noticed that the

distribution of p's shows a large standard deviation (of the order of1). It is likely that families

of solutions can be found within the global space of solutions that would allowed collection of

the larger forces, due to specific local conditions on the choice of parameter p. This is the type
of question we address in the next chapter on one example.
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Fig. 7. Average collection parameter (fl) as a function of the rescaled vertical charge f for three

friction coefficients, p =
0.2, p =

0.4 and p =
0.6. We used the same runs as in Figure 4 keeping only

the beads with a significative charge difference on the top I.e. )Qi Q2 )/(Qi + Q2) > 0.1.

5. Effect of a Local Bias on the Parameter Choice

Now we explore the possibility to extract subsets of acceptable mechanical solutions which will

include auto-organization of the force network with stochastic properties drastically different

from the previous situation. The approach we present here may seem arbitrary since we cannot

say anything on dynamical processes that could lead the piling to the described situation.

Nevertheless, this example is developed to illustrate the importance of having
a pertinent

description of the granular contacts force status as well as the dynamics leading to equilibrium
since, as we

will demonstrate, the macroscopic picture can be strongly influenced by a local

"polarization" of the friction forces.

We notice that the collection parameter previously defined may be written:

its value is olely
etermined

by the choice of the stochastic
rameters from

the layer just

above. The
idea

is to find some rule that could
maximize

p, in the
average,

in
ce ollection (if We make the

following
remark: hen the is not too arge

( I-e- /J < 1/ tan 6), we have Si > 0 and 52 < 0

two charges with a significative in amplitude
cross

at a vertex, one can
smallest one. Making

his assumption, fl is maximized by the uotient js~j /Qz

where the
ubscript

I stands for the
largest charge.

A way to chieve this goal (fl aximum)

would be to this quotient for all the
beads.

This can be done by orientating the

friction
forces in a

way

sketched in igure 8a. In this picture,
we sketched and rientation of

the
riction forces in a eferential

raction
of the coulomb cone (see the

haded
area). On

this

example (if we suppose that Q2 is the largest harge),
the quotient 52/Q2 is maximized for a

projection of the tangential contact force in the part of the
coulomb

cone just below the shaded

area. The same reasoning holds
when Qi is

upposed
to be the charge

angential ontact force
irections should be as sketched in

igure
8a.

imilarly,
a situation
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Fig. 8. Sketch of the direction of friction forces transmitted on the central bead. The fraction of

the Coulomb cone preferentially used for the upper bead 2 is shaded a) case where b, bias parameter,

is positive (this geometry favor collection of the forces) and b)
case where b is negative.

this remark, we design an algorithm where the choice of p is such that only a fraction of the

Coulomb cone is selected in order to produce situations like in Figure 8. Hence, we introduce

a bias parameter b such that -2 < b < 2 which characterizes the available fraction of the

Coulomb cone for the contact forces. Parameter b is defined according to the rule:

-/J~1-~~~~~)ni<ti</J~1+~
~~~)ni

(12)
b )b) b + )hi

-~ 1+
~

n2<t2<lL 1-~ n2.

The parameter b constraints a situation like Figure 8a when positive and like Figure 8b when

negative (see in Fig. lb for surface forces, t~ and n~, definitions). Note that the case b
=

0

corresponds to the previously studied case of a projection in the full Coulomb cone. In Figure 9

we display the result of the average collection parameter calculated for three values of the bias

parameter: b
=

0 and b
=

+1.275. Now it is clear that the case b > 0 corresponds in the

average to a positive collection parameter (fl > 1 for all values of the charges). Therefore

in this case, large charges will collect up small ones. In Section 7, we will study this effect

influence on the force distribution at the bottom of a sand-pile.

6. Response to a Localized Force

In this study, we set the gravity to zero and we prepare the lid with a given charge of value

C~ on
each bead, except one bead which bears the value C~ + bC~. In this chapter simulations

are performed with no bias condition of the friction forces. We observed that generically the

maximum amplitude of the response propagates as a "light ray" with a direction of 6
=

60°

and 120° with respect to the horizontal (See Fig. 10a). This result is qualitatively consistent

with the results coming from the closure conjecture of the mechanical equations proposed
by Bouchaud et al. [8]. Nevertheless, we observe a loss per unit length and a dispersion of
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25.

the force on the neighbors which yields a shape as represented in Figure 10b. Note that we

did not monitor the response up to very large depths (only
z =

25). But already, we have

indications on general features of the transport properties. From these data, we extract ~,

a loss coefficient per unit length. In the top layer, the original excess force is lost simply by

possibility of compensation of the two ray going away from each other, so, it depends solely

on the way we press on the material. The features of the loss are very different from a simple

diffusion. The first feature is that the shape of mass excess is not symmetrical around the light
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rays (Fig. 10b). This result could be compared to the model of Bouchaud et al. [8]. It can

be understood considering that only the inside of the cone is sensitive to the mass excess bC~.
Second, a loss coefficient can be extracted using the straight line fit visible in Figure 11a. In

Figure I16, we report the loss
~ =

8(Cmax) /8z, for a fixed friction /J =
0.4 as a function of bC~.

We observe a strong non-linearity in the behavior of this coefficient. For large bC~ /Co, the loss

rate is almost a constant. For the behavior displayed in Figure 11b, we propose an heuristic

explanation. In the limit of weak pressure increase, we have a force excess comparable to

the average fluctuating background and the mixing laws are in first approximation, compatible
with an average collection parameter $ which gives a linear behavior at low SC: ~ m

(1- fl)bC~.
But for large values of boo /Co, the saturation of the loss rate is due to the fact that large forces

cannot use the whole coulomb cone to redistribute in the network. Consequently, the loss is

always of the order of the average fluctuating background. This is a direct consequence of the

local rotation force balance. Note that this kind of behavior involving torque balance at the

level of a single grain is absent from standard coarse-grained mechanical equation description.
It is also clear that in a real situation, the higher is the force excess, the most likely is the

probability for the system to yield and create a
dynamical deformation. This situation is of

course not taken into account in the modelization.

7. The Sand-Pile

Now we look at the force distribution below a sand pile. The pile we prepare is a regular

cannon ball piling with a #
=

30° angle slope. Theoretical results [20, 21j show for 6
=

60°,

on a regular frictionless piling, that the vertical force distribution should be linear on the

edges and show
a

plateau in the inside. An experimental work has shown the possibility in

3D of a dip at the pressure plateau limit due to self organization of the force network [24j.
Some simulations have shown that a dip may exist on a frictionless piling but might be due to
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A comparison is made with a piling for which p =
0. Fluctuations, not represented here, are of the

order of 2 dimensionless units of charge in the three cases.

a
geometrical organization of the contact network [22j. Using the method previously described,

we performed series of simulations and found no evidence for a dip of in the middle of the

heap. We find a high level of fluctuations as evidenced on the distribution of pressure on one

example of the piling (see Fig. 12) but, on the average, the pressure distribution corresponds

to a
frictionless piling.

Nevertheless, we find that it is possible to depart from a straight plateau in the context

of our model piling if the heap is prepared with a specific condition on the friction forces.

The situation we study here is the friction biased condition presented earlier in chapter 5. In

Figure 13, we display the vertical charge distribution at the bottom of
a sand pile prepared
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with a #
=

30° angle slope. From the picture we observe that, when the bias parameter b

goes from negative to positive values, the charge distribution in the central part of the pile

goes from a force excess (a bump) to a force deficit la dip). Now, we explore if this change of

behavior, associated to local prescriptions on the friction forces, can be also understood in terms

of macroscopic constitutive relations. In a 2D situation like ours, the mechanical equations
involve the four components of the stress tensor combined in a way that any macroscopic
volume element is stable vertically and horizontally I.e.

fiazz
~

~~~~
= peg

(~~~
8z 8~

a~x
~ a~j~ =

0

where p~ is the granular density and a~ are the usual stress tensor components. These

two equations associated with the condition that the elementary volume does not rotate i.e.

(ja~zj
=

jaz~j) will form a set of three equations for four unknowns which are the mesoscopic
equivalent of equation (4) at the granular level. Clearly, to get a solution of the problem, one

needs a constitutive relation linking together components of the stress tensor. A proposition

was recently made by Bouchaud et al. [8], based on simple symmetry and scaling considera-

tions, they proposed an extension of Janssen's [25] constitutive relation in the form:

f @
~

aq =
Kazz ~ ~~~z ~ ~~zz ~ ~~~~

azz azz

where coefficients f and k
are dimensionless quantities. From the previous set of data for the

vertical and horizontal forces at a vertex, we measure the values ofthe stress tensor, using the

relations (the average is made over thousands of realizations):

axx =

jNi + N2) ~/ lTi T2)

azz =

(Ni + N2) + ~/ (Ti T2) (15)

axz = az~ =

~
(Ni N2)

To test a constitutive relation like equation (14), we display axx lazz as a function of (a~z lazz )~
in Figure 14: we represented the results for three values of b (the values of Sect. 5 I.e. b

=
0

and b
=

+1.275). In the case b
=

0, we have
a constant value K ~t 0.34, corresponding to

Janssen's type constitutive relation. This numerical value is very closed to K
=

1/3 which

would be the theoretical expectation [8] for a force propagation at a direction o =
30° with

respect to the vertical axes as evidenced in Section 6: Ktheor
~

(tan o)~
=

1/3. For b ~ 0, the

straight slopes on the graph, witness a constitutive relation consistent with equation (14). In

first approximation it seems that f
rw

-b and k
rw

-b. Note also that this result is also in full

agreement with the analytical result of Bouchaud et al. [8] on the sand-pile stress distribution

where the case
f

> 0 would correspond to a bump and f
< 0 would correspond to a dip.

8. Conclusion

In this paper, we present a numerical approach suited to study the forces distribution in a

static granular piling. We show explicitly that the mechanical equation describing local static
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equilibrium can be related to a stochastic variable representing the free choice for the friction

forces within the Coulomb cone. We design a Monte Carlo algorithm in order to solve this

problem in the case where, from site to site, the choice of acceptable mechanical solution is

made randomly within all the available possibilities. We observe that for such a simple piling
geometry, a non-trivial organization is present. The geometrical properties of this self-organized
network induce a spontaneous creation of privileged paths transporting the larger forces. A

large friction coefficient increases the disordered character of the force paths. Measurements

on the distribution of charges at the bottom of the layers indicate that the fluctuation of the

charge is of the same magnitude than the average itself. A statistical analysis shows that the

transport properties of the vertical charge cannot be rendered using a simple scalar stochastic

model. Moreover, we show that in the average there is no
collection of smaller forces by larger

forces when they cross at a vertex but rather, a mere redistribution, small forces gaining and

large ones loosing. However we show that biasing the projection of the friction forces within a

fraction of the Coulomb cone can have a drastic macroscopic outcome: larger forces can gain

in amplitude when they meet smaller forces at a vertex for a specific orientation of the friction

forces. We call this phenomenon charge collection. Furthermore, we study the response of a

single pressure step and we show that it propagates along straight lines with a rate of loss

depending, in a non linear way, on the pressure increase.

Thus, on this simple static mechanical model, we show that the force propagation is still a

complicated issue and, maybe, a stochastic vision of it should imply full consideration of the

underlying vectorial nature of the equilibrium mechanics. What is not clear yet, is whether

additional geometrical disorder has the possibility to change drastically this picture and maybe
simplify the transport properties as Liu et al. [12] have suggested.

In addition, we observe that the model we use does not lead, in the average, to a pressure

hole below a sand pile. Nevertheless, we may observe something different than a plateau in

the central part of the pile if we prepare the system using a bias on the local orientation of

the friction forces. Remarkably we verified that, in this locally biased situation, the stress
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closure equation is modified and is consistent with the macroscopic conjecture of Bouchaud

et al. [8j and we obtain either a force excess or a force dip according to the sign of our

local bias. Also, when the friction forces are locally biased, our fully mechanical model can

be linked to cellular automaton results describing force propagation in a granular assembly
[14,15j. Note also that, in our simple model, the physical interpretation for the charge collection

phenomenon is different from what Hemmingson et al. [14j or Claudin et al. [15] have originally
suggested (loss of contact between grains). Finally, this work indicates the necessity of a finer

description for the solid on solid interactions between grains including the study of the relevant

dynamical aspects of the contact forces near static equilibrium in connection with contact

network dynamics.
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