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Stability of the Rankine vortex in a multipolar strain field
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In this paper, the linear stability of a Rankine vortex inrafold multipolar strain field is addressed.

The flow geometry is characterized by two parameters: the degree of azimuthal symmwtigh

is an integer and the strain strengthwhich is assumed to be small. Fo=2, 3 and 4(dipolar,

tripolar and quadrupolar strain fields, respectiyely is shown that the flow is subject to a
three-dimensional instability which can be described by the resonance mechanism of Moore and
Saffman[Proc. R. Soc. London, Ser. 246, 413(1975]. In each case, two normal modgé&elvin

modes, with the azimuthal wave numbers separatedpresonate and interact with the multipolar
strain field when their axial wave numbers and frequencies are identical. The inviscid growth rate
of each resonant Kelvin mode combination is computed and compared to the asymptotic values
obtained in the large wave numbers limits. The instability is also interpreted as a vorticity stretching
mechanism. It is shown that the inviscid growth rate is maximum when the perturbation vorticity is
preferentially aligned with the direction of stretching. Viscous effects are also considered for the
distinguished scalings:=0(¢) for n=2 and 3,y=0(e?) for n=4, wherev is the dimensionless
viscosity. The instability diagram showing the most unstable mode combination and its growth rate
as a function of viscosity is obtained and used to discuss the role of viscosity in the selection
process. Interestingly, fon=2 in a high viscosity regime, a combination of Kelvin modes of
azimuthal wave numbemn=0 andm=2 is found to be more unstable than the classical helical
modesm==x1. For n=3 and 4, the azimuthal structure of the most unstable Kelvin mode
combination is shown to be strongly dependent on viscous effects. The results are discussed in the
context of turbulence and compared to recent observations of vortex flamen00®American
Institute of Physics.[DOI: 10.1063/1.1345716

I. INTRODUCTION the context of vortex ring¥'! The mechanism of the insta-

bility was explained by Tsai and Widn&lifor an elliptical

Recent experiments and numerical simulations demong,ine yortex and by Moore and Saffmiaifor a general
strate the presence of structures of high vorticity in turbu-

; iscCi ici file. Th h hat the i ili
lence(see for instance Refs. 1%3t was argued that those inviscid vorticity profile ey showed that the instability

. . L2 could be interpreted as a resonance phenomenon of the
elongated and distorted filaments of vorticity could play an : . : Lo
. . . . Kelvin modes of the underlying vortex with the elliptic dis-
important role in the intermittent character of turbulefice.

5 . : . : . tortion. In particular, they established that the combination of
Arendt et al,”> in numerical simulations of gravity waves,

showed that the deformation of those vortex tubes could bg_tatli)nary dhelfil _modles of az|muth::1I Wzve mtml]atl)mTh
viewed as a superposition of Kelvin mofesn a straight ~— and m=1 1s always resonant and unstable. 1he
filament, but they did not propose a mechanism for the gengrowth of this resonant helical combination leads to a sinu-
eration of such perturbations. The aim of this paper is tg?US deformation of the vortex in the plane of maximal posi-
provide such a mechanism. tive stretching. So far, there has been no proof that this com-

This paper focuses on the idealized Rankine vortex flowpination of Kelvin modes is thg most unstable, but this is
which allows a comprehensive analysis. The vortex is subSUPPOrted by numerous experimental observattSnt. in
ject to a multipolar potential strain field perpendicular to thethis paper, the growth rate of all possible resonant configu-
vortex axis which induces a deformation of the streamlinedations will be computed. The conditions under which the
in the rotational part of the flow. Our goal is to understandhelical mode combination is the most unstable will be estab-
under which conditions Kelvin modes can appear spontandished.
ously on the vortex via a coupling with the multipolar strain. ~ The unstable character of elliptic streamlines was re-
In particular, we want to address the role of viscous ancexamined by Pierrehumbéttand Bayly® using a local ap-
finite core size effects in the Kelvin mode selection processproach. They showed that the instability, caltliptic insta-

The effect of an external perpendicular strain field on ability in this framework, could be interpreted as a parametric
vortex filament is known to induce, at first order, an elliptic excitation of inertial waves. Lifschitz and Haméfrirecov-
deformation of the streamlinés® The stability of such a ered this result in their general stability theory based on geo-
deformed filament was first studied by a global analysis inmetrical optics methods. This local theory was also used to
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account for various additional effects such as time depen- 1, ¢ )

. . . — n H
dence, stretching, stratification, etsee Baylyet al?* and Yin(r,0)=— 517+ —risinnf)+0(e%) for r<R,
reference therejn The connection between the local and glo- (1.19

bal descriptions of the elliptic instability was made by
Waleffe’? who showed that most unstable inertial waves
could be summed up to form the resonant helical Kelvin
mode combination of Tsai and Widnafl.

Few experimental works have been designed to study the +0(e?) for r>R, (1.1b
elliptic instability. Chernous’k® studied the flow inside an jith R(6) such thaty,(R,0)=—1/2, i.e.,
elliptic cylinder and gave an instability diagram showing the
number of structures as a function of aspect ratio and eccen- R(6)=1+ isin(n0)+0(sz), (1.2
tricity. Gledzer and Ponomar&and Malkus* confirmed n

that these results agree with the Kelvin mode resonanc@nheren is an integer and is a small parameter measuring
mechanism. Experimental observations of the elliptic instathe strength of the external field. Here, the basic rotation
bility have also been evidenced in open flows configurationgpeed and the vortex radius have been used to nondimension-
such as vortex rindg§ and vortex pairs? It has also been gjize the variables. This solution is the extension of Moore
recognized as an important mechanism in the secondary irind Saffman solutidfi to a multipolar strain field in the limit
stability transition in shear layef$;* wakes’ and rotating  of weak external field. Figure 1 pictures the streamlines of
flows in confined geometr$f:2’ the flow for e=0.25 andn=2, 3 and 4. Fon=2, all the

In this paper, we perform a global stability analysis of inner streamlines are ellipses with same eccentrigityFor
the Rankine vortex in a weak stationary multipolar strainlarger n, the streamlines are circular in the vicinity of the
field. The basic flow is given by the following streamfunc- center and become more deformed close #oR(6). The
tions[in cylindrical coordinatesr(, 6,z)]: case of pure strain fieldn(=2) was considered by Tsai and

YoulT,0) =~ (1) + 5 [(n—1)r"+r~"Jsin(n6)
n
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Widnall.*? Our goal is here twofold. First, we want to recon- A. Governing equations for the perturbations
sider the pure strain case to show that other unstable modes
different from the helical mode combinations obtained by

Tsai and Widnall exist and that they may become dominant,y \yjqnq 12 that the perturbation is potential outside the

If viscosity is included. Second, we want to show that 4yortex core. The perturbation is then defined by its velocity

S|m||Iar '(;]itab'“ty rl?ecram_:,m_e?lslt; WEQ?]the pure Sga'? '%otential ® outside the vortex core, its four-component
replaced by a multipolar strain hieid which corresponas 1o elocity-pressure field/=(v,;vg4;v,;p) inside the vortex

higher symmetrical environmeftetwork of vortices, vortex core and the displacemeaf the vortex edge. Accordingly
n a square po)x - the core of the perturbed vortex is definedrsy R+ \a.

Ina previous p"?‘pe?'% we addresse'd the Iocgl St".’lb'"ty of The equations forv are obtained by linearizing the
the streamlines defined by BQ.13 using the Lifschitz and Navier—Stokes equations around the vortex core expression

Hameiri theory”? The re_sults can be summz_;mzed as fOHOWS'(l.la. They can be written in the following condensed form:
Forn=2, 3 and 4, a given closed streamligig=C is un-

stable with respect to short wavelength inviscid perturbations
as soon ag >0 with a leading order growth rate propor-
tional to the asymmetry parameters,=¢[2nC/(2 ) , ,
—n)]"22 Forn=5, the streamlines become unstable onlywherej, M,_/\/ and £ are operators given in Appendix A.

if they are sufficiently distorted, i.e., i, is above a positive I Ed. (2.1, Nis the matrix whose elements are the complex

critical value. With the restrictions- 1/2<C<0 and small ~ conjugates of those i, and v is the kinematic viscosity.

=2, 3 and 4 with a maximum inviscid growth rate given by viscosity v is also the Ekman number of the flow based on
o=(9/16)e, (49/32¢ and 3, respectively, and locally the radius of the vortex core. Both parameteand viscosity
stable for larger values af.?° These results are purely local ¥ are assumed to be small in the following. As seen below
and limited to short wavelength perturbations. Thereforefor n=2 and 3, the distinguished limit is obtained when both
they are not sufficient to obtain information on the mostParameters are of same order. The rescaled viscosity
unstable global modes of the vortex. For this purpose, it is=¥/¢ Will indeed be the only control parameter in these
necessary to use a global theory and to interpret the instabifases. The equation for the velocity potentialoutside the
ity in terms of Kelvin mode resonance. This constitutes theCOre 1S
subject of the pre_sent paper which is_; organized as foIIow_s. AD=0. 2.2

In Sec. Il, it is shown that Kelvin mode resonance is ) _
possible only ifn=2, 3 and 4 and a formal expression of the For smalle, the equations for the edge displacenmefullow
growth rate is obtained fan=2 and 3. In Sec. lIl, cases from the kinematic and dynamic boundary conditions evalu-
=2 and 3 are treated quantitatively: the growth rate is comated atr =1:
puted for each resonant combination and the role of viscosity oD ( (9@)

UVg—

in the mode selection process is analyzed. Gasd is spe- i cogné) 50

Consider a linear perturbation of the basic flow Egs.
1.19, (1.1b of small amplitudex and assume, as in Tsali

d ) R
Ul Mv=g(eMN+e "IN+ vLv+0O(&?), (2.1

cial, as the resonance occurs for infinite axial wave numbers.
It requires a separate treatment, which is presented in Sec. s

IV. In Sec. V a physical explanation of the instability is —ﬁsin(nﬁ)(
provided in terms of vortex stretching. In particular, it is

shown that the more unstable the mode combinations, the

2

W TP o), (@23
s (g9, (2.3a

a oa
more important the correlation between perturbation vortic- v,=—+ — +0(e), (2.3b
. . . . . at 90
ity and the direction of stretching of the basic flow. In the
last section, the results are summarized and discussed in the ID  ob b e
context of turbulent flows. Pt g~ ¢ cogno) — -~ —sin(no)| — Ly

p PP PP Oe?). (23
" or T arat Farag) TOED (230

II. INSTABILITY MECHANISM AND SCALINGS The system of Eqg2.1)—(2.2) with the matching conditions

Egs.(2.39—(2.39 describes the evolution of the linear per-

In this section, the calculation of a formal expression for - . L .
P rbation {,a,®) of the vortex in the limit of small strain.

the growth rate of the instability is detailed. The presentatiorFu
follows the papers of Tsai and Widnlland Moore and
Saffman® However their analysis is extended to account for
multipolar strain, general resonant modes and viscous ef- As explained by Tsai and Widn&fl and Moore and
fects. The linear equations for the perturbation of the deSaffmant® the instability of a deformed vortex patch is the
formed Rankine vortex are first given and the Kelvin modesconsequence of the coupling of Kelvin modes with the ex-
are defined. Then the mechanism of Kelvin mode couplingernal field. The Kelvin mode perturbations are defined as the
with the multipolar strain field is described and analyzed ininviscid normal modes of the underlying axisymmetric basic
the limit of weak strain using perturbation theory. flow (i.e., the Rankine vortex Thus, they satisfy Eq$2.1),

B. Description of the Kelvin modes
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3 - - - ; wave numbers separated hycan be coupled at leading or-
der. The condition of resonance of two Kelvin modes
2r (ky,my,w1) and Ky, M,,w,), with my,>m;, is then

k1:k2, m2_m1:n, W= wWy. (26)

This condition of resonance is analyzed in thed)-plane
by looking for the crossing points of the dispersion relations
associated with two Kelvin modes of azimuthal wave num-
bersm; andm, separated by. Forn=2, this was done by
Tsai and Widnalf for the two helical modesn;=—1, m,
=1.
Here property Eq(2.5) implies that resonance can occur
only if n=2 or 3. Forn=4, resonance is also possible for
_ _ ] _ ) infinite axial wave numbergas branches merge fér— »);
FIG. 2. Dispersion relation of the Kelvin modes in the ¢)-plane form s -5 will be studied separately in Sec. IV. Fer5, the
=—1 (dashed lineandm=1 (solid line). Only the first ten branches are . . .
represented. family of branches of two Kelvin modes of azimuthal wave
numbers separated byare totally distinct. Consequently, in
such a case, no instability by a Kelvin mode resonance phe-
(2.2, and (2.39—(2.390 with e=»=0. Their velocity- nomenon is possible at leading order. This is in agreement
pressure field/ , edge displacemert, and velocity poten-  with our previous result that the flow is locally stable to
tial @« can be written as small n-fold symmetrical deformation ih=5.
The end of the present section is dedicated to a formal

_ i(kz+méo— wt)

vk(k:mw)=U(r)e +e.c., (249 calculation of the growth rate of a resonant Kelvin mode

ag(k,m,w)=pelkztmi—ot) 4 ¢ ¢ (2.4  combination whem=2 or 3. The calculation closely fol-
(s mo— o) lows Moore and Saffman’s presentatithWe start with a

Dy (k,m,w)=¢(r)e “Y+c.c., (249 perturbation ¢,a,®) of the form

where the axial wave numbé&r the azimuthal wave number

— (1) imy 60 (2) im, 6
m and the frequency are connected through a dispersion V=[AU(r) e+ AUM(r) et

relation D (k,m,w)=0 which is obtained by enforcing con- +evy(r,0)]e ket L O(2) +c.c., (2.7a
ditions (2.33 and(2.39. The calculation leading to the dis-

persion relatiorD (k,m,w)=0 is classical’ and will not be a=[A;pMeMl+ A, pReim2f+ ¢ F el (ke ohgeot
reproduced here. Expressions fa#(r), p, ¢(r) and )

D(k,m,»)=0 are given in Appendix A. +0(e9)+c.c, (2.7

It is useful to emphasize a few important properties of

= (1) imy 0 (2) im0
the dispersion relation. For each azimuthal wave nunmiber P=[A14(r) T+ Ay p=i(r) e

and axial wave numbek, there is a discrete infinity of fre- +ed,(r,0)]e' ke “Deroit 4 O(g2) +c.c. (2.70

guenciesw satisfyingD (k,m,w)=0. They are all real and in

the interval At leading order this perturbation is a combination of two
Mo 2< <Mt 2. 2.5 resonant Kelvin modesk(m;,w) and K,m,,w) with un-

known amplitude®\; andA,. Therefore it is a leading order
In Fig. 2 the first branches of the dispersion relation aresolution of equation$2.1), (2.2) and(2.33—(2.39. The cor-
plotted in the k,w)-plane form=1 andm=—1. Note that, rection termev, as well as the slowly varying factor &'
whenk goes to zero, all the branches accumulate to the freare generated by the right-hand side of E2}1). They are
guencyw=m except a particular branch which tendsd#o due to the interaction of Kelvin modes with the nonaxisym-
=m-—sgn(m). This property is true for allm#0. For m metric part of the basic flow and to the viscous damping of

=0, this particular branch does not exist. the perturbation.
The frequencyw being real, the temporal growth rate of
C. Kelvin mode resonance and instability the resonant Kelvin modes is then given &y eRe(o). In

h.Tsai and Widnall? o is obtained by fully integrating Egs.
62.1), (2.2 and (2.33—(2.309 up to the orders. Here we
prefer to follow the simpler calculation of Moore and
Saffman’$® which is based on a solvability condition foy.
The form of the right-hand side of E¢R.1) indicates that/;
gean be written as

The Kelvin modes are neutral. The Rankine vortex wit
out external field is then expected to be marginally stable t
vortex core perturbationgA convincing proof of this state-
ment is still lacking contrarily to what is claimed in Arendt
et al®!) However, as explained by Moore and Saffniarm,
small asymmetry is sufficient to couple Kelvin modes an
may lead to exponential growth. The coupling term associ- —\/ im0 im,0 i(m—n)6 i(my+n)o
ated with the multipolar strain field is the first term on the V1= Vi@ T Voo T Ve T Ve '(2 8
right-hand side of Eq(2.1). The azimuthal dependencé'®’ '
of this term implies that only Kelvin modes of azimuthal Inserting this expression in EQ.1) gives forV,; andV,
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(—i0J+ Mn)Vi=—A101T UD+ A L UD

+ AN, U, (2.93

(—i0J+ Mn)Vo=—A01 T UD+Ayp L1 UP)

+A1leU(1), (2.9b

where the notation M, means My,

=[ Me!(MmO+ka]e=i(Mo+k?) The integration of these equa-

tions is not needed.
Introducing the following scalar product:

1 _ _ _ _
<x|Y>=Jo(x,v,+xevg+xzvz+xpvp)r dr, (2.10

C. Eloy and S. Le Dizes
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FIG. 3. Dispersion relation of the Kelvin modes in thie,®)-plane for
m,; =10 (solid line) and m,=13 (dashed ling The numbers label the dif-

the solvability condition is obtained by forming the scalar ferent branches as explained in the text. The growth rates of the modes

product ofUY) andU®) with Egs.(2.93 and(2.9b), respec-
tively. It leads to coupled amplitude equations AgrandA,:

Aol tA0qd,= _A10171\1+A1V1£1|1+Azf\_/l\z,

(2.113
Al o+ Ay01d= = A0 To+ A Lo+ ANy 1,
(2.11h
where the following notation has been used:
Noj=(UPINUD), (2.12

The coefficientd ;, 1,, J; and J, are boundary terms de-

fined inr=1 by
1 i gu® i 2@
——p®|y@_ 5 i @1
I, 2P (Ua n ar imy¢ N o2
1 i oP®3) w—my+n dp?
_Zyum(Z + @ "2 77
27T (n o tme¢ n ar )
(2.133
i (1) i 92 (1)
i I d°¢p
=—_p@| yWy — —j (€9
l,==P (U im,¢ = arz)
1 i P w—m;—n JpM)
U@ = wyZ T
o (n or T n ar )
(2.13b
Ji=—UMe®, (2.139
J=— U@ @), (2.139

whereU®, U andP®, P? are the radial velocity and

pressure of the moddd™® andU(®. These boundary terms
come from theO(e) correction terms in the matching con-
ditions Egs.(2.39—(2.39. Note that the external potential

flow intervenes in the amplitude equatiof®.113,(2.11bH
via the boundary termk;, I,, J; andJ, and the dispersion
relation only.

The equation for the growth raie, is obtained by re-

quiring that the determinant of the linear system Egs.

(2.119,(2.11b vanishes:

corresponding to the different intersection points are displayed in Table II.

[o1(J11+31) = vilapllo1( T2+ d2) = v1Ly)0]

= (N 1) (N —1). (2.14

This relation is the formal expression of the growth rate we
were looking for. For a given resonant Kelvin mode combi-
nation, the growth rate-; only depends on the rescaled vis-
cosity v4. Here, the difficulty is that the number of resonant
Kelvin mode combination is doubly infinite. For each
there is an infinity of possible couples of azimuthal wave
numbers (n;,m,) which satisfy the relatiorm,—m;=n.
And for a given couplerf;,m,), there exists as mentioned
above infinitely many crossing points in thé, {)-plane.
However the dispersion relation EgA13) and Eq.(2.14) are
invariant by the following symmetry: of,k,m;,m,)
—(—w,k,—my,—m,). Therefore, the study can readily be
restricted to mode combinations satisfying + m,=0.

In the next section, the different coefficients of Eq.
(2.14) are computed for a large range of resonant Kelvin
mode combination using the definitions of the operators
given in Appendix A. In Appendix B, these coefficients are
analytically evaluated in the limit of largeand largem.

[Il. DIPOLAR AND TRIPOLAR STRAIN FIELD (n=2,3)

This section focuses on the cases2 andn=3, for
which the formal expressiof2.14) for the growth rate ap-
plies. In a first subsection, the viscous damping is neglected
which amounts to considering; =0. This permits to com-
pare our expression with the previous results of Tsai and
Widnall*? and with the local and inviscid results obtained in
Ref. 29. In a second subsection, the effect of viscosity is
analyzed and the growth rate of the most unstable Kelvin
mode combinations is computed as a functiorvof

A. Inviscid analysis

Whenv;=0, Eq.(2.14 reduces to a simple expression
for the inviscid growth rate:

02:</V1|2—|1><N2|1—|2>82
(Tt ID(Joptdo)

(3.9
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TABLE I. Table of the computed inviscid growth rate /e for m;=—1, TABLE lll. Table of the axial wave numbetsof the most unstable modes
m,=1 as a function of the branch label. The columns are the different(m;,m,,i) in the dipolar and tripolar cases, fo<4.

branches of the dispersion relation fo; and the lines form,. The under-
lined growth rates are for the principal modes,1,2), (—1,1,3), etc. Dipolar Tripolar

(=11))  (0.2)) (=12 (0.3)) (1.41)

1 2 3 4 5
1 - 00041 00046 00038 00031 1 0.0000  1.2422 2.2920 3.9360 5.3810
5 00041 05708 00073 00061  0.0051 2 25050  3.3701 6.1719 7.8218 9.3722
3 0.0046 0.0073  0.5695 0.0061 0.0053 3 4.3491  5.2264 9.7861 11471 13.078
4 0.0038 0.0061 0.0061 0.5681 0.0051 4 6.1740 7.0584 13371 15.076 16.718
5 0.0031 00051  0.0053 00051 0.5672

4(b)] are qualitatively different. Fom=2, the inviscid
prowth rate is maximum for the combination-(,1,2). It
asymptotes the limit value (9/16whenk— « [dash-dotted
lines in Fig. 4a)]. For n= 3, the growth rate is a decreasing
function of k for fixed m; and reaches a limit value
49¢/(87?)~0.62 ask— [lower dash-dotted lines in Fig.
rA’{(b)]. As can be noticed in Fig.(8), this limit value is much
smaller than the maximum growth rate (49/831.53%
which is attained whem,—o for fixed i #1 (upper dash-
dotted ling.

In Sec. V, a physical interpretation will be given ex-

For eachm, we choose to label by an integer each branch o
the dispersion relation in the order of increaskgee Fig.
3). We computed expressid8.1) for 10 000 resonant Kelvin
mode combinationgthe combinations corresponding to the
100 crossing points of the first 10 branches of the dispersio
relations of the azimuthal wave numbearg and m,=m;
+n with n=2 and 3 and-1<m;=<48). As an illustration,
typical values of the growth rate, /¢ are given for the mode
combinations ,,m,)=(—1,1) and (m;,m,)=(10,13) in

Tables | and lI(for the crossing points displayed in Figs. 2 plaining why some modes have larger growth rates than oth-

and 3. . )
In this computation, we observed that all resonant > The asymptotic analysis for largeand largem, that

Kelvin mode combinations are unstalfiee., o; is always provides the limit values fon=2 and 3 are detailed in Ap-
real). We also found that, fom;=<48, growth rates are sig-

nificantly larger for the crossing points of branches with the 06

same label. In the following, these combinations will be 0_55_-#&fw@mmmm?gzzzﬁzs '''''' >

namedprincipal modesand numbered using the notation o S A o_,o.,o-O"
(my,my,i), 3.2 05

wherei is the common label fom; andm,. Forn=2, m; :_0.45-

=—1, m,=1, these crossing points are exactly on the axis

of symmetryw=0 of the branch family(see Fig. 2 They 04r

are the resonant stationary helical modes studied by Tsai an ~ .

widnall*?> and Moore and Saffmali. The principal mode 035¢ T~

(—1,1,1) of vanishing axial wave number correspond to a 03

global translation of the vortex. As in Tsai and Widnall, it “o 30 35

will be discarded in the following. For all the other cases, a)
principal modes do not exhibit particular symmetries. Note
that the first principal modeng, ,m,,1) always involves the
particular m, branch issued from the poink(w)=(0,m,
-1).

In Table Il the axial wave numbeltsof the first princi-
pal modes ,,m;+n,i) are given. For given andn, this
axial wave number increases with, and tends toe asm;
— o0, The variations of the principal mode growth rate as a
function of the axial wave numbderare displayed in Fig. 4.
Note that the graphs fon=2 [Fig. 4@] and n=3 [Fig.

TABLE Il. Same as Table | fom;= 10, m,=13. The boxed-in growth rate 0 10 20 30 40 50 60 70
corresponds to the combination examined in Fig. 12. b k
1 2 3 4 5 FIG. 4. Inviscid growth rates; /e for the principal modesrf, ,m;+n,i) as
a function of their axial wave numbéefor dipolar strain field (=2) (a)
1 1.2658 0.1685 0.0375 0.0236 and tripolar strain fieldif=3) (b). In both cases, the symbols are: m;
2 0.3678 1.1049 0.0864 0.0458 0.0281 =-1,0: m=0,¢: m=1,A: my=10,O: m;=20 and the solid and the
3 0.1514 0.3679 1.0220 0.0460 0.0319 dashed lines are the inviscid growth rate of the modasg,h;+n,1) and
4 0.0860 0.1292 0.3864 0.9657 0.0219 (my,m;+n,2), respectively, for—1<m,;=<48. The dash-dotted lines are
5 0.0561 0.0724 0.1191 0.4051 0.9242 asymptotic values for large wave numbers;=(9/16)e in (a); o

=49:/(87%) and ;= (49/32) in (b).
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pendix B. The main results of this analysis are now summa- 15
rized. In the limit of largek, for n=2, the asymptotic invis-

cid growth rate is proved to be maximum for principal
modes. For other resonant combination, the growth rate~ 5l

10+

tends to zero for larg&. For n=3, the largek asymptotic *2
growth rate is given by ; 0
©
= =57
49 %
0= 2/ n: . 2 (33) ~-10
87m(2i—2j—1)
-15¢
wherei andj are the branch labels fan; and m,, respec- _20

tively. This asymptotic growth rate is maximum not only for 0 0.2 04 . 086 0.8 1

the principal modesiE&j) but also for the adjacent modes

defined by the condition=j+1. The asymptotic results for FIG. 5. Four components of the Kelvin modevy(k,m )
largem, are different. For botin=2 andn=3, the principal = Y(1€ "™ " for m=39, »v=405 andk=519 (corresponding to a
modes are no longer the most unstable modes. The grow{fyid Goed inewin the dashed ine an8  the dash-datied fne.
rate of the first principal modesr(;,m,,1) even goes to zero ’ '
asm;, goes to infinity. The largen; asymptotic growth rate

is now maximum for adjacent modes j +1 with j#1. For

n=2 this maximum is the same as the maximum lakge

asymptotic growth rate (9/16) The situation is different for vortex has negligible influence on the stability results in the

n=3. The maximum largem asymptotic growth rateo;  limit of large wave numbers.
~1.5Z% is much larger than the maximum largasymptotic
growth ratec;~0.62. B. Viscous selection process

The results form,=—1 and m,=1 (see Fig. 2 and In the previous section the maximum inviscid growth

Table ) can directly be compared to those of Tsai and _ . . .
: 12 L : rate forn=3 was shown to asymptote its maximum value in
Widnall.*= The inviscid growth rates and axial wave numbers L : o
the limit of a large azimuthal wave number. This is no longer

computed here are in agreement with their results for the 4 to hold wh . ity is included . f
principal modes €1,1,2) and (1,1,3). However, we expected to hold when viscosity is included, as viscous ef-

found that all Kelvin mode combinations are unstablef€Cts damp perturbations with large wave numbers. More-
whereas Tsai and Widn&fifound that some may be stable. ©Ver. we shall see below that, for=2, another resonant
A conclusion similar to ours has been reached by Vladimiroycombination than the principal mode-(,1,2) may become
and II'n% for the Kirchhoff vortex which makes us confi- the most unstable in the viscous regime.
dent of our result. Note, however, that this discrepancy is not  In the present paper, only volumic viscous effects on the
expected to strongly affect Tsai and Widnall’s conclusions agerturbation are considered. In particular, we neglect the vis-
the resonant combination they found stable are in fact amplicous diffusion of the basic flow as commonly done in stabil-
fied with a negligible growth ratés0 times smaller than the ity analysis of inviscid solution®> The effect of basic flow
maximum growth rate diffusion has been analyzed elsewh& addition, the vis-
The large wave number growth rates (9/46)n=2)  cous effects on the perturbation due to the boundary layer at

and (49/323 (n=3) correspond to the local maximum the edge of the vortex core are not considered. These
growth rates of the most unstable streamline in the vortexffects® are O(»?), but they are not strongly dependent on
core?® This result was not guaranteed. Indeed, the dispersioghe perturbation wave number and therefore are not expected
relation for the Kelvin modes is a constraint on the axial andy, jnfluence the inviscid selection process. Moreover, these
azimuthal wave numbers which is not present in the localiscoys Jayers are not present for more realistic vortices with
stab!hty analysis. Note, however, th"’?t the V?"‘!e of the IOC"?llc:ontinuous vorticity profile. It is then natural not to take into
maximum grOV\_/th rates are reached in the I_|m|t of large azFaccount these effects if one wants to obtain generic instabil-
muthal and axial wave numbers for=3 while only large . . )

: . . ity scenari. Note finally that both boundary layer effects and
axial wave number is needed for=2. This could be related : e C T
to the differences in the local stability properties fo 2 viscous diffusion effects are negl|g|blek%v . 'I_'he as-
and n=3. For n=2 the local stability properties are the s:chlnptmEs made here are therefore fully justified in the limit

of largek.

same for all streamlines in the vortex core while fier 3 the ) o
flow is not uniform and the most unstable streamline is lo- !N the growth rate expression E@.14), volumic viscos-

cated near the boundary where the strain rate is maximuniy €ffects appear via the terms £y, and v;L5p,. Each of
Thus, forn=3, resonant Kelvin mode combinations have tothese terms can roughly be decomposed into three parts: one
be localized near the boundary to be the most unstable arffoportional tok?, another proportional tm; and a third one

this occurs only for largen, as illustrated in Fig. 5. Note mostly connected to the geometrical character of the Kelvin
finally that the agreement with the local stability propertiesmodes. Thus, the viscous damping is of the form;C k>

of the vortex core shows that the potential flow outside the— v102m§+o(mf,k2) where C; and C, are two positive
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086 : : : changes withv;. Forn=2, the most unstable Kelvin mode
' N combination is ¢1,1,2) for small viscosity and (0,2,1) for

larger viscosity. This was expected from inviscid analysis
since, among all other modes, mode1,1,2) has the largest
inviscid growth rate and mode (0,2,1) has the smallest axial
wave number. Fom=3, the most unstable Kelvin mode
combination is always a principal mode of the form
(my,m;+ 3,1) with m, increasing for decreasing,. Again,
the inviscid results are recovered whep—0: the most un-
stable combination corresponds to modes with the infinite
azimuthal wave numben,.

0 For bothn=2 and 3, there is a viscous cutaff; (v
=0.111 forn=2 andv,.,=0.122 forn=3) above which all
Kelvin mode combinations are damped. For a dipolar strain
field, this result can be compared to those obtained by Land-
man and Saffmaf® Using a local approach, they found that
there exists a critical Ekman numbgrere equal to the di-
mensionless viscosity), depending on the wave number of
the perturbation and on the strain strength, above which the
elliptic flow is stable. In the limit of small strain, Landman
and Saffman’s threshold readg,=0.131k? which becomes
for the smallest resonant wave numbdeee Table I} vy,
=0.084. This estimate is within 25% from our value. Note,
however, that Landman and Saffman’s approach is unable to
give estimates of the viscous damping for modes with a more

b) 107 ; complex azimuthal structure. In addition to the difference in

the selected modes, one can also notice that there is a much

FIG. 6. Normalized growth rate of the principal modes,(m,+n,i) asa larger variation of inviscid growth rates in case 3 than in

function of v;. (a) Dipolar strain =2) and(b) tripolar strain 6=3). Solid ~ casen=2. The mode selection is then expected to be less

lines:m;= il_,'dashed Iinesml:O' and QOtt_ed linesm;=1. Here, forthe  efficient forn=2 and for small viscosity.

f::;egz;elg'ﬁ"r:glaﬁgg dt?; 2?;;::”;0'[;2;%‘?1";01‘;?5 are plotted but the ~ The structure of several resonant Kelvin mode combina-

tion is shown in Figs. @), 7(b). The deformation of the

vortex core by the perturbation has been depicted using Eq.
slowly varying functions ok andm;. For a given viscosity, (2.3b. Forn=2, the combination{1,1,2) gives rise to an
the viscous growth rate is then maximum for finkkandm;. undulation of the vortex in the plane of maximal stretching

In other words, viscosity selects a particular resonant KelvifFig. 7(a@]. This is in agreement with experimental

mode combination. observations*!823For larger viscosity, the principal mode

The result of this selection process for2 andn=3 is  (0,2,1) becomes the most unstable combination. The growth
illustrated in Fig. 6. In these figures, the viscous growth rateof this mode implies the bulgingn; =0) and splitting (.

is computed as a function of; for the first principal modes =2) of the vortex cor¢see Fig. th)]. This result is new and

(my,m,,i) with —1<m;=<1 and I<i<3. The principal shows the limitation of the analysis of Tsai and Widfall

modes are still the most unstable wave combinations whewhich only considered helical mode resonance. It will be

viscosity is added but it can be seen in Fig. 6 that the relativeliscussed again in light of a recent numerical simul&fiam
stability of one combination with respect to the othersSec. VI. Note finally that for very small viscosity, the growth

10

10°

FIG. 7. lllustration of the Rankine
vortex deformation induced by the
principal modes 1,1,2) (a and
(0,2,1) (b). The vortex core displace-
ment is represented for perturbation
amplitude equal ta.=0.1 and 0.2, re-
spectively(with A;=1).

a)
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FIG. 8. Same as Fig. 7 for the principal modes,2,1) (a), (0,3,1) (b) and (1,4,1)(c) with A=0.2, 0.1 and 0.1, respectively.

rate of most principal modes becomes compardhlighin Following the analysis of Sec. Il, the perturbation is then
2% for v,<10™%). Depending on the initial conditions, one taken in the form

could then imagine that modes with a more complex azi- : : : _

muthal structurg could also develop. This Wouldp give aVZ[Al(T)U(l)(r)elmlgelf(l)nfAz(T)U(z)(r)e'mzﬁef'f(zh]
simple explanation of the rich dynamics of vortex filaments xelkz=o) 4 oy (v, 6,2,1), (4.4)
observed in large Reynolds number flows.

Forn=3, the structure of the most unstable combination’hereA;(T) and A,(T) are the amplitudes which vary on
strongly depends on viscosity. Close to the threshald, the slow time scalelT =¢t, of the resonant Kelvin modes
the most unstable mode is as illustrated in Fig)8Wheny,  Vk(k.my,0—ef®) and ve(k,m;+4,0+ef). We shall
is progressively decreased, the most unstable combinaticife below that, contrary to Sec. Il, functioAg(T) and
becomes more and more complex. It first gains a three-stranfi2(T) are not necessarily exponentials of same argument.

structure[Fig. 8b)], then a four-strand structuf€ig. 8c)],  Expressions fon(k,m,w) are given in Eq.(A10). Note
and so on. that, in this limit, a~0 and ®~0 such that the mode is

localized in the core of the vortex. The frequency offsets
Aw=—¢fM andAw=¢f? depend, via relatioiA11), on
IV. QUADRUPOLAR STRAIN FIELD (n=4) (5'61\1a3r;d 6, which are obtained through the dispersion relation
In Secs. Il and Ill, we considered the dipolar<2) and o _
tripolar (n=3) strain fields for which there exist Kelvin 019 m,|(82) + Mgy, (82) =0, (4.53
mode resonances at finite axial wave numblers$-or the /
82( 1 1(82) +Mydim (8,)=0. 4.5h
guadripolar strain fieldr{=4) such resonances do not exist, 2 |m2‘( 2) M, 'mZ‘( 2) (4.5
sincem—2<w<m+2 for finite k. However, k,m;,w) and  These implicit equations are solved numerically. Again, each
(k,m;+4,0) may resonate for infinitk if w=m;+2. In  equation has an infinite number of solutions which corre-
such a case, the resonant state is singular and the analysisgpfond to the different branches of the dispersion relation and
Sec. Il does not apply. To treat this lareresonance, a which can be numbered by the branch label. The amplitude

specific asymptotic analysis is carried out in this section. equations forA; andA, can be obtained by the same proce-
If the axial wave numbek is large but not infinite, the dure as in Sec. Il. They now have the form

resonance is imperfect and there is an offset of frequency for

. o _ A, —

each Kelvin mode, which is deduced from E411): —51\1[?—1-‘*‘ V1£1\1A1+N1\Ze|2fTA2:Oa (4.69
|Aw|=8%K2. (4.9)

The distinguished Iimi.t i§ o.btained when this offsgt is of _32‘2(9_'%+V1£2‘2A2+N2‘1e*i2fTA1:0, (4.6b

same order as th®(e) inviscid growth rate and the viscous a

damping rate. This corresponds to the scalings: with 2f=fM+ £ The largek assumption allows the vis-
S cous terms to be reduced to their leading order expression:
i~ o Je), 1k’=0(e). 4.2 wilyp=— k% Ty and viLp =~ vk 1 Tp. This

permits one to obtain simple expressions Agrand A,:
It is then useful to rescale the viscosity and axial wave num-

ber as follows: Ay(T)=cq exd (if +oi— 2= vk2 )T, (4.7a
v Ay(T)=c, exd (—if +\oi—f2—vk? ,)T], (4.7b
V2:_2, k—]_/2: k\/g (43) Wlth
E
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35 T T T a)

3 —— = - - - - - — —_ _ — = = = —

0 50 m1 100 150

FIG. 9. Stability of the Rankine vortex in a quadrupolar strain field. Maxi- b)
mum inviscid growth rater, of the principal modesrg; ,m;+4,1) as a

function of the azimuthal wave numben,. The dashed line is the limit
value for largem;: oy=3.
C Noj1
o= _ — (4.8)
1 Jopp(—if +ob—1?)
” ~ NaiNy 4.9
O——. .
J11T2)2
The growth rate of the resonant Kelvin mode combination ;
10 L L L
then reads 107 10° v 10 107 10°
2
z_ [ 2—f2— k2 4.1 . . . . .
s Jp VoK_1/2 (4.10 FIG. 10. Viscous effects on the instability characteristics of the Rankine

vortex in a quadrupolar strain field. Growth ratg,,, (8) and corresponding
wheref is a O(1) function which depends on the labeled axial wave numbek™}; (b) of the principal modesrt,,m;+4,1) as a

; ; ; . function of v,. Each dotted line stands for a different azimuthal wave num-
solutionssy(i) and dy(j) of Egs.(4.53,(4.5h: ber as labeled ofa). On (b), m, is increasing from bottom to top. The solid
5§(i )+ 55(1-) line is the most unstable mode after a maximization ower
= 5 (4.12)
2|<—1/2

The first term in Eq(4.10 is associated with inviscid effects =89, 56 and 1357 fom;=—2, —1 and 0, respectively
only. Contrary ton=2 andn= 3, there is a frequency cutoff: For k_,>k., the maximum growth rate is always smaller
if f2= ag, the inviscid growth rate vanishes. This condition than the growth rate of the first principal mode fo;=1.
can be interpreted as a condition of resonance. Indeeda-  Consequently the most unstable configuration is always a
sures the renormalized gap between the two Kelvin modérst principal mode of the formr;,m,,1). Viscosity does
frequencies. If is too large, there is no resonance anymorenot modify this conclusion. However, since it damps large
Moreover, the inviscid growth rate is a decreasing functionwave number perturbations, it plays an important role in the
of f. As expected, it is maximum for a perfect resonante ( wave number selection.
=0) which occurs whetk=oc, For fixedm,; andv,, there exists an optimal wave num-
To determine the maximum growth rate, one has to comber k™), which maximizes the growth rate= o, Both
pute 51(i) and 5,(j) from Egs.(4.53,(4.5b and the scalar o, andk™3}, are drawn in dotted lines as a function of
products involved in Eq4.9). This computation was carried for different values ofm,; in Figs. 1Ga) and 1Qb), respec-
out for the range of parameters2<=m;<170,i<10 and tively. The solid line in Fig. 1() is the maximum growth
j=<10. The results can be summarized as follows. Whemate among all possiblen;. The corresponding axial wave
m,=1, o is maximum for the principal modeng;,m,,1). number is the solid line in Fig. 1B). Despite the scaling
Figure 9 shows the evolution @f, for this mode as a func- difference, Fig. 1) exhibits the same features as Figh)o
tion of m;. Sincef is an increasing function of the labels, for n=3: When viscosity is decreased below a critical value
other resonant Kelvin modes necessarily have a smaller,.=7.5x 10" 4, the combination of modes with the smallest
growth rate. Form;=1, then, the first principal mode is azimuthal wave numbeiherem;=—2, m,=2) is first de-
always the most unstable combination whateke,, and  stabilized; then, combinations with higher; progressively
v,. Whenm;=—2, —1 or 0, the first principal mode is the become the most unstable zs—0. Note, however, that the
most unstable only ik 4, is below a critical valuek, (k. principal modes (1,3,1) and (0,4,1) are never the most
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unstable for any,. Note also that the first destabilized com- Outside the vortex core, both basic flow and Kelvin
bination m;=—2, m,=2 is stationary by symmetry as for modes have zero vorticity so no amplification can be gener-
n=2. ated in this potential region. However, in the vortex core,

As seen in Figs. 1@ and 1@b), the most unstable com- Kelvin modes exhibit vorticity components in the,y)
bination whenv,— 0 has both a largk_,,, and a largem,. plane (in Cartesian coordinatgsvhere the stretching term
A simplified expression of the growth rate can be obtainedthird term in Eq.(5.1)] acts. Therefore these vorticity com-
by asymptotic method&s in Appendix B 2in the largem; ponents can be amplified by stretching when they are aligned
limit: with the direction of stretching. In order to study this possi-

7 bility, we shall now evaluate the correlation between the di-

g_ 9- my K2 4.12 rection of stretching and the direction of the vorticity pro-
€ ‘. 2K-172- ' jected onto theX,y) plane for a given Kelvin mode and for
o a combination of two resonant Kelvin modes.
For ;=0 andk_,;;—c, the inviscid growth rater; =3 of The local stretching rate(r) and the local direction of
the local stability analysfS is recovered. stretchinges( ) are defined fromS as the positive eigen-

value and the direction of the associated eigenveejor
Here, they are given by

s(r)=g(n—1)r""2, (5.3

V. PHYSICAL INTERPRETATION

In the previous sections, the instability was described as
a resonance phenomenon of Kelvin modes due to the multi- ¢(0)=—n#/2, (5.9

olar strain field. We computed the inviscid growth rate of . . .
P P 9 vhere the angle is measured in the local polar bai=.,

the resonant combinations and noticed that there were impo}N . :
tant variations from one resonant configuration to the other(fos(‘pS)_eS'ef].' Forn=2, the S_tretchlng rate and the direc-
on of stretching &=e,) are uniform. For largen, there are

For large wave numbers, we showed that only very specifi% th dial d q f the stretchi ¢ d |
resonant configurations were significantly amplified. In this oth a radial dependence ot the stretching rate and an angular
dependence of the stretching direction.

section, a physical interpretation is provided, which permits _ T .

one to understand these variations and the inviscid selection The pr_OJected_ vorticity @, of the Kelvin mode

of the most unstable resonant Kelvin mode configuration. Vi(k,m,w) is obtained from formulagA10a—~(A10d). It
For this purpose, it is informative to first analyze thetakes the form

different terms in the linearized inner vorticity equation for w, =f(r)sin e +g(r)cos ye,, (5.5

the perturbations:

Do du
Bt =25, T eX 0+, (5.9 y=kz+mo— ot, (5.9

where

wherew is the perturbation vorticityy its velocity, D/Dt is ~ and f and g are real functions of. The direction of this
the convective derivative and is the strain tensor of the Vector is then givertin the local polar basjsby a formula of
inner basic flow given byin cylindrical coordinates the form

cognfd) —sin(nd) O
S=g(n—1)r""2| —sin(ng) —cognd) O0|. (5.2

0 0 0 Similarly, for a combination of two Kelvin modes
Vk(Ky, My, 01) + Vo (K, My, 05) we get

g(r) 1

cpwl(r,e,z,t):arctar(

The first term on the right-hand side of E&.1) represents

the tilting and the stretching of the basic flow vorticiéy, g1(r)COS i1+ g(r)COS ,

=2e, by the perturbation. The second and third terms are, ¢, =arcta FL(0)Sin g1t F(N)Sin g ) (5.9
respectively, the tilting and the stretching of the perturbation 1 1rre 2

vorticity by the basic flow. The role of each term in the with

instability has been discussed in various pla@e=, for in-

stance, Refs. 22,24,880rszag and Patefashowed that the Pr=kiz+mf—wyt, (5.9
first term alone, or the second term and the third term taken Wy =Koz + M0~ wat. (5.10

together, cannot lead to exponential instability. In contrast,

the third term alone is sulfficient for instability as it provides It is important to note the dependenceyobnkz, mé or
exponential growth of the vorticity component aligned with wt in Eq. (5.6). For fixedr and 6, this dependence implies
the direction of stretchirfg (principal axis of the strain ten- thatew, , for a single Kelvin mode, takes all possible values
sor S with the largest positive strain rateHere, in addition, ast or z varies and has a mean value independen® of
one can show that the first and second terms taken togethemhereasys is 6 periodic. The result is that there is no mean
do not provide instability. Indeed, these terms are associatetbrrelation between the direction of stretchipg and the
with a solid body rotatiorie =0 in Eq.(1.13]: The normal direction of the projected vorticitpw, for a single Kelvin
mode solutions are, in that case, nothing more than the nemode. This is reassuring as a single Kelvin mode was not
tral Kelvin modes studied above. expected to be unstable in a planar strain field.
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-T/2 —m/4 o O /4 /2

FIG. 12. Distribution of the angle between the direction of the vorticity in
the (x,y)-plane and the direction of stretching for the principal modes
(—1,2,1) (solid ling), (—1,1,2) (dashed ling (1,5,1) (dotted ling and a
mode withm;=10, m,=13 but taking the resonant crossing point of the
FIG. 11. Example of good correlation between stretching and vorticity di-first and third branches, respectivelp] (the boxed in mode of Table)ll
rection for an unstable mode of the Rankine vortex in a tripolar strain field
(n=3). Local direction and intensity of stretchirig) and projected vortic-
ity in the (x,y)-plane of the principal mode—<1,2,1) in z=0 (b), z
=m/2k (c) andz=/k (d). the norm of the projected vorticity e, || as the weight of
each point. These curves exhibit a peak near0 for the
unstable modes<1,1,2), (—-1,2,1) and (1,5,1) indicating a
However, for a two Kelvin mode combination, the above strong correlation between the stretching direction and the
argument does not always apply because cancellation in Egorticity. For a “nonprincipal” mode, for instance the one
(5.8) is now possible. In particulatzew, may have a nonzero associated with the first and third branches of the dispersion
mean value dependent ¢hat particular values of if the  relation form;=10 andm,=13, respectively, this peak is
two modes have same axial wave numbley=k,) and the smaller and there is a secondary peakat* «/2. The cor-
same frequencydf; = w,). If this occurs and ifpw, = ¢ for  relation is then weaker and the inviscid growth rate much
a specific location at any time, the planar component of vorsmaller (0;=0.068% from Table ), as expected.
ticity is locally amplified by stretching at that position with a These graphs and the above discussion demonstrate that
growth rate equal tos(r). Accordingly, the maximum the mechanism of instability is directly related to the local
growth rate of the perturbation is always bound by the maxistretching of perturbation vorticity by the basic flow. It con-
mum local stretching rate of the strain figldere f—1)e].  firms that the most unstable modes are those which maxi-
This upper bound corresponds to a pointwise maximunmize the alignment of their projected vorticity with the local
growth rate. It should not be mixed with the local maximum direction of stretching. Moreover, for bot=3 and 4, we
growth rate obtained in Ref. 29 which is a mean growth ratehave seen above that the most unstable combinations tend to
along a closed streamline: In general, the local maximunbe localized near the vortex core edge where the stretching
growth rate is smaller because the perturbation vorticity igate in the core is maximum.
not aligned with the stretching direction on the whole Why principal modes are the configurations which maxi-
streamline. Casa=4 is an exception: both local and point- mize the alignment of vorticity and stretching is another is-
wise maximum growth rates are equal in that case. Moresue. First, note that these configurations have a frequency
over, we saw in Sec. IV that this maximum is also reachedapproximatively equal torg;+m,)/2 so that the “radial
by the growth rate of the most unstable resonant Kelvinrvave numbers”s,; and 8, of the resonant Kelvin modes
mode combination in the larg®; andk limit. This can be [given by formula Eq(A11)] are close to each other. This is
explained by the fact that, in this limit, the projected vorticity clearly visible in the large wave number analysis of Appen-
of the perturbation is localized in the region of maximumdix B, where the most unstable modes have been found to
stretching rate(close tor=1) and is everywhere aligned satisfy §;= &, at leading order. Therefore, principal modes
with the stretching direction. tend to be more coherent radially than the other modes which
For the other unstable Kelvin mode combinations, thecould explain why they are the most unstable. A more com-
correlation is not perfect but exists as illustrated in Fig. 11.plete explanation has been recently given by Le BizeHe
This figure displays the projected vorticity of the principal showed that the additional conditiaf~ &, directly results
mode (—1,2,1) (see Sec. lll for the notationwhich is un-  from the characteristics of the most unstable local modes. In
stable in a tripolar strain fieldn=3). This combination particular, for the elliptical casenE=2), he successfully jus-
clearly has its vorticity preferentially oriented along the di- tified why the local maximum growth rate is reached when
rection of stretching associated with the triangular distortionthis condition is satisfied. Figure 13 illustrates the clear cor-
This alignment is quantified in Fig. 12 where the distributionrelation of small values ofs,— &;| with a large inviscid
of a=pw, — ¢ is plotted for different resonant modes with growth rate for particular combinations of modes.

c)
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1.4 - - - - - - well-described by a weak-strain analysis. However, all stud-
12[; | ies have restricted the analysis to the stability of these

' =+1 moded?*3324%3rguing that other modes should be
less unstable. In the present paper, we have shown that this
restriction is not justified for the Rankine vortex as the most

oo O

w08F | unstable mode for high viscosity is the principal mode
o6t 1 (0,2,1) corresponding to filament bulging—splitting. In a re-
cent paper, Billanet al®” demonstrated that this bulging—
0.4r %U | splitting mode was indeed present for a Lamb—Chaplygin
0ol | vortex pair. For Stuart vortices, they also suggested that the

higher order mode, which is briefly discussed by Pierrehum-
i - e bert and Widnalf! and the bulging modéor the so-called

Core Dynamics Instability modexamined in Ref. 42 could
be related to the principal mode (0,2,1). However, in these
FIG. 13. Inviscid growth rate as a function of the differenég— s, be-  three studies, the growth rate of this mode is approximatively
tween the radial wave numbers of the two Kelvin modgs=10 andm, half as small as the growth rate of—q_,]_j) modes(bending
=13 for the first 100 crossing points. or translative mod@s|In the present paper, they are almost
equal. We have no explanation for this discrepancy except
that, in each of these numerical cases, vortices are strongly
deformed and the vorticity is strongly nhonhomogeneous.

In this paper, the linear stability of the Rankine vortex in To our knowledge, fon-fold symmetry of higher order
a weak multipolar strain field was analyzed. This basic flow(n=3), no result concerning the stability is available. This is
was shown to be subject to a Kelvin mode resonance instatue to the fact that the condition of resonance cannot be
bility for dipolar (n=2), tripolar (1=3) and quadrupolar simplified by symmetry as was done by Moore and
(n=4) strain fields. The unstable modes are combinations o§affman'® In principle, forn=2, 3 or 4, the condition of
two Kelvin modes of the same axial wave number, the sameesonance must be analyzed on a case-by-case basis for all
frequency, and azimuthal wave numbers separated.by — modes different from the symmetric principal modes
physical interpretation of the instability in terms of local vor- (—1,1j) and (~2,2j). Note, however, that once resonance
ticity stretching was also provided. We demonstrated that th%ccurs between two neutral Kelvin modes, the above analy-

m_ost unstable modes corre_spond to the_ mades for Wh'Ch_ thﬁs can be formally applied almost without modification. In
alignment between the projected vorticity and the direction

of stretching is maximized. Viscous effects were also dis_partlcular, we expect the main conclusions to hold, i.e.:
cussed in detail. The critical viscosity above which all (1) Instability forn=2 andn=3 for a viscosity smaller than
Kelvin mode combinations are damped was computed in  anO(e) critical value and fon=4 for viscosity smaller
each case. Below this critical value, viscous effects were than anO(e?) critical value;

shown to select a preferential instability mode. Rer2, we  (2) stability forn=5 and smalke;

proved that the selected mode is a combination of stationarn) the most unstable Kelvin mode combination changes as
helical modes 1y, = —1, m,=1) if viscosity is sufficiently viscosity varies; and

small. However, for larger viscosity, a combination of modes(4) for vanishing viscosity, the most unstable Kelvin mode

Ellz.o anddm2=2 :))_eco_me :]he most ukr;stable. ;—_h'g En?tablﬁ‘ combination corresponds to the configuration for which
elvin mode combination has never been studied before. It | o ierching is maximized.

is associated with the bulging—splitting of the vortex. FRor

=3, the selected mode is a time-periodic Kelvin mode com-  considering the similarities between the experimental
bination with both frequency, axial and azimuthal wave_ 4 numerical observations of vortex filament

numbers increasing as viscosity decreases. kel the  joqianilizatioh?® and the form of a vortex subject to a

Kelvin m resonan rs only for lar xial wav : . . Lo
€ ode €sonance occurs only for large axial Wavey o in mode resonance, it is natural to discuss the implica-
numbers, so viscosity must be smaller for instability in that

case. However, as far=23. the selected mode was shown to tions of the present results in the context of turbulent flows.

have a more intricate azimuthal structure as the viscosit;l/n turbulence, vortex filaments are strained by the back-

decreases ground turbulent flow or surrounding vortices. As there is no

For vortices with continuous vorticity profiles, instability Particular symmetry, they are in general elliptically de-
by Kelvin mode resonance is also known to exist. In particu_formed in their core. From the present analysis, we argue that
lar, Moore and Saffman showed that the stationary resonandkViscosity is small enough compared to the nonaxisymme-
of helical modesn;=—1 andm,=1 is not dependent on a try of the filament ¢<0.11%), the vortex can be subject to
particular profile and generically leads to the instability of an@ Kelvin mode resonance instability. We showed that the
elliptically perturbed vortex. Robinson and Saffffamlso  most unstable mode was, in such a case, either the combina-
showed numerically that for finite strajre =O(1)], the sta-  tion of two helical modes< 1,1,2), which produces a planar
bility of these particular symmetric modes is qualitatively undulation of the vortex, or the combination of a bulging and

VI. DISCUSSION
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splitting mode (0,2,1) leading to the formation of strands on 1 2
the filament. This behavior was observed in experintents Do—— -5, 0 0
and in numerical simulatiors. r rz a9
In contrast, this instability does not explain the bursting 2 9 1
of vortex filaments which is sometimes observe@radeep L=A=| — 25 D25 0 0f, (A5)
et al*® gave an explanation which could be related to a sec- r r
ondary instability of the vortex deformed by Kelvin modes. 0 0 D, O
Lifschitz et al#* first showed that this secondary instability 0 0 0 0o

indeed exists for elliptical flows. Recently, Kersvfeland
Mason and Kerswélf studied this instability analytically and
and numerically in a configuration similar to that in Malkus’
experiment? In this elliptic cylinder geometry, it appears D,= i+ + -y (AB)
that the principal modes<1,1,2), (-1,1,3) and (0,2,1) are a o2 r?296° o9z2

unstable and that the growth rate of the secondary instabilitgf.he relation

is of the same order as the primary instability. Secondary

instability analysis has never been carried out for a vortex in ~ A=A+ B+C, (A7)
an open flow configuration but one would expect that theIS also used in Apoendix B. where
results of Kersweff*®to remain qualitatively unchanged. PP '

# 1 P P

1
r

A= L1227, (A8a)
1 3
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0 0 0 0
APPENDIX A: NOTATIONS (A80)
The operators appearing in E@.1) are defined by The velocity—pressure field of the Kelvin mode in the
vortex core is defined by
1000 Vi (k,m,w)=U(r)e kzrmi=et) 4 ¢ ¢ (A9)
0 100 whereU=(U,;U,;U,;P) is given b
‘7_0010’ (A1) riYe:Yz; g y
) , 2m
0 00O Ur(r)= =i (M= )83y (1) + ——Jjm () |, (A108)
9, 9 2 ) m(m-—w)
EY) or Up(r) =289y (1) + — Jjm|(4r), (A10b)
1% 19
2 8 ° T U= - —[a 2131m(8 A10
e o ) A== ———[4= (M= w)?]3jy(37), (A100
0 O % = P(r)=[4— (M= )?]Jm(dr), (A10d)
g 1 14 o with J,, as the Bessel function of the first kind adg its
&_r+ T 96 oz 0 derivative. The scalab in these expressions is the “radial
wave number” and is defined as
Di—(n—Dr""2  —in=2)r""2 0 0 2
1 ; _(mrn_)z ) Jr((n—i)r“‘z - o K(2+m—w)(2-m+w) A1)
N=3 ! (Mm—w)?
0 0 D; O’ . . .
! Amplitudesp and ¢(r) of the displacemerdy and potential
0 0 0 0 d, of the Kelvin modes are
(A3) ,
i
with p= —w_mUr(l): (A12a)
d 9 4—(M—)? Iy (S)
_ _yn-1" _:n-2"7 _
D, r o ir 75 (A4) P(r)=i e Kim (K) Kjm(Kr). (Al2b)
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The dispersion relatio® (k,m,») =0 is given by S 16—n
—_— . B4b
D(k,M,©) = (M= ) 83/ (3) + 2MI () K n (B4b)
4— (M=) Ky (k) This expression, in addition to Eq#1a)-(B1c), allows one
+ kJm(d), (Al3)  to estimate the scalar products appearing in (Bd). Upon

m-—o  Kjm(k) WIting Noj1=Agy+ By +Copp With the definition Egs.

whereK , is a modified Bessel function arid, its deriva-  (ABa)—(A8c) for A, B andC, we get, after a careful estima-
tive. tion of each term,

2

4

APPENDIX B: INVISCID ASYMPTOTICS ANALYSIS Ly~ 1y~ 815m,(81)Sm,(52), (B53)

In this appendix the inviscid growth rate of the resonant

Kelvin mode combination is obtained by an asymptotic J1~Jp<dy, (BSb)
analysis in the limit of large axial wave numbeand in the
limit of large azimuthal wave numben. Our goal is first to Ji1~ To2~ = 01, (B50)
calculate the limit values observed in Figs. 6 and 10, and 7
then to check that they are in agreement with the local short Ay~ _Zl ,<5, (B5d)
wavelength analysi® For this purpose, asymptotic expres- | ! ’
sions for the Kelvin modes are used to evaluate the various 32‘1~E”2~|1_ (B5e)
coefficients of the expression E®.1) of the inviscid growth ) )
rate o, . The last termCy, has two different expressions for
=2 andn=23:
1. Large k analysis . 9 (& 51— 5,
In this part, the azimuthal wave numbmrof the Kelvin Cop~Cup~ 5 fo ¢ S( 51 x)dx
mode isO(1); thelimit m— o will be analyzed in the next
section. A simple expression for the Kelvin mode may be ié it Si=5
obtained by using asymptotic estimates for the Bessel func- ~|2m7 "t ! 2, for n=2, (B6a)
tionsJ, , K, and their derivatives: o(5,) it 5,7 5,
[2
J (X))~ \/—Cm(X) as x—o, Bl — 49 (9o 61— 0, 3
m(X) X m(X) (B13 CzllNCIZNF&LJ; X CO ) X+7 dx
2
J5(X)~ = \/ —Sm(X) as x—x, (B1b) 49 sin(6,— &
" X" ~—51M, for n=3.  (B6b)
4T 7 (81— 8,)°
a
Km(X)~ \/567’( as x—x, (B1o  The expression Eq3.1) then reduces to
where o Copl e (B7)
- VTR
cm(x)=coS<X—(2m+ 1)2), (B2 This gives
m 9 if 6,=20
= i —_— — —8 =
Sm(X)=sin| x—(2m+1) 4). (B2b) oi~| 16 1= 02 for n=2, (B8a)
In particular, this gives, whed—o and w#m in the dis- o(e) if 6,75,
persion relationA13), 49
i~—— for n=3. B8b
- (16-n2)k T 3206, 5,)2 (8D
o~lm+(2m+ 1)Z—arctanT, (B3)
n

Besides, fom=3, using expression EdB3), §;— &,=(l;
wherel is a large integer which labels the branches. Note that-1,) 7— (37/2), which implies that the maximumr(may
| is directly related to the branch lakidhtroduced in Sec. llI =49¢/(87w?)=0.62 is attained for 5, — &,|= m/2.

by a relation of the formt—i=f(m). As also noticed in that

section, one expects the largest growth rate to be obtained f@: Large m analysis

the resonant Kelvin mode of same labdl is then natural to

) In the limit of largem, the modified Bessel functio
assume that the radial wave numbéysand 5, of the two

X satisfies
resonant Kelvin modegy(k,m;,w) andvg(k,m,,w) are of
the same order. This leads to Km (K) [m| K2\ (89)
w~(m;+m,)/2, (B4a) Kjm (k) k m?
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Therefore, the dispersion relation Eé13) reduces to

—(@=m)?8][y(8)+| 2l (w—m)+|m|(4—(@—m)?)

1/2

Jjm(8)=0. (B10)

2
x| 1+ —
m2

a. First case (6,~06,~m,)

If 6~m, the Bessel function satisfiel (6) <Jjy(6)

and the dispersion relation is simplified. This corresponds to

the branches of the dispersion relation for whigk-m in
k=0 (see Fig. 3 The case which involves the particular
branch leaving fromw=m—1 is treated below. The ad-
equate asymptotic expression for the Bessel funcsee
formula (9.3.23 of Abramowitz and Stegun’s bod# is

1/3
3t Em)~ 2 Ai( - 2% 14+ O(m 29
m

2/3
T At _ o013
+ A (—24%)

3
2 —2/3
102 +0O(m )},

(B11)

asm— oo with fixed & and where Ai is the Airy function. The
condition of resonance Eq2.6) of two Kelvin modes for
n=2 andn=3 implies that at leading order

m;+m,

a) > (B12a
16—n?
K~ —m,. (B12b)

Inserting Eqgs.(B123,(B12b) in the dispersion relation Eq.
(B10) also gives

2

Si~my— e, M (B133
U w4 16-n2+4n’
by 2y (B13b)
2% o132 4 16-n2-4n’

wherea,, a, areO(1) zeroes of the Airy function.

Here the branches are labeled by the zeroes of the Airy

function. Let us first consider the caag=a,. In that case,
the scalar products appearing in E§.1) reduce to

Ji1~8Zy, (B143a

J2)2~ 825, (B14b

Ji~J,<m?B, (B14¢
7 637

|1~_(§_ 32 ) \lez, (Bl4d)
7 637

I~ —(g 3—f) \VZ125, (Bl4e
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Aoy~ — Ay 3 VZ12Z5, (B14f)
Bzuwguzw ~3 Z,Z,, (Bl4g
_ 49
Co1~Cap~— Z\/lez. (B14h)
where
Z,=2"m?R pai'?(a,), (B153
Z,=2"m?B Ai'?(a,), (B15b)
and N= A+ B+C. This leads to
49
Ti~ 358 for n=3. (B16)
A similar calculation yields
9
Ti~ 168 for n=2. (B17)

When a, # a,, the inviscid growth rate of the resonant
Kelvin mode is smaller. An upper bound is obtained using
the following relationgvalid only for a; #a,):

f Ai(x+aj)Ai(x+a,)dx=0, (B18a
0
A" (x+a) A’ (x+a,)dx
0
( i A'(aDAi'(ay).  (B18D
= i'(a)Ai’(ay).
-8 (ap;—ay)° ' ?
Relation Eq.(B183 yields
Cojy~Cyjp<m?2, (B19)

Equations(B14a—(B14e are still valid, so that, using iden-
tity Eq. (B18b),
” o1 1/3~12/3 A H 2
(Bypp=11)(By1—12)< ﬂz m<= Ai’ (a1)Ai’(ay)

(B20)

It immediately follows that
o1 B21
;i <r928. ( )

Then, for these modes, the inviscid growth rate is roughly
three times smaller than the maximum growth rate. Case
a,; = a,, which maximizes the growth rate, corresponds to the
branch crossing points=j+1 wherei andj are the branch
label form; andm,, respectively.

b. Second case (6,~Zm, with Z #1)

This second case corresponds to the crossing points of
the particular branch of the dispersion relationrigy and the
regular branches fom;. In particular, it corresponds to
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modes (n,m;+n,1) in the limit of largem,. The scaling
61~ my still holds butw# (m;+m,)/2. The asymptotic ex-
pansion of the Bessel function leads to

J (8 J1-2Z2
[m[ €92

~ for Z<1, B22
Jjm|(62) z (B229
J(8) Z%-1 n(w 1
|m[\ 92 2

~ tan ——|m|vZ<— 1+ |ml|arcco
Im(8)  Z 7~ Iml |mlarccos,

for z>1, (B22b)

with Z= 8, /m. Using the asymptotic dispersion relation Eqg.
(B10) yields an implicit equation foZ which can be solved
numerically. It follows thatm,—w=1.115 forn=2 and
m,— w=1.496 forn=3.

For both cases=2 and 3,m,— w#n/2. This leads in

the limit of large azimuthal wave numbers to an inviscid

asymptotic growth rates;<<e. However, forn=3, m,—
is sufficiently close ta/2 to allow an unstable resonance for
large m; but still O(1). This explains why the modes
(mq,m;+ 3,1) can remain the most unstable for the firgt
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