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Stability of the Rankine vortex in a multipolar strain field
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In this paper, the linear stability of a Rankine vortex in ann-fold multipolar strain field is addressed.
The flow geometry is characterized by two parameters: the degree of azimuthal symmetryn which
is an integer and the strain strength« which is assumed to be small. Forn52, 3 and 4~dipolar,
tripolar and quadrupolar strain fields, respectively!, it is shown that the flow is subject to a
three-dimensional instability which can be described by the resonance mechanism of Moore and
Saffman@Proc. R. Soc. London, Ser. A346, 413 ~1975!#. In each case, two normal modes~Kelvin
modes!, with the azimuthal wave numbers separated byn, resonate and interact with the multipolar
strain field when their axial wave numbers and frequencies are identical. The inviscid growth rate
of each resonant Kelvin mode combination is computed and compared to the asymptotic values
obtained in the large wave numbers limits. The instability is also interpreted as a vorticity stretching
mechanism. It is shown that the inviscid growth rate is maximum when the perturbation vorticity is
preferentially aligned with the direction of stretching. Viscous effects are also considered for the
distinguished scalings:n5O(«) for n52 and 3,n5O(«2) for n54, wheren is the dimensionless
viscosity. The instability diagram showing the most unstable mode combination and its growth rate
as a function of viscosity is obtained and used to discuss the role of viscosity in the selection
process. Interestingly, forn52 in a high viscosity regime, a combination of Kelvin modes of
azimuthal wave numbersm50 andm52 is found to be more unstable than the classical helical
modesm561. For n53 and 4, the azimuthal structure of the most unstable Kelvin mode
combination is shown to be strongly dependent on viscous effects. The results are discussed in the
context of turbulence and compared to recent observations of vortex filaments. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1345716#
o
u

e
an
e.
,
b

e
t

ow
ub
he
e

nd
n

in
n
s

tic

i

-

y
the

-
of

he
nu-
si-
om-
is

gu-
he
ab-

re-

tric

eo-
to
I. INTRODUCTION

Recent experiments and numerical simulations dem
strate the presence of structures of high vorticity in turb
lence~see for instance Refs. 1–3!. It was argued that thos
elongated and distorted filaments of vorticity could play
important role in the intermittent character of turbulenc4

Arendt et al.,5 in numerical simulations of gravity waves
showed that the deformation of those vortex tubes could
viewed as a superposition of Kelvin modes6 on a straight
filament, but they did not propose a mechanism for the g
eration of such perturbations. The aim of this paper is
provide such a mechanism.

This paper focuses on the idealized Rankine vortex fl
which allows a comprehensive analysis. The vortex is s
ject to a multipolar potential strain field perpendicular to t
vortex axis which induces a deformation of the streamlin
in the rotational part of the flow. Our goal is to understa
under which conditions Kelvin modes can appear sponta
ously on the vortex via a coupling with the multipolar stra
In particular, we want to address the role of viscous a
finite core size effects in the Kelvin mode selection proce

The effect of an external perpendicular strain field on
vortex filament is known to induce, at first order, an ellip
deformation of the streamlines.7–9 The stability of such a
deformed filament was first studied by a global analysis
6601070-6631/2001/13(3)/660/17/$18.00
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the context of vortex rings.10,11 The mechanism of the insta
bility was explained by Tsai and Widnall12 for an elliptical
Rankine vortex and by Moore and Saffman13 for a general
inviscid vorticity profile. They showed that the instabilit
could be interpreted as a resonance phenomenon of
Kelvin modes of the underlying vortex with the elliptic dis
tortion. In particular, they established that the combination
stationary helical modes of azimuthal wave numbersm
521 and m51 is always resonant and unstable. T
growth of this resonant helical combination leads to a si
ous deformation of the vortex in the plane of maximal po
tive stretching. So far, there has been no proof that this c
bination of Kelvin modes is the most unstable, but this
supported by numerous experimental observations.14–17 In
this paper, the growth rate of all possible resonant confi
rations will be computed. The conditions under which t
helical mode combination is the most unstable will be est
lished.

The unstable character of elliptic streamlines was
examined by Pierrehumbert18 and Bayly19 using a local ap-
proach. They showed that the instability, calledelliptic insta-
bility in this framework, could be interpreted as a parame
excitation of inertial waves. Lifschitz and Hameiri20 recov-
ered this result in their general stability theory based on g
metrical optics methods. This local theory was also used
© 2001 American Institute of Physics
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661Phys. Fluids, Vol. 13, No. 3, March 2001 Multipolar instability of Rankine vortex
FIG. 1. Streamlines of the Rankine vortex in a mult
polar strain field of strength«50.25. The flow given by
Eqs.~1.1a! and~1.1b! is pictured at two different scales
for dipolar strain field (n52) ~a,b!, tripolar strain field
(n53) ~c,d! and quadrupolar strain field (n54) ~e,f!.
The solid and dashed lines are inside and outside
vortex core, respectively.
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account for various additional effects such as time dep
dence, stretching, stratification, etc.~see Baylyet al.21 and
reference therein!. The connection between the local and g
bal descriptions of the elliptic instability was made b
Waleffe22 who showed that most unstable inertial wav
could be summed up to form the resonant helical Kel
mode combination of Tsai and Widnall.12

Few experimental works have been designed to study
elliptic instability. Chernous’ko23 studied the flow inside an
elliptic cylinder and gave an instability diagram showing t
number of structures as a function of aspect ratio and ec
tricity. Gledzer and Ponomarev15 and Malkus14 confirmed
that these results agree with the Kelvin mode resona
mechanism. Experimental observations of the elliptic ins
bility have also been evidenced in open flows configurati
such as vortex rings10 and vortex pairs.16 It has also been
recognized as an important mechanism in the secondar
stability transition in shear layers,24,25 wakes17 and rotating
flows in confined geometry.26,27

In this paper, we perform a global stability analysis
the Rankine vortex in a weak stationary multipolar stra
field. The basic flow is given by the following streamfun
tions @in cylindrical coordinates (r ,u,z)#:
Downloaded 18 Dec 2006 to 147.94.57.17. Redistribution subject to AIP
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c in~r ,u!52
1

2
r 21

«

n
r n sin~nu!1O~«2! for r<R,

~1.1a!

cout~r ,u!52 ln~r !1
«

n2
@~n21!r n1r 2n#sin~nu!

1O~«2! for r .R, ~1.1b!

with R(u) such thatc in(R,u)521/2, i.e.,

R~u!511
«

n
sin~nu!1O~«2!, ~1.2!

wheren is an integer and« is a small parameter measurin
the strength of the external field. Here, the basic rotat
speed and the vortex radius have been used to nondimen
alize the variables. This solution is the extension of Moo
and Saffman solution28 to a multipolar strain field in the limit
of weak external field. Figure 1 pictures the streamlines
the flow for «50.25 andn52, 3 and 4. Forn52, all the
inner streamlines are ellipses with same eccentricity«. For
larger n, the streamlines are circular in the vicinity of th
center and become more deformed close tor 5R(u). The
case of pure strain field (n52) was considered by Tsai an
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Widnall.12 Our goal is here twofold. First, we want to reco
sider the pure strain case to show that other unstable m
different from the helical mode combinations obtained
Tsai and Widnall exist and that they may become domin
if viscosity is included. Second, we want to show that
similar instability mechanism exists when the pure strain
replaced by a multipolar strain field which corresponds t
higher symmetrical environment~network of vortices, vortex
in a square box!.

In a previous paper,29 we addressed the local stability o
the streamlines defined by Eq.~1.1a! using the Lifschitz and
Hameiri theory.20 The results can be summarized as follow
For n52, 3 and 4, a given closed streamlinec in5C is un-
stable with respect to short wavelength inviscid perturbati
as soon as«.0 with a leading order growth rate propo
tional to the asymmetry parameter«n[«@2nC/(2
2n)# (n22)/2. Forn>5, the streamlines become unstable on
if they are sufficiently distorted, i.e., if«n is above a positive
critical value. With the restrictions21/2<C<0 and small
«, one then expects the flow to be locally unstable forn
52, 3 and 4 with a maximum inviscid growth rate given b
s5(9/16)«, (49/32)« and 3«, respectively, and locally
stable for larger values ofn.29 These results are purely loca
and limited to short wavelength perturbations. Therefo
they are not sufficient to obtain information on the mo
unstable global modes of the vortex. For this purpose, i
necessary to use a global theory and to interpret the inst
ity in terms of Kelvin mode resonance. This constitutes
subject of the present paper which is organized as follow

In Sec. II, it is shown that Kelvin mode resonance
possible only ifn52, 3 and 4 and a formal expression of th
growth rate is obtained forn52 and 3. In Sec. III, casesn
52 and 3 are treated quantitatively: the growth rate is co
puted for each resonant combination and the role of visco
in the mode selection process is analyzed. Casen54 is spe-
cial, as the resonance occurs for infinite axial wave numb
It requires a separate treatment, which is presented in
IV. In Sec. V a physical explanation of the instability
provided in terms of vortex stretching. In particular, it
shown that the more unstable the mode combinations,
more important the correlation between perturbation vor
ity and the direction of stretching of the basic flow. In th
last section, the results are summarized and discussed i
context of turbulent flows.

II. INSTABILITY MECHANISM AND SCALINGS

In this section, the calculation of a formal expression
the growth rate of the instability is detailed. The presentat
follows the papers of Tsai and Widnall12 and Moore and
Saffman.13 However their analysis is extended to account
multipolar strain, general resonant modes and viscous
fects. The linear equations for the perturbation of the
formed Rankine vortex are first given and the Kelvin mod
are defined. Then the mechanism of Kelvin mode coupl
with the multipolar strain field is described and analyzed
the limit of weak strain using perturbation theory.
Downloaded 18 Dec 2006 to 147.94.57.17. Redistribution subject to AIP
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A. Governing equations for the perturbations

Consider a linear perturbation of the basic flow Eq
~1.1a!, ~1.1b! of small amplitudel and assume, as in Tsa
and Widnall,12 that the perturbation is potential outside th
vortex core. The perturbation is then defined by its veloc
potential F outside the vortex core, its four-compone
velocity-pressure fieldv5(v r ;vu ;vz ;p) inside the vortex
core and the displacementa of the vortex edge. Accordingly
the core of the perturbed vortex is defined byr<R1la.

The equations forv are obtained by linearizing the
Navier–Stokes equations around the vortex core expres
~1.1a!. They can be written in the following condensed form

]

]t
Jv1Mv5«~einuN1e2 inuN̄!v1nLv1O~«2!, ~2.1!

whereJ, M, N andL are operators given in Appendix A
In Eq. ~2.1!, N̄ is the matrix whose elements are the comp
conjugates of those inN, andn is the kinematic viscosity.
Note that, with our nondimensionalization, the dimensionl
viscosityn is also the Ekman number of the flow based
the radius of the vortex core. Both parameter« and viscosity
n are assumed to be small in the following. As seen bel
for n52 and 3, the distinguished limit is obtained when bo
parameters are of same order. The rescaled viscosityn1

5n/« will indeed be the only control parameter in the
cases. The equation for the velocity potentialF outside the
core is

DF50. ~2.2!

For small«, the equations for the edge displacementa follow
from the kinematic and dynamic boundary conditions eva
ated atr 51:

v r2
]F

]r
5« cos~nu!S vu2

]F

]u D
2

«

n
sin~nu!S ]v r

]r
2

]2F

]r 2 D 1O~«2!, ~2.3a!

v r5
]a

]t
1

]a

]u
1O~«!, ~2.3b!

p1
]F

]t
1

]F

]u
52« cos~nu!

]F

]r
2

«

n
sin~nu!S 2n

]F

]u

1
]p

]r
1

]2F

]r ]t
1

]2F

]r ]u D1O~«2!. ~2.3c!

The system of Eqs.~2.1!–~2.2! with the matching conditions
Eqs. ~2.3a!–~2.3c! describes the evolution of the linear pe
turbation (v,a,F) of the vortex in the limit of small strain.

B. Description of the Kelvin modes

As explained by Tsai and Widnall12 and Moore and
Saffman,13 the instability of a deformed vortex patch is th
consequence of the coupling of Kelvin modes with the e
ternal field. The Kelvin mode perturbations are defined as
inviscid normal modes of the underlying axisymmetric ba
flow ~i.e., the Rankine vortex!. Thus, they satisfy Eqs.~2.1!,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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663Phys. Fluids, Vol. 13, No. 3, March 2001 Multipolar instability of Rankine vortex
~2.2!, and ~2.3a!–~2.3c! with «5n50. Their velocity-
pressure fieldvK , edge displacementaK and velocity poten-
tial FK can be written as

vK~k,m,v!5U~r !ei (kz1mu2vt)1c.c., ~2.4a!

aK~k,m,v!5rei (kz1mu2vt)1c.c., ~2.4b!

FK~k,m,v!5f~r !ei (kz1mu2vt)1c.c., ~2.4c!

where the axial wave numberk, the azimuthal wave numbe
m and the frequencyv are connected through a dispersi
relationD(k,m,v)50 which is obtained by enforcing con
ditions ~2.3a! and ~2.3c!. The calculation leading to the dis
persion relationD(k,m,v)50 is classical30 and will not be
reproduced here. Expressions forU(r ), r, f(r ) and
D(k,m,v)50 are given in Appendix A.

It is useful to emphasize a few important properties
the dispersion relation. For each azimuthal wave numbem
and axial wave numberk, there is a discrete infinity of fre
quenciesv satisfyingD(k,m,v)50. They are all real and in
the interval

m22,v,m12. ~2.5!

In Fig. 2 the first branches of the dispersion relation
plotted in the (k,v)-plane form51 andm521. Note that,
whenk goes to zero, all the branches accumulate to the
quencyv5m except a particular branch which tends tov
5m2sgn(m). This property is true for allmÞ0. For m
50, this particular branch does not exist.

C. Kelvin mode resonance and instability

The Kelvin modes are neutral. The Rankine vortex wi
out external field is then expected to be marginally stable
vortex core perturbations.~A convincing proof of this state-
ment is still lacking contrarily to what is claimed in Arend
et al.31! However, as explained by Moore and Saffman,13 a
small asymmetry is sufficient to couple Kelvin modes a
may lead to exponential growth. The coupling term asso
ated with the multipolar strain field is the first term on t
right-hand side of Eq.~2.1!. The azimuthal dependence e6 inu

of this term implies that only Kelvin modes of azimuth

FIG. 2. Dispersion relation of the Kelvin modes in the (k,v)-plane form
521 ~dashed line! and m51 ~solid line!. Only the first ten branches ar
represented.
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wave numbers separated byn can be coupled at leading or
der. The condition of resonance of two Kelvin mod
(k1 ,m1 ,v1) and (k2 ,m2 ,v2), with m2.m1, is then

k15k2 , m22m15n, v15v2 . ~2.6!

This condition of resonance is analyzed in the (k,v)-plane
by looking for the crossing points of the dispersion relatio
associated with two Kelvin modes of azimuthal wave nu
bersm1 andm2 separated byn. For n52, this was done by
Tsai and Widnall12 for the two helical modesm1521, m2

51.
Here property Eq.~2.5! implies that resonance can occ

only if n52 or 3. Forn54, resonance is also possible fo
infinite axial wave numbers~as branches merge fork→`);
this case will be studied separately in Sec. IV. Forn>5, the
family of branches of two Kelvin modes of azimuthal wav
numbers separated byn are totally distinct. Consequently, i
such a case, no instability by a Kelvin mode resonance p
nomenon is possible at leading order. This is in agreem
with our previous result29 that the flow is locally stable to
small n-fold symmetrical deformation ifn>5.

The end of the present section is dedicated to a for
calculation of the growth rate of a resonant Kelvin mo
combination whenn52 or 3. The calculation closely fol-
lows Moore and Saffman’s presentation.13 We start with a
perturbation (v,a,F) of the form

v5@A1U(1)~r !eim1u1A2U(2)~r !eim2u

1«v1~r ,u!#ei (kz2vt)e«s1t1O~«2!1c.c., ~2.7a!

a5@A1r (1)eim1u1A2r (2)eim2u1«F1#ei (kz2vt)e«s1t

1O~«2!1c.c., ~2.7b!

F5@A1f (1)~r !eim1u1A2f (2)~r !eim2u

1«F1~r ,u!#ei (kz2vt)e«s1t1O~«2!1c.c. ~2.7c!

At leading order this perturbation is a combination of tw
resonant Kelvin modes (k,m1 ,v) and (k,m2 ,v) with un-
known amplitudesA1 andA2. Therefore it is a leading orde
solution of equations~2.1!, ~2.2! and~2.3a!–~2.3c!. The cor-
rection term«v1 as well as the slowly varying factor e«s1t

are generated by the right-hand side of Eq.~2.1!. They are
due to the interaction of Kelvin modes with the nonaxisy
metric part of the basic flow and to the viscous damping
the perturbation.

The frequencyv being real, the temporal growth rate o
the resonant Kelvin modes is then given bys5«Re(s1). In
Tsai and Widnall,12 s is obtained by fully integrating Eqs
~2.1!, ~2.2! and ~2.3a!–~2.3c! up to the order«. Here we
prefer to follow the simpler calculation of Moore an
Saffman’s13 which is based on a solvability condition forv1.
The form of the right-hand side of Eq.~2.1! indicates thatv1

can be written as

v15V1eim1u1V2eim2u1V3ei (m12n)u1V4ei (m21n)u.
~2.8!

Inserting this expression in Eq.~2.1! gives forV1 andV2
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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~2 ivJ1Mm1
!V152A1s1J U(1)1A1n1Lm1

U(1)

1A2N̄m2
U(2), ~2.9a!

~2 ivJ1Mm2
!V252A2s1J U(2)1A2n1Lm2

U(2)

1A1Nm1
U(1), ~2.9b!

where the notation Mm1
means Mm1

5@Mei (m1u1kz)#e2 i (m1u1kz). The integration of these equa
tions is not needed.

Introducing the following scalar product:

^XuY&5E
0

1

~X̄rYr1X̄uYu1X̄zYz1X̄pYp!r dr , ~2.10!

the solvability condition is obtained by forming the sca
product ofU(1) andU(2) with Eqs.~2.9a! and~2.9b!, respec-
tively. It leads to coupled amplitude equations forA1 andA2:

A2I 11A1s1J152A1s1J1u11A1n1L1u11A2N̄1u2 ,
~2.11a!

A1I 21A2s1J252A2s1J2u21A2n1L2u21A1N2u1 ,
~2.11b!

where the following notation has been used:

N2u15^U(2)uN U(1)&. ~2.12!

The coefficientsI 1 , I 2 , J1 and J2 are boundary terms de
fined in r 51 by

I 15
1

2
P(1)S Uu

(2)2
i

n

]Ur
(2)

]r
2 im2f (2)1

i

n

]2f (2)

]r 2 D
2

1

2
Ur

(1)S i

n

]P(2)

]r
1m2f (2)1

v2m21n

n

]f (2)

]r D ,

~2.13a!

I 25
1

2
P(2)S Uu

(1)1
i

n

]Ur
(1)

]r
2 im1f (1)2

i

n

]2f (1)

]r 2 D
1

1

2
Ur

(2)S i

n

]P(1)

]r
1m1f (1)1

v2m12n

n

]f (1)

]r D ,

~2.13b!

J152Ur
(1)f (1), ~2.13c!

J252Ur
(2)f (2), ~2.13d!

whereUr
(1) , Ur

(2) and P(1), P(2) are the radial velocity and
pressure of the modesU(1) andU(2). These boundary term
come from theO(«) correction terms in the matching con
ditions Eqs.~2.3a!–~2.3c!. Note that the external potentia
flow intervenes in the amplitude equations~2.11a!,~2.11b!
via the boundary termsI 1 , I 2 , J1 andJ2 and the dispersion
relation only.

The equation for the growth rates1 is obtained by re-
quiring that the determinant of the linear system E
~2.11a!,~2.11b! vanishes:
Downloaded 18 Dec 2006 to 147.94.57.17. Redistribution subject to AIP
.

@s1~J1u11J1!2n1L1u1#@s1~J2u21J2!2n1L2u2#

5~N̄1u22I 1!~N2u12I 2!. ~2.14!

This relation is the formal expression of the growth rate
were looking for. For a given resonant Kelvin mode com
nation, the growth rates1 only depends on the rescaled vi
cosity n1. Here, the difficulty is that the number of resona
Kelvin mode combination is doubly infinite. For eachn,
there is an infinity of possible couples of azimuthal wa
numbers (m1 ,m2) which satisfy the relationm22m15n.
And for a given couple (m1 ,m2), there exists as mentione
above infinitely many crossing points in the (k,v)-plane.
However the dispersion relation Eq.~A13! and Eq.~2.14! are
invariant by the following symmetry: (v,k,m1 ,m2)
→(2v,k,2m1 ,2m2). Therefore, the study can readily b
restricted to mode combinations satisfyingm11m2>0.

In the next section, the different coefficients of E
~2.14! are computed for a large range of resonant Kel
mode combination using the definitions of the operat
given in Appendix A. In Appendix B, these coefficients a
analytically evaluated in the limit of largek and largem.

III. DIPOLAR AND TRIPOLAR STRAIN FIELD „nÄ2,3…

This section focuses on the casesn52 and n53, for
which the formal expression~2.14! for the growth rate ap-
plies. In a first subsection, the viscous damping is neglec
which amounts to consideringn150. This permits to com-
pare our expression with the previous results of Tsai a
Widnall12 and with the local and inviscid results obtained
Ref. 29. In a second subsection, the effect of viscosity
analyzed and the growth rate of the most unstable Ke
mode combinations is computed as a function ofn1.

A. Inviscid analysis

Whenn150, Eq. ~2.14! reduces to a simple expressio
for the inviscid growth rate:

s i
25

~N̄1u22I 1!~N2u12I 2!

~J1u11J1!~J2u21J2!
«2. ~3.1!

FIG. 3. Dispersion relation of the Kelvin modes in the (k,v)-plane for
m1510 ~solid line! and m2513 ~dashed line!. The numbers label the dif-
ferent branches as explained in the text. The growth rates of the m
corresponding to the different intersection points are displayed in Table
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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For eachm, we choose to label by an integer each branch
the dispersion relation in the order of increasingk ~see Fig.
3!. We computed expression~3.1! for 10 000 resonant Kelvin
mode combinations~the combinations corresponding to th
100 crossing points of the first 10 branches of the dispers
relations of the azimuthal wave numbersm1 and m25m1

1n with n52 and 3 and21<m1<48). As an illustration,
typical values of the growth rates i /« are given for the mode
combinations (m1 ,m2)5(21,1) and (m1 ,m2)5(10,13) in
Tables I and II~for the crossing points displayed in Figs.
and 3!.

In this computation, we observed that all resona
Kelvin mode combinations are unstable~i.e., s i is always
real!. We also found that, form1<48, growth rates are sig
nificantly larger for the crossing points of branches with t
same label. In the following, these combinations will
namedprincipal modesand numbered using the notation

~m1 ,m2 ,i !, ~3.2!

where i is the common label form1 and m2. For n52, m1

521, m251, these crossing points are exactly on the a
of symmetryv50 of the branch family~see Fig. 2!. They
are the resonant stationary helical modes studied by Tsai
Widnall12 and Moore and Saffman.13 The principal mode
(21,1,1) of vanishing axial wave number correspond to
global translation of the vortex. As in Tsai and Widnall,
will be discarded in the following. For all the other case
principal modes do not exhibit particular symmetries. No
that the first principal mode (m1 ,m2,1) always involves the
particular m2 branch issued from the point (k,v)5(0,m2

21).
In Table III the axial wave numbersk of the first princi-

pal modes (m1 ,m11n,i ) are given. For giveni and n, this
axial wave number increases withm1 and tends tò asm1

→`. The variations of the principal mode growth rate as
function of the axial wave numberk are displayed in Fig. 4
Note that the graphs forn52 @Fig. 4~a!# and n53 @Fig.

TABLE I. Table of the computed inviscid growth rates i /« for m1521,
m251 as a function of the branch label. The columns are the differ
branches of the dispersion relation form1 and the lines form2. The under-
lined growth rates are for the principal modes (21,1,2), (21,1,3), etc.

1 2 3 4 5

1 – 0.0041 0.0046 0.0038 0.0031
2 0.0041 0.5708 0.0073 0.0061 0.0051
3 0.0046 0.0073 0.5695 0.0061 0.0053
4 0.0038 0.0061 0.0061 0.5681 0.0051
5 0.0031 0.0051 0.0053 0.0051 0.5672

TABLE II. Same as Table I form1510, m2513. The boxed-in growth rate
corresponds to the combination examined in Fig. 12.
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4~b!# are qualitatively different. Forn52, the inviscid
growth rate is maximum for the combination (21,1,2). It
asymptotes the limit value (9/16)« whenk→` @dash-dotted
lines in Fig. 4~a!#. For n53, the growth rate is a decreasin
function of k for fixed m1 and reaches a limit value
49«/(8p2)'0.62« ask→` @lower dash-dotted lines in Fig
4~b!#. As can be noticed in Fig. 4~b!, this limit value is much
smaller than the maximum growth rate (49/32)«'1.53«
which is attained whenm1→` for fixed iÞ1 ~upper dash-
dotted line!.

In Sec. V, a physical interpretation will be given e
plaining why some modes have larger growth rates than
ers. The asymptotic analysis for largek and largem1 that
provides the limit values forn52 and 3 are detailed in Ap

FIG. 4. Inviscid growth ratess i /« for the principal modes (m1 ,m11n,i ) as
a function of their axial wave numberk for dipolar strain field (n52) ~a!
and tripolar strain field (n53) ~b!. In both cases, the symbols are:1: m1

521, h: m150, L: m151, n: m1510, s: m1520 and the solid and the
dashed lines are the inviscid growth rate of the modes (m1 ,m11n,1) and
(m1 ,m11n,2), respectively, for21<m1<48. The dash-dotted lines ar
asymptotic values for large wave numbers:s i5(9/16)« in ~a!; s i

549«/(8p2) ands i5(49/32)« in ~b!.

t
TABLE III. Table of the axial wave numbersk of the most unstable mode
(m1 ,m2 ,i ) in the dipolar and tripolar cases, fori<4.

Dipolar Tripolar

i (21,1,i ) (0,2,i ) (21,2,i ) (0,3,i ) (1,4,i )

1 0.0000 1.2422 2.2920 3.9360 5.3810
2 2.5050 3.3701 6.1719 7.8218 9.3722
3 4.3491 5.2264 9.7861 11.471 13.078
4 6.1740 7.0584 13.371 15.076 16.718
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pendix B. The main results of this analysis are now summ
rized. In the limit of largek, for n52, the asymptotic invis-
cid growth rate is proved to be maximum for princip
modes. For other resonant combination, the growth
tends to zero for largek. For n53, the largek asymptotic
growth rate is given by

s i5
49«

8p2~2i 22 j 21!2
, ~3.3!

where i and j are the branch labels form1 and m2, respec-
tively. This asymptotic growth rate is maximum not only f
the principal modes (i 5 j ) but also for the adjacent mode
defined by the conditioni 5 j 11. The asymptotic results fo
largem1 are different. For bothn52 andn53, the principal
modes are no longer the most unstable modes. The gro
rate of the first principal modes (m1 ,m2,1) even goes to zero
asm1 goes to infinity. The largem1 asymptotic growth rate
is now maximum for adjacent modesi 5 j 11 with j Þ1. For
n52 this maximum is the same as the maximum largk
asymptotic growth rate (9/16)«. The situation is different for
n53. The maximum largem asymptotic growth rates i

'1.53« is much larger than the maximum largek asymptotic
growth rates i'0.62«.

The results form1521 and m251 ~see Fig. 2 and
Table I! can directly be compared to those of Tsai a
Widnall.12 The inviscid growth rates and axial wave numbe
computed here are in agreement with their results for
principal modes (21,1,2) and (21,1,3). However, we
found that all Kelvin mode combinations are unstab
whereas Tsai and Widnall12 found that some may be stabl
A conclusion similar to ours has been reached by Vladimi
and Il’in32 for the Kirchhoff vortex which makes us confi
dent of our result. Note, however, that this discrepancy is
expected to strongly affect Tsai and Widnall’s conclusions
the resonant combination they found stable are in fact am
fied with a negligible growth rate~50 times smaller than the
maximum growth rate!.

The large wave number growth rates (9/16)« (n52)
and (49/32)« (n53) correspond to the local maximum
growth rates of the most unstable streamline in the vor
core.29 This result was not guaranteed. Indeed, the disper
relation for the Kelvin modes is a constraint on the axial a
azimuthal wave numbers which is not present in the lo
stability analysis. Note, however, that the value of the lo
maximum growth rates are reached in the limit of large a
muthal and axial wave numbers forn53 while only large
axial wave number is needed forn52. This could be related
to the differences in the local stability properties forn52
and n53. For n52 the local stability properties are th
same for all streamlines in the vortex core while forn53 the
flow is not uniform and the most unstable streamline is
cated near the boundary where the strain rate is maxim
Thus, forn53, resonant Kelvin mode combinations have
be localized near the boundary to be the most unstable
this occurs only for largem1 as illustrated in Fig. 5. Note
finally that the agreement with the local stability propert
of the vortex core shows that the potential flow outside
Downloaded 18 Dec 2006 to 147.94.57.17. Redistribution subject to AIP
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vortex has negligible influence on the stability results in t
limit of large wave numbers.

B. Viscous selection process

In the previous section the maximum inviscid grow
rate forn53 was shown to asymptote its maximum value
the limit of a large azimuthal wave number. This is no long
expected to hold when viscosity is included, as viscous
fects damp perturbations with large wave numbers. Mo
over, we shall see below that, forn52, another resonan
combination than the principal mode (21,1,2) may become
the most unstable in the viscous regime.

In the present paper, only volumic viscous effects on
perturbation are considered. In particular, we neglect the
cous diffusion of the basic flow as commonly done in stab
ity analysis of inviscid solutions.33 The effect of basic flow
diffusion has been analyzed elsewhere.34 In addition, the vis-
cous effects on the perturbation due to the boundary laye
the edge of the vortex core are not considered. Th
effects35 areO(n1/2), but they are not strongly dependent o
the perturbation wave number and therefore are not expe
to influence the inviscid selection process. Moreover, th
viscous layers are not present for more realistic vortices w
continuous vorticity profile. It is then natural not to take in
account these effects if one wants to obtain generic insta
ity scenari. Note finally that both boundary layer effects a
viscous diffusion effects are negligible ifk@n21/4. The as-
sumptions made here are therefore fully justified in the lim
of largek.

In the growth rate expression Eq.~2.14!, volumic viscos-
ity effects appear via the termsn1L1u1 andn1L2u2. Each of
these terms can roughly be decomposed into three parts:
proportional tok2, another proportional tom1

2 and a third one
mostly connected to the geometrical character of the Ke
modes. Thus, the viscous damping is of the form2n1C1k2

2n1C2m1
21o(m1

2 ,k2) where C1 and C2 are two positive

FIG. 5. Four components of the Kelvin modevK(k,m,v)
5U(r )ei (kz1mu2vt) for m539, v.40.5 andk.51.9 ~corresponding to a
resonance withm542). We haveU5( iU ;V;W;P) with U in the solid line,
V in the dotted line,W in the dashed line andP in the dash-dotted line.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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slowly varying functions ofk andm1. For a given viscosity,
the viscous growth rate is then maximum for finitek andm1.
In other words, viscosity selects a particular resonant Ke
mode combination.

The result of this selection process forn52 andn53 is
illustrated in Fig. 6. In these figures, the viscous growth r
is computed as a function ofn1 for the first principal modes
(m1 ,m2 ,i ) with 21<m1<1 and 1< i<3. The principal
modes are still the most unstable wave combinations w
viscosity is added but it can be seen in Fig. 6 that the rela
stability of one combination with respect to the othe

FIG. 6. Normalized growth rate of the principal modes (m1 ,m11n,i ) as a
function ofn1. ~a! Dipolar strain (n52) and~b! tripolar strain (n53). Solid
lines: m1521, dashed lines:m150 and dotted lines:m151. Here, for the
sake of legibility, only the first nine principal modes are plotted but
tendency is unchanged for higher modes (i .3, m1.1).
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changes withn1. For n52, the most unstable Kelvin mod
combination is (21,1,2) for small viscosity and (0,2,1) fo
larger viscosity. This was expected from inviscid analy
since, among all other modes, mode (21,1,2) has the larges
inviscid growth rate and mode (0,2,1) has the smallest a
wave number. Forn53, the most unstable Kelvin mod
combination is always a principal mode of the for
(m1 ,m113,1) with m1 increasing for decreasingn1. Again,
the inviscid results are recovered whenn1→0: the most un-
stable combination corresponds to modes with the infin
azimuthal wave numberm1.

For bothn52 and 3, there is a viscous cutoffn1c (n1c

.0.111 forn52 andn1c.0.122 forn53) above which all
Kelvin mode combinations are damped. For a dipolar str
field, this result can be compared to those obtained by La
man and Saffman.36 Using a local approach, they found th
there exists a critical Ekman number~here equal to the di-
mensionless viscosityn), depending on the wave number o
the perturbation and on the strain strength, above which
elliptic flow is stable. In the limit of small strain, Landma
and Saffman’s threshold readsn1c.0.131/k2 which becomes
for the smallest resonant wave number~see Table III! n1c

.0.084. This estimate is within 25% from our value. No
however, that Landman and Saffman’s approach is unabl
give estimates of the viscous damping for modes with a m
complex azimuthal structure. In addition to the difference
the selected modes, one can also notice that there is a m
larger variation of inviscid growth rates in casen53 than in
casen52. The mode selection is then expected to be l
efficient for n52 and for small viscosity.

The structure of several resonant Kelvin mode combi
tion is shown in Figs. 7~a!, 7~b!. The deformation of the
vortex core by the perturbation has been depicted using
~2.3b!. For n52, the combination (21,1,2) gives rise to an
undulation of the vortex in the plane of maximal stretchi
@Fig. 7~a!#. This is in agreement with experimenta
observations.14,16,23For larger viscosity, the principal mod
(0,2,1) becomes the most unstable combination. The gro
of this mode implies the bulging (m150) and splitting (m2

52) of the vortex core@see Fig. 7~b!#. This result is new and
shows the limitation of the analysis of Tsai and Widnal12

which only considered helical mode resonance. It will
discussed again in light of a recent numerical simulation37 in
Sec. VI. Note finally that for very small viscosity, the grow
n

FIG. 7. Illustration of the Rankine
vortex deformation induced by the
principal modes (21,1,2) ~a! and
(0,2,1) ~b!. The vortex core displace-
ment is represented for perturbatio
amplitude equal tol50.1 and 0.2, re-
spectively~with A151).
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 8. Same as Fig. 7 for the principal modes (21,2,1) ~a!, (0,3,1) ~b! and (1,4,1)~c! with l50.2, 0.1 and 0.1, respectively.
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rate of most principal modes becomes comparable~within
2% for n1,1024). Depending on the initial conditions, on
could then imagine that modes with a more complex a
muthal structure could also develop. This would give
simple explanation of the rich dynamics of vortex filamen
observed in large Reynolds number flows.

For n53, the structure of the most unstable combinat
strongly depends on viscosity. Close to the thresholdn1c ,
the most unstable mode is as illustrated in Fig. 8~a!. Whenn1

is progressively decreased, the most unstable combina
becomes more and more complex. It first gains a three-st
structure@Fig. 8~b!#, then a four-strand structure@Fig. 8~c!#,
and so on.

IV. QUADRUPOLAR STRAIN FIELD „nÄ4…

In Secs. II and III, we considered the dipolar (n52) and
tripolar (n53) strain fields for which there exist Kelvin
mode resonances at finite axial wave numbersk. For the
quadripolar strain field (n54) such resonances do not exis
sincem22,v,m12 for finite k. However, (k,m1 ,v) and
(k,m114,v) may resonate for infinitek if v5m112. In
such a case, the resonant state is singular and the analy
Sec. II does not apply. To treat this largek resonance, a
specific asymptotic analysis is carried out in this section.

If the axial wave numberk is large but not infinite, the
resonance is imperfect and there is an offset of frequency
each Kelvin mode, which is deduced from Eq.~A11!:

uDvu5d2/k2. ~4.1!

The distinguished limit is obtained when this offset is
same order as theO(«) inviscid growth rate and the viscou
damping rate. This corresponds to the scalings:

d

k
5O~A«!, nk25O~«!. ~4.2!

It is then useful to rescale the viscosity and axial wave nu
ber as follows:

n25
n

«2
, k21/25kA«. ~4.3!
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Following the analysis of Sec. II, the perturbation is th
taken in the form

v5@A1~T!U(1)~r !eim1uei f (1)T1A2~T!U(2)~r !eim2ue2 i f (2)T#

3ei (kz2vt)1«v1~r ,u,z,t !, ~4.4!

whereA1(T) and A2(T) are the amplitudes which vary o
the slow time scaleT5«t, of the resonant Kelvin mode
vK(k,m1 ,v2« f (1)) and vK(k,m114,v1« f (2)). We shall
see below that, contrary to Sec. II, functionsA1(T) and
A2(T) are not necessarily exponentials of same argum
Expressions forvK(k,m,v) are given in Eq.~A10!. Note
that, in this limit, a'0 and F'0 such that the mode is
localized in the core of the vortex. The frequency offse
Dv52« f (1) andDv5« f (2) depend, via relation~A11!, on
d1 andd2 which are obtained through the dispersion relati
~A13!:

2d1Jum1u8 ~d1!1m1Jum1u~d1!50, ~4.5a!

d2Jum2u8 ~d2!1m2Jum2u~d2!50. ~4.5b!

These implicit equations are solved numerically. Again, ea
equation has an infinite number of solutions which cor
spond to the different branches of the dispersion relation
which can be numbered by the branch label. The amplit
equations forA1 andA2 can be obtained by the same proc
dure as in Sec. II. They now have the form

2J1u1
]A1

]T
1n1L1u1A11N̄1u2ei2 f TA250, ~4.6a!

2J2u2
]A2

]T
1n1L2u2A21N2u1e2 i2 f TA150, ~4.6b!

with 2 f 5 f (1)1 f (2). The largek assumption allows the vis
cous terms to be reduced to their leading order express
n1L1u152n2k21/2

2 J1u1 and n1L2u252n2k21/2
2 J2u2. This

permits one to obtain simple expressions forA1 andA2:

A1~T!5c1 exp@~ i f 1As0
22 f 22n2k21/2

2 !T#, ~4.7a!

A2~T!5c2 exp@~2 i f 1As0
22 f 22n2k21/2

2 !T#, ~4.7b!

with
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c2

c1
5

N2u1

J2u2~2 i f 1As0
22 f 2!

, ~4.8!

s05
N2u1N̄1u2

J1u1J2u2
. ~4.9!

The growth rate of the resonant Kelvin mode combinat
then reads

s

«
5As0

22 f 22n2k21/2
2 , ~4.10!

where f is a O(1) function which depends on the labele
solutionsd1( i ) andd2( j ) of Eqs.~4.5a!,~4.5b!:

f 5
d1

2~ i !1d2
2~ j !

2k21/2
2

. ~4.11!

The first term in Eq.~4.10! is associated with inviscid effect
only. Contrary ton52 andn53, there is a frequency cutoff
if f 2>s0

2, the inviscid growth rate vanishes. This conditio
can be interpreted as a condition of resonance. Indeed,f mea-
sures the renormalized gap between the two Kelvin m
frequencies. Iff is too large, there is no resonance anymo
Moreover, the inviscid growth rate is a decreasing funct
of f. As expected, it is maximum for a perfect resonancef
50) which occurs whenk5`.

To determine the maximum growth rate, one has to co
pute d1( i ) and d2( j ) from Eqs.~4.5a!,~4.5b! and the scalar
products involved in Eq.~4.9!. This computation was carrie
out for the range of parameters22<m1<170, i<10 and
j <10. The results can be summarized as follows. Wh
m1>1, s0 is maximum for the principal mode (m1 ,m2,1).
Figure 9 shows the evolution ofs0 for this mode as a func
tion of m1. Since f is an increasing function of the label
other resonant Kelvin modes necessarily have a sma
growth rate. Form1>1, then, the first principal mode i
always the most unstable combination whateverk21/2 and
n2. Whenm1522, 21 or 0, the first principal mode is th
most unstable only ifk21/2 is below a critical valuekc (kc

FIG. 9. Stability of the Rankine vortex in a quadrupolar strain field. Ma
mum inviscid growth rates0 of the principal modes (m1 ,m114,1) as a
function of the azimuthal wave numberm1. The dashed line is the limit
value for largem1 : s053.
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.89, 56 and 1357 form1522, 21 and 0, respectively!.
For k21/2.kc , the maximum growth rate is always small
than the growth rate of the first principal mode form151.
Consequently the most unstable configuration is alway
first principal mode of the form (m1 ,m2,1). Viscosity does
not modify this conclusion. However, since it damps lar
wave number perturbations, it plays an important role in
wave number selection.

For fixedm1 andn2, there exists an optimal wave num
ber k21/2

max which maximizes the growth rates5smax. Both
smax andk21/2

max are drawn in dotted lines as a function ofn2

for different values ofm1 in Figs. 10~a! and 10~b!, respec-
tively. The solid line in Fig. 10~a! is the maximum growth
rate among all possiblem1. The corresponding axial wav
number is the solid line in Fig. 10~b!. Despite the scaling
difference, Fig. 10~a! exhibits the same features as Fig. 6~b!
for n53: When viscosity is decreased below a critical val
n2c.7.531024, the combination of modes with the smalle
azimuthal wave number~herem1522, m252) is first de-
stabilized; then, combinations with higherm1 progressively
become the most unstable asn2→0. Note, however, that the
principal modes (21,3,1) and (0,4,1) are never the mo

FIG. 10. Viscous effects on the instability characteristics of the Rank
vortex in a quadrupolar strain field. Growth ratesmax ~a! and corresponding
axial wave numberk21/2

max ~b! of the principal modes (m1 ,m114,1) as a
function ofn2. Each dotted line stands for a different azimuthal wave nu
ber as labeled on~a!. On ~b!, m1 is increasing from bottom to top. The soli
line is the most unstable mode after a maximization overm1.
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unstable for anyn2. Note also that the first destabilized com
bination m1522, m252 is stationary by symmetry as fo
n52.

As seen in Figs. 10~a! and 10~b!, the most unstable com
bination whenn2→0 has both a largek21/2 and a largem1.
A simplified expression of the growth rate can be obtain
by asymptotic methods~as in Appendix B 2! in the largem1

limit:

s

«
5A92

m1
4

k21/2
4

2n2k21/2
2 . ~4.12!

For n250 andk21/2→`, the inviscid growth rates i53 of
the local stability analysis29 is recovered.

V. PHYSICAL INTERPRETATION

In the previous sections, the instability was described
a resonance phenomenon of Kelvin modes due to the m
polar strain field. We computed the inviscid growth rate
the resonant combinations and noticed that there were im
tant variations from one resonant configuration to the oth
For large wave numbers, we showed that only very spec
resonant configurations were significantly amplified. In t
section, a physical interpretation is provided, which perm
one to understand these variations and the inviscid selec
of the most unstable resonant Kelvin mode configuration

For this purpose, it is informative to first analyze th
different terms in the linearized inner vorticity equation f
the perturbations:

Dv

Dt
52

]u

]z
1ez3v1Sv, ~5.1!

wherev is the perturbation vorticity,u its velocity,D/Dt is
the convective derivative andS is the strain tensor of the
inner basic flow given by~in cylindrical coordinates!

S5«~n21!r n22S cos~nu! 2sin~nu! 0

2sin~nu! 2cos~nu! 0

0 0 0
D . ~5.2!

The first term on the right-hand side of Eq.~5.1! represents
the tilting and the stretching of the basic flow vorticityv0

52ez by the perturbation. The second and third terms a
respectively, the tilting and the stretching of the perturbat
vorticity by the basic flow. The role of each term in th
instability has been discussed in various places~see, for in-
stance, Refs. 22,24,38!. Orszag and Patera24 showed that the
first term alone, or the second term and the third term ta
together, cannot lead to exponential instability. In contra
the third term alone is sufficient for instability as it provid
exponential growth of the vorticity component aligned w
the direction of stretching22 ~principal axis of the strain ten
sorS with the largest positive strain rate!. Here, in addition,
one can show that the first and second terms taken toge
do not provide instability. Indeed, these terms are associ
with a solid body rotation@«50 in Eq. ~1.1a!#: The normal
mode solutions are, in that case, nothing more than the
tral Kelvin modes studied above.
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Outside the vortex core, both basic flow and Kelv
modes have zero vorticity so no amplification can be gen
ated in this potential region. However, in the vortex co
Kelvin modes exhibit vorticity components in the (x,y)
plane ~in Cartesian coordinates! where the stretching term
@third term in Eq.~5.1!# acts. Therefore these vorticity com
ponents can be amplified by stretching when they are alig
with the direction of stretching. In order to study this pos
bility, we shall now evaluate the correlation between the
rection of stretching and the direction of the vorticity pr
jected onto the (x,y) plane for a given Kelvin mode and fo
a combination of two resonant Kelvin modes.

The local stretching rates(r ) and the local direction of
stretchingws(u) are defined fromS as the positive eigen
value and the direction of the associated eigenvectores .
Here, they are given by

s~r !5«~n21!r n22, ~5.3!

ws~u!52nu/2, ~5.4!

where the anglews is measured in the local polar basis@i.e.,
cos(ws)5es .er ]. For n52, the stretching rate and the dire
tion of stretching (es5ex) are uniform. For largern, there are
both a radial dependence of the stretching rate and an ang
dependence of the stretching direction.

The projected vorticity v' of the Kelvin mode
vK(k,m,v) is obtained from formulas~A10a!–~A10d!. It
takes the form

v'5 f ~r !sin cer1g~r !cosceu , ~5.5!

where

c5kz1mu2vt, ~5.6!

and f and g are real functions ofr. The direction of this
vector is then given~in the local polar basis! by a formula of
the form

wv'~r ,u,z,t !5arctanS g~r !

f ~r !

1

tan c D . ~5.7!

Similarly, for a combination of two Kelvin modes
vK1(k1 ,m1 ,v1)1vK2(k2 ,m2 ,v2) we get

wv'
5arctanS g1~r !cosc11g2~r !cosc2

f 1~r !sin c11 f 2~r !sin c2
D , ~5.8!

with

c15k1z1m1u2v1t, ~5.9!

c25k2z1m2u2v2t. ~5.10!

It is important to note the dependence ofc on kz, mu or
vt in Eq. ~5.6!. For fixed r and u, this dependence implie
thatwv', for a single Kelvin mode, takes all possible valu
as t or z varies and has a mean value independent ofu,
whereasws is u periodic. The result is that there is no mea
correlation between the direction of stretchingws and the
direction of the projected vorticitywv' for a single Kelvin
mode. This is reassuring as a single Kelvin mode was
expected to be unstable in a planar strain field.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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However, for a two Kelvin mode combination, the abo
argument does not always apply because cancellation in
~5.8! is now possible. In particular,wv' may have a nonzero
mean value dependent onu at particular values ofr if the
two modes have same axial wave number (k15k2) and the
same frequency (v15v2). If this occurs and ifwv'5ws for
a specific location at any time, the planar component of v
ticity is locally amplified by stretching at that position with
growth rate equal tos(r ). Accordingly, the maximum
growth rate of the perturbation is always bound by the ma
mum local stretching rate of the strain field@here (n21)«#.
This upper bound corresponds to a pointwise maxim
growth rate. It should not be mixed with the local maximu
growth rate obtained in Ref. 29 which is a mean growth r
along a closed streamline: In general, the local maxim
growth rate is smaller because the perturbation vorticity
not aligned with the stretching direction on the who
streamline. Casen54 is an exception: both local and poin
wise maximum growth rates are equal in that case. Mo
over, we saw in Sec. IV that this maximum is also reach
by the growth rate of the most unstable resonant Kel
mode combination in the largem1 and k limit. This can be
explained by the fact that, in this limit, the projected vortic
of the perturbation is localized in the region of maximu
stretching rate~close to r 51) and is everywhere aligne
with the stretching direction.

For the other unstable Kelvin mode combinations,
correlation is not perfect but exists as illustrated in Fig.
This figure displays the projected vorticity of the princip
mode (21,2,1) ~see Sec. III for the notation!, which is un-
stable in a tripolar strain field (n53). This combination
clearly has its vorticity preferentially oriented along the d
rection of stretching associated with the triangular distorti
This alignment is quantified in Fig. 12 where the distributi
of a5wv'2ws is plotted for different resonant modes wi

FIG. 11. Example of good correlation between stretching and vorticity
rection for an unstable mode of the Rankine vortex in a tripolar strain fi
(n53). Local direction and intensity of stretching~a! and projected vortic-
ity in the (x,y)-plane of the principal mode (21,2,1) in z50 ~b!, z
5p/2k ~c! andz5p/k ~d!.
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the norm of the projected vorticityuuv'uu as the weight of
each point. These curves exhibit a peak neara50 for the
unstable modes (21,1,2), (21,2,1) and (1,5,1) indicating a
strong correlation between the stretching direction and
vorticity. For a ‘‘nonprincipal’’ mode, for instance the on
associated with the first and third branches of the dispers
relation for m1510 andm2513, respectively, this peak i
smaller and there is a secondary peak ata56p/2. The cor-
relation is then weaker and the inviscid growth rate mu
smaller (s i50.0681« from Table I!, as expected.

These graphs and the above discussion demonstrate
the mechanism of instability is directly related to the loc
stretching of perturbation vorticity by the basic flow. It co
firms that the most unstable modes are those which m
mize the alignment of their projected vorticity with the loc
direction of stretching. Moreover, for bothn53 and 4, we
have seen above that the most unstable combinations ten
be localized near the vortex core edge where the stretc
rate in the core is maximum.

Why principal modes are the configurations which ma
mize the alignment of vorticity and stretching is another
sue. First, note that these configurations have a frequencv
approximatively equal to (m11m2)/2 so that the ‘‘radial
wave numbers’’d1 and d2 of the resonant Kelvin mode
@given by formula Eq.~A11!# are close to each other. This
clearly visible in the large wave number analysis of Appe
dix B, where the most unstable modes have been foun
satisfy d15d2 at leading order. Therefore, principal mod
tend to be more coherent radially than the other modes wh
could explain why they are the most unstable. A more co
plete explanation has been recently given by Le Dize`s.39 He
showed that the additional conditiond1'd2 directly results
from the characteristics of the most unstable local modes
particular, for the elliptical case (n52), he successfully jus-
tified why the local maximum growth rate is reached wh
this condition is satisfied. Figure 13 illustrates the clear c
relation of small values ofud22d1u with a large inviscid
growth rate for particular combinations of modes.

i-
d

FIG. 12. Distribution of the anglea between the direction of the vorticity in
the (x,y)-plane and the direction of stretching for the principal mod
(21,2,1) ~solid line!, (21,1,2) ~dashed line!, (1,5,1) ~dotted line! and a
mode withm1510, m2513 but taking the resonant crossing point of th
first and third branches, respectively (s) ~the boxed in mode of Table II!.
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VI. DISCUSSION

In this paper, the linear stability of the Rankine vortex
a weak multipolar strain field was analyzed. This basic fl
was shown to be subject to a Kelvin mode resonance in
bility for dipolar (n52), tripolar (n53) and quadrupolar
(n54) strain fields. The unstable modes are combination
two Kelvin modes of the same axial wave number, the sa
frequency, and azimuthal wave numbers separated byn. A
physical interpretation of the instability in terms of local vo
ticity stretching was also provided. We demonstrated that
most unstable modes correspond to the modes for which
alignment between the projected vorticity and the direct
of stretching is maximized. Viscous effects were also d
cussed in detail. The critical viscosity above which
Kelvin mode combinations are damped was computed
each case. Below this critical value, viscous effects w
shown to select a preferential instability mode. Forn52, we
proved that the selected mode is a combination of station
helical modes (m1521, m251) if viscosity is sufficiently
small. However, for larger viscosity, a combination of mod
m150 andm252 become the most unstable. This unsta
Kelvin mode combination has never been studied before
is associated with the bulging–splitting of the vortex. Forn
53, the selected mode is a time-periodic Kelvin mode co
bination with both frequency, axial and azimuthal wa
numbers increasing as viscosity decreases. Forn54, the
Kelvin mode resonance occurs only for large axial wa
numbers, so viscosity must be smaller for instability in th
case. However, as forn53, the selected mode was shown
have a more intricate azimuthal structure as the visco
decreases.

For vortices with continuous vorticity profiles, instabilit
by Kelvin mode resonance is also known to exist. In parti
lar, Moore and Saffman showed that the stationary resona
of helical modesm1521 andm151 is not dependent on
particular profile and generically leads to the instability of
elliptically perturbed vortex. Robinson and Saffman40 also
showed numerically that for finite strain@«5O(1)#, the sta-
bility of these particular symmetric modes is qualitative

FIG. 13. Inviscid growth rate as a function of the differenceud22d1u be-
tween the radial wave numbers of the two Kelvin modesm1510 andm2

513 for the first 100 crossing points.
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well-described by a weak-strain analysis. However, all st
ies have restricted the analysis to the stability of thesem
561 modes12,13,32,40arguing that other modes should b
less unstable. In the present paper, we have shown that
restriction is not justified for the Rankine vortex as the m
unstable mode for high viscosity is the principal mo
(0,2,1) corresponding to filament bulging–splitting. In a r
cent paper, Billantet al.37 demonstrated that this bulging
splitting mode was indeed present for a Lamb–Chaply
vortex pair. For Stuart vortices, they also suggested that
higher order mode, which is briefly discussed by Pierrehu
bert and Widnall,41 and the bulging mode~or the so-called
Core Dynamics Instability mode! examined in Ref. 42 could
be related to the principal mode (0,2,1). However, in the
three studies, the growth rate of this mode is approximativ
half as small as the growth rate of (21,1,i ) modes~bending
or translative modes!. In the present paper, they are almo
equal. We have no explanation for this discrepancy exc
that, in each of these numerical cases, vortices are stro
deformed and the vorticity is strongly nonhomogeneous.

To our knowledge, forn-fold symmetry of higher order
(n>3), no result concerning the stability is available. This
due to the fact that the condition of resonance cannot
simplified by symmetry as was done by Moore a
Saffman.13 In principle, for n52, 3 or 4, the condition of
resonance must be analyzed on a case-by-case basis f
modes different from the symmetric principal mod
(21,1,i ) and (22,2,i ). Note, however, that once resonan
occurs between two neutral Kelvin modes, the above an
sis can be formally applied almost without modification.
particular, we expect the main conclusions to hold, i.e.:

~1! Instability for n52 andn53 for a viscosity smaller than
anO(«) critical value and forn54 for viscosity smaller
than anO(«2) critical value;

~2! stability for n>5 and small«;
~3! the most unstable Kelvin mode combination changes

viscosity varies; and
~4! for vanishing viscosity, the most unstable Kelvin mo

combination corresponds to the configuration for whi
vortex stretching is maximized.

Considering the similarities between the experimen
and numerical observations of vortex filame
destabilization1,2,5 and the form of a vortex subject to
Kelvin mode resonance, it is natural to discuss the impli
tions of the present results in the context of turbulent flow
In turbulence, vortex filaments are strained by the ba
ground turbulent flow or surrounding vortices. As there is
particular symmetry, they are in general elliptically d
formed in their core. From the present analysis, we argue
if viscosity is small enough compared to the nonaxisymm
try of the filament (n,0.111«), the vortex can be subject t
a Kelvin mode resonance instability. We showed that
most unstable mode was, in such a case, either the comb
tion of two helical modes (21,1,2), which produces a plana
undulation of the vortex, or the combination of a bulging a
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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673Phys. Fluids, Vol. 13, No. 3, March 2001 Multipolar instability of Rankine vortex
splitting mode (0,2,1) leading to the formation of strands
the filament. This behavior was observed in experimen1

and in numerical simulations.5

In contrast, this instability does not explain the bursti
of vortex filaments which is sometimes observed.1 Pradeep
et al.43 gave an explanation which could be related to a s
ondary instability of the vortex deformed by Kelvin mode
Lifschitz et al.44 first showed that this secondary instabili
indeed exists for elliptical flows. Recently, Kerswell45 and
Mason and Kerswell46 studied this instability analytically
and numerically in a configuration similar to that in Malku
experiment.14 In this elliptic cylinder geometry, it appear
that the principal modes (21,1,2), (21,1,3) and (0,2,1) are
unstable and that the growth rate of the secondary instab
is of the same order as the primary instability. Second
instability analysis has never been carried out for a vorte
an open flow configuration but one would expect that
results of Kerswell45,46 to remain qualitatively unchanged.
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APPENDIX A: NOTATIONS

The operators appearing in Eq.~2.1! are defined by

J5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

D , ~A1!

M5S ]

]u
22 0

]

]r

2
]

]u
0

1

r

]

]u

0 0
]

]u

]

]z

]

]r
1

1

r

1

r

]

]u

]

]z
0

D , ~A2!

N5
1

2 S D12~n21!r n22 2 i ~n22!r n22 0 0

2 inr n22 D11~n21!r n22 0 0

0 0 D1 0

0 0 0 0

D ,

~A3!

with

D152r n21
]

]r
2 ir n22

]

]u
, ~A4!
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L5D5S D22
1

r 2
2

2

r 2

]

]u
0 0

2

r 2

]

]u
D22

1

r 2
0 0

0 0 D2 0

0 0 0 0

D , ~A5!

and

D25
1

r

]

]r
1

]2

]r 2
1

1

r 2

]2

]u2
1

]2

]z2
. ~A6!

The relation

N5A1B1C, ~A7!

is also used in Appendix B, where

A5 1
2 lr n22J, ~A8a!

B52
1

2
r n21

]

]r
J, ~A8b!

C5
1

2 S 2~n21!r n22 2 i ~n22!r n22 0 0

2 inr n22 ~n21!r n22 0 0

0 0 0 0

0 0 0 0

D .

~A8c!

The velocity–pressure field of the Kelvin mode in th
vortex core is defined by

vK~k,m,v!5U~r !ei (kz1mu2vt)1c.c., ~A9!

whereU5(Ur ;Uu ;Uz ;P) is given by

Ur~r !52 i F ~m2v!dJumu8 ~dr !1
2m

r
Jumu~dr !G , ~A10a!

Uu~r !52dJumu8 ~dr !1
m~m2v!

r
Jumu~dr !, ~A10b!

Uz~r !52
k

m2v
@42~m2v!2#Jumu~dr !, ~A10c!

P~r !5@42~m2v!2#Jumu~dr !, ~A10d!

with Jm as the Bessel function of the first kind andJm8 its
derivative. The scalard in these expressions is the ‘‘radia
wave number’’ and is defined as

d25
k2~21m2v!~22m1v!

~m2v!2
. ~A11!

Amplitudesr andf(r ) of the displacementaK and potential
FK of the Kelvin modes are

r5
i

v2m
Ur~1!, ~A12a!

f~r !5 i
42~m2v!2

m2v

Jumu~d!

K umu~k!
K umu~kr !. ~A12b!
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The dispersion relationD(k,m,v)50 is given by

D~k,m,v!5~m2v!dJumu8 ~d!12mJumu~d!

1
42~m2v!2

m2v

K umu8 ~k!

K umu~k!
kJumu~d!, ~A13!

whereKm is a modified Bessel function andKm8 its deriva-
tive.

APPENDIX B: INVISCID ASYMPTOTICS ANALYSIS

In this appendix the inviscid growth rate of the resona
Kelvin mode combination is obtained by an asympto
analysis in the limit of large axial wave numberk and in the
limit of large azimuthal wave numberm. Our goal is first to
calculate the limit values observed in Figs. 6 and 10, a
then to check that they are in agreement with the local s
wavelength analysis.29 For this purpose, asymptotic expre
sions for the Kelvin modes are used to evaluate the var
coefficients of the expression Eq.~3.1! of the inviscid growth
rates i .

1. Large k analysis

In this part, the azimuthal wave numberm of the Kelvin
mode isO(1); the limit m→` will be analyzed in the nex
section. A simple expression for the Kelvin mode may
obtained by using asymptotic estimates for the Bessel fu
tions Jm , Km and their derivatives:

Jm~x!;A 2

px
cm~x! as x→`, ~B1a!

Jm8 ~x!;2A 2

px
sm~x! as x→`, ~B1b!

Km~x!;Ap

2x
e2x as x→`, ~B1c!

where

cm~x!5cosS x2~2m11!
p

4 D , ~B2a!

sm~x!5sinS x2~2m11!
p

4 D . ~B2b!

In particular, this gives, whend→` and vÞm in the dis-
persion relation~A13!,

d; lp1~2m11!
p

4
2arctan

~162n2!k

n2d
, ~B3!

wherel is a large integer which labels the branches. Note t
l is directly related to the branch labeli introduced in Sec. III
by a relation of the form:l 2 i 5 f (m). As also noticed in that
section, one expects the largest growth rate to be obtaine
the resonant Kelvin mode of same labeli. It is then natural to
assume that the radial wave numbersd1 and d2 of the two
resonant Kelvin modesvK(k,m1 ,v) andvK(k,m2 ,v) are of
the same order. This leads to

v;~m11m2!/2, ~B4a!
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A162n2

n
. ~B4b!

This expression, in addition to Eqs.~B1a!–~B1c!, allows one
to estimate the scalar products appearing in Eq.~3.1!. Upon
writing N2u15A2u11B2u11C2u1 with the definition Eqs.
~A8a!–~A8c! for A, B andC, we get, after a careful estima
tion of each term,

I 1;I 2;
82n2

4p
d1sm1

~d1!sm2
~d2!, ~B5a!

J1;J2!d1 , ~B5b!

J1u1;J2u2;
8

p
d1 , ~B5c!

A2u1;2Ā1u2!d1 , ~B5d!

B2u1;B̄1u2;I 1 . ~B5e!

The last termC2u1 has two different expressions forn
52 andn53:

C2u1; C̄1u2;
9

2p E
0

d1
cosS d12d2

d1
xDdx

;U 9

2p
d1 if d15d2

o~d1! if d1Þd2

, for n52, ~B6a!

C2u1; C̄1u2;
49

4pd1
E

0

d1
x cosS d12d2

d1
x1

3p

2 Ddx

;
49

4p
d1

sin~d12d2!

~d12d2!2
, for n53. ~B6b!

The expression Eq.~3.1! then reduces to

s i;
uC2u1u
J1u1

«. ~B7!

This gives

s i;U 9

16
« if d15d2

o~«! if d1Þd2

for n52, ~B8a!

s i;
49«

32~d12d2!2
for n53. ~B8b!

Besides, forn53, using expression Eq.~B3!, d12d25( l 1

2 l 2)p2 (3p/2), which implies that the maximums i (max)

549«/(8p2).0.62« is attained forud12d2u5 p/2.

2. Large m analysis

In the limit of largem, the modified Bessel functionK umu
satisfies

K umu8 ~k!

K umu~k!
;2

umu
k S 11

k2

m2D 1/2

. ~B9!
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Therefore, the dispersion relation Eq.~A13! reduces to

2~v2m!2dJumu8 ~d!1F2l ~v2m!1umu~42~v2m!2!

3S 11
k2

m2D 1/2GJumu~d!50. ~B10!

a. First case „d1Èd2Èm 1…

If d;m, the Bessel function satisfiesJumu8 (d)!Jumu(d)
and the dispersion relation is simplified. This correspond
the branches of the dispersion relation for whichv5m in
k50 ~see Fig. 3!. The case which involves the particula
branch leaving fromv5m21 is treated below. The ad
equate asymptotic expression for the Bessel function@see
formula ~9.3.23! of Abramowitz and Stegun’s book47# is

Jl~m1jm1/3!;
21/3

m1/3
Ai ~221/3j!@11O~m22/3!#

1
22/3

m
Ai 8~221/3j!F 3

10
z21O~m22/3!G ,

~B11!

asm→` with fixed j and where Ai is the Airy function. The
condition of resonance Eq.~2.6! of two Kelvin modes for
n52 andn53 implies that at leading order

v;
m11m2

2
, ~B12a!

k;
A162n2

n
m1 . ~B12b!

Inserting Eqs.~B12a!,~B12b! in the dispersion relation Eq
~B10! also gives

d1;m12
a1

21/3
m1

1/31
n2

4A162n214n
, ~B13a!

d2;m22
a2

21/3
m2

1/31
n2

4A162n224n
, ~B13b!

wherea1 , a2 areO(1) zeroes of the Airy function.
Here the branches are labeled by the zeroes of the

function. Let us first consider the casea15a2. In that case,
the scalar products appearing in Eq.~3.1! reduce to

J1u1;8Z1 , ~B14a!

J2u2;8Z2 , ~B14b!

J1;J2!m2/3, ~B14c!

I 1;2S 7

8
2

63A7

32 DAZ1Z2, ~B14d!

I 2;2S 7

8
1

63A7

32 DAZ1Z2, ~B14e!
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A2u1;2Ā1u2;2
63A7

32
AZ1Z2, ~B14f!

B2u1;B̄1u2;2
7

8
AZ1Z2, ~B14g!

C2u1; C̄1u2;2
49

4
AZ1Z2, ~B14h!

where

Z1521/3m2/3 Ai 82~a1!, ~B15a!

Z2521/3m2/3 Ai 82~a2!, ~B15b!

andN5A1B1C. This leads to

s i;
49

32
«, for n53. ~B16!

A similar calculation yields

s i;
9

16
«, for n52. ~B17!

When a1Þa2, the inviscid growth rate of the resonan
Kelvin mode is smaller. An upper bound is obtained usi
the following relations~valid only for a1Þa2):

E
0

`

Ai ~x1a1!Ai ~x1a2!dx50, ~B18a!

E
0

`

Ai 9~x1a1!Ai 8~x1a2!dx

5S a1

a22a1
1

6

~a22a1!3D Ai 8~a1!Ai 8~a2!. ~B18b!

Relation Eq.~B18a! yields

C2u1; C̄1u2!m2/3. ~B19!

Equations~B14a!–~B14e! are still valid, so that, using iden
tity Eq. ~B18b!,

~B̄1u22I 1!~B2u12I 2!,S 91

24
21/3m2/3 Ai 8~a1!Ai 8~a2! D 2

.

~B20!

It immediately follows that

s i,
91

192
«. ~B21!

Then, for these modes, the inviscid growth rate is roug
three times smaller than the maximum growth rate. C
a15a2, which maximizes the growth rate, corresponds to
branch crossing pointsi 5 j 11 wherei and j are the branch
label for m1 andm2, respectively.

b. Second case „d2ÈZm 2 with Z Å1…

This second case corresponds to the crossing point
the particular branch of the dispersion relation form2 and the
regular branches form1. In particular, it corresponds to
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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modes (m1 ,m11n,1) in the limit of largem1. The scaling
d1;m1 still holds butvÞ(m11m2)/2. The asymptotic ex-
pansion of the Bessel function leads to

Jumu8 ~d2!

Jumu~d2!
;

A12Z2

Z
for Z,1, ~B22a!

Jumu8 ~d2!

Jumu~d2!
;

AZ221

Z
tanS p

4
2umuAZ2211umuarccos

1

ZD
for Z.1, ~B22b!

with Z5d2 /m. Using the asymptotic dispersion relation E
~B10! yields an implicit equation forZ which can be solved
numerically. It follows thatm22v.1.115 for n52 and
m22v.1.496 forn53.

For both casesn52 and 3,m22vÞn/2. This leads in
the limit of large azimuthal wave numbers to an invisc
asymptotic growth ratess i!«. However, forn53, m22v
is sufficiently close ton/2 to allow an unstable resonance f
large m1 but still O(1). This explains why the mode
(m1 ,m113,1) can remain the most unstable for the firstm1.
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