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The behavior of high mass ratio flexible filaments freely hanging in steady horizontal uniform flows

is experimentally and theoretically investigated. When the flow velocity is small, static equilibrium
states, where the filaments are inclined to the flow, are observed. Then, above a critical value of the
wind velocity, the filaments exhibit periodic oscillations in the vertical plane. The problem is
theoretically addressed considering the beam theory equations for the filament dynamics where the
action of the flowing fluid is modeled using semiempirical expressions. These equations are first
solved for the stationary equilibrium states. Then, the stability of these steady solutions relative to
small perturbations is analyzed. A good agreement between experimental and theoretical results is
found. ©2005 American Institute of PhysidDOI: 10.1063/1.1878292

I. INTRODUCTION ported in the present paper generalizes these studies to the
case of a flexible cylinder inclined to the flow, i.e., for arbi-
Interactions of flows with flexible elongated structurestrary angles of incidence.
are encountered in many industrial fields such as ocean en- In the following section, details on the experimental
gineering(towing cables, mooring lines, risgrer civil en-  setup and on our experimental observations are presented. In
gineering(cables of suspension bridges or of hanging rpofs Sec. Ill, we derive the governing equations describing the
Moreover, because they can induce structure vibrations thdilament equilibrium and dynamics. A theoretical linear sta-
are a potential cause of damage, they have received considility analysis is also performed whose results are compared
erable attention. Flow-induced vibrations can arise from dif-with experiments. Finally, brief complementary discussions
ferent mechanisms which were classified by Bleirgor  are given in Sec. IV together with the conclusion.
steady flows, efforts have mainly concerned the vortex-
induced vibrationgreferred to, hereafter, as V\and com- || EXPERIMENTS
prehensive reviews were published by Bearfnand more
recently by Williamson and Govardhdmost of the studies
devoted to flow-induced vibrations of elongated bodies are  Qur experiments are performed in a low turbulence wind
motivated by ocean engineering applications for which theunnel. Its horizontal working sectios il m long and has a
mass ratiou is usually less than 15. This paramejeris  square cross section of 0.5 n¥. The free stream velocity
defined as the ratio of the “oscillating mass,” including theU is measured with a conventional Pitot tube and can be
mass of the structure and the added fluid mass, divided byontinuously varied up to 25 ns The quality of the tunnel
the displaced fluid mass. The mass ragtias the primary has been quantified, prior to this study, with a constant tem-
parameter of VIV(e.g., Ref. 2 the lower u, the higher the perature hot wire anemometer. At 25 it she free stream
susceptibility of structures to VIV. uniformity was better than 0.5% over 80% of the tunnel
On the contrary, in the present study, we consider flexwidth and the turbulence level measured on the tunnel axis
ible filaments freely hanging in wind. This configuration was close to 0.1%. The filaments are made of silicone and
leads to a high value of. of the order of 1000. Note that have a circular and constant cross sectfonmd?/4 and a
similar investigations have recently been reportedvariable length.

A. Experimental setup

(Facchinettiet al®) for a mass ratiqu slightly above 2. Com- To be maintained in the wind, each filament is inserted in
parison with our results will emphasize the strong influencea steel tube having the same inner diametéfhis support is
of u on the filament dynamics. fixed outside of the test section and crosses perpendicularly

Finally, we should also mention the extensive work ofthe wind tunnel top wall. It is bent at right angle in such a
Paidoussis and co-workers, whose references can be foundway that its final part is parallel to the free stream, this part is
the recent paper of Paidoussisal.® devoted to the stability 10 cm long. The filament freely hangs at this tube end. This
of a flexible cylinder in an axial flow, that is, with an initial setup assures a clamped boundary condition at the upstream
incidence angle equal to zero. The theoretical analysis reend with the filament parallel to the free stream, the other

filament end being free.
IAuthor to whom correspondence should be addressed. Electronic mail: IO the present study, visualizations of the filament are
lionel.schouveiler@irphe.univ-mrs.fr performed through the transparent side walls of the wind
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FIG. 1. Superimposed views of steady states of the filarhed® cm, d o s 10 15 2 25 30 %
=1.2 mm forU from 0 to 13.6 ms' (U=0.0, 1.1, 2.2, 3.4, 4.5, 6.0, 7.5, 9.5, iem)

11.5, and 13.6 m$, flow from right to lef). ) )
FIG. 2. Experimental thresholds, for the appearance of flapping as func-

tion of the filament lengtt for d=1.2 mm(+) and 1.8 mm(O).

tunnel test section. Images are captured with a video camer . .
. .. decreases. Moreover, images of Fig. 1 show that except close
operating at 60 Hz and then processed to get quantitativ . . -
0 the clamped end, the filament is nearly rectilinear.

results. For instance, the flapping frequencies of the filamen . ,
. . . Unsteady behavior of the filament spontaneously takes
are obtained by a fast Fourier transfoffFT) analysis of
place when the free stream velocity exceeds a threshold

Space-time images. o : .
: o . U,. Critical valuesU, are determined for numerous combi-
All the filaments are made of silicone with a Young : - —
_ ) o nations ofd and| and are reported in Fig. 2 fat=1.2 mm
modulusE=2.5 MPa. Their flexural rigidity i€l wherel
_ . . . . and 1.8 mm. It appears thak, depends on the lengthand
=md*/64. Extensive experiments are carried out for fila- . . : , .
. _ diameterd of the considered filament. We first note the in-
ments of diameterd=1.2 and 1.8 mm, but some measure- . . .
; o : crease ofU, with d. Besides, for both diameters, we can
ments have been validated with filaments of diameter .
observe that the threshold, strongly decreases withfor

=1.6 mm. The lengtH of these filaments is varied up to ' .
about 30 cm. The density of silicone is about 950 kg i short filaments, whereas the dependencd obn| is weaker
or | larger than 15 cm.

and experiments are performed at a temperature close {o The unsteadv behavior consists in a reaular periodic
20 °C in such a way that the valueg=15x10° m?s™ and . &y : . reg P
flapping of the filament in a vertical plane, i.e., a plane par-

pn=1.2 kg M are considered for the kinematical viscosity . . R
; : X . . -~ allel to free stream and gravity. These vertical oscillations are
and density of the flowing air, respectively. This results in a.

mass ratiou of about 800. Note that for a nonconfined cyl- Illgsséﬁtzgcggsz:\g/é ?:/i;vvt\l;cr;;flﬁ\r/\g p;{:tg(r)ez;)f dtjr?nsuﬁaem?r;
inder the added fluid mass is equal to the displaced fluid b g "apping

mass(see the detailed analysis of LopeSaI.G) in such a motion. In contrast to short filamenf&ig. 3(a)], one node

way that the mass ratio simply writes=(p+ p)/ can be distinguished in the envelope of the flapping motion
y Py Wit@s={p+ pa)l pr- of long filaments. One of these nodes has been marked by an

arrow in Fig. 3b). But the motion amplitude being quite

S

B. Experimental observations

The first experiment consists in gradually increasing the
free stream velocity) for a given filamenti.e., for givend
andl). For low wind velocities, the filament appears to be
stationary. Then, wherJ exceeds a well-defined critical
value U, it exhibits a flapping motion. A visual inspection
reveals that this motion takes place in a vertical plane, at
least for the wind velocities considered here.

The static equilibrium positions mainly correspond to
the balance between the gravity force and the fluid load.
Therefore they depend on the flow veloclty Figure 1 pre-
sents superimposed views of steady positions of a filament of
diameterd=1.2 mm, lengti =12 cm and for ten values &f
ranging from 0 to 13.6 ms. For this particular filament, we
find U.=13.7 m s¥. For all these static equilibria, the fila-
ment[ axis is totally contained m_ a_vemcal pla(mara_llel to FIG. 3. Superimposed successive views of the flapping filamentl for
gravity and free streamAs U is increased, the filament —15 cm d=1.2 mm, U=16.9 ms! (a and I=21 cm, d=1.8 mm, U
tends to align with the free stream, so its incidence angle14.7 m s (b). Flow from right to left.

(®)
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small filament elemerds, forces and moments acting on this
ol | small element are displayed in Fig. 5. They consist in a ten-
R sionT and a shea@ in a cross section, a bending moment
. .o i M, the gravity force, and the fluid dynamics load. We con-
o ° v sider separately the inviscid foréeand the viscous force of
o} o ve® . componentd. andN. F,L, andN are forces per unit length.
= 000000 43 ® b We assume that a cross section of the straight filament re-
'& T o v . ® 7 mains plane during all deformations in such a way that the
G T o, Bernoulli-Euler beam theory can be applied. Moreover, be-
E R i cause no notable lengthening is detected during experiments,
J v:, Bgﬁ.‘:vﬁ'- St ] the center line of the filament is considered as inextensible.
Gt e The force balance for static equilibrium writes in the
J P T | s-wise and transverse direction, respectively,
3 L L 1 L d_T _ L _ ( _ .
5 10 1 2 > £ ds ~ p = pr)gASIng, (1)
U(m.s")
FIG. 4. Flapping frequency as function of the free stream velocity for d
=12 cm(.?g),?:lgcm(vt/ﬁ), [=20 cm(C,M), =24 cm(O,Q).t(!)/pen d—S:F+N—(p—pf|)gACOSG. (2)

and filled symbols are fod=1.2 mm andd=1.8 mm, respectively.
The moment balance gives

small, except at the free end, it was not always possible to 0= M _ EI@ 3)

determine precisely if one or more nodes are present along T ds dg’

the filaments and consequently to measure accurately the . )

boundary between zero- and one-node flapping. vv_here the second eqyallty results from the expressioM of
The flapping of the filament is periodic. In Fig. 4, its 9iven by the Bernoulli-Euler beam theory. .

frequencyf is plotted as a function obl for various fila- Because the curvature radius of the filament is very large

ments. Frequency is calculated by the spectral analysis of relati\_/e to i_ts diameted, the flow is considered as locally

sequences of 360 images captured at 60 Hz. This gives /0 dimensional. Therefore, for both componektandL of

resolution of about 0.17°% The frequency is found to be the viscous force, we use the semiempirical expressions de-

constant along the filament. In Fig. 4, it appears thaat- duced by Taylof from force measurements on a smooth cir-

creases wittU and decreases for increasidgr |. Note also cular cylinder set at various incidence angles in a wind:

that plateaus are sometimes observed at thresh_old. As already p = %pf|dU2(CDsir120+ 4 Re'V2sir?2g), (4)

mentioned and in contrast to the VIV where vibrations are

maln_ly transverse to the free strgam, anq perpend|cular to the L= %pf,dU2(5.4 Re2c0s6 sint20), 5)

gravity, in the present study strictly vertical, i.e., parallel to

the gravity, oscillations are always observed at threshold. where Re4Jd/vy is the Reynolds number and the pressure
drag coefficientCy is treated as an adjustable parameter of

IIl. THEORETICAL ANALYSIS the model.

A. Static equilibrium states The inviscid fluid dynamic forc& is equal in magnitude
but opposite to the rate of change of the fluid momentum.

We i.ntrOQUce the curvilinear coordinasealong the fila-  ysing the expression deduced from an elongated-body po-
ment axis, withs=0 at the free end ansi=| at the upstream tentjal flow theory by Lighthil® we find that

extremity. The incidence anglé(s) is the local angle be-
tween the free stream and the filament axis. We consider a g _ —pﬂAUZd—Hcos’-e, (6)

where p;A is the added mass of fluid per unit length of
filament (e.g., Lopeset al®). ThusF is proportional to the
M+dM filament curvaturel6/ds. It results that the drag of a straight
— —? cylinder in a potential flow is zero, this is known as the
d’Alembert’s paradox.
At the clamped end the filament is maintained parallel to
the wind so that

QtdQ <t+——

@ A(s=1)=0. (7)
< Forces and moment acting on the free end cross section are
U supposed to be negligible giving
FIG. 5. Forces and moment acting on a steady filament eledsent T(s=0)=0, (8)
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FIG. 6. Theoretical static equilibrium shapes of the filament calculated for
Cp=0.8 (SO_”d ling) andCp=0.9 (dashed ling Same conditions as experi- FIG. 8. Scheme of a filament elemett& undergoing a small displacement
ments of Fig. 1. y(s,t) from its static equilibrium positioidashed ling

Q(s=0) =0, (9)  tween theory and experiments is illustrated by the example in
Fig. 7 wherel=12 cm,d=1.2 mm, andC,=0.8 and 0.9 for
the calculations. It allows to validate Taylor's semiempirical
expression$4) and(5) used for the viscous fluid load. Com-
parisons are repeated for several combinations, hfandU

The above equation syste)~(3) together with the  5nq the pest agreement is found @3 ranging between 0.8
force expressions(4)6) and the boundary conditions anq 0.9, In the following these two values of the drag coef-
(7)~(10) are solved numerically using a shooting methodgiant will be considered.

with a standard Runge—Kutta integration scheme. The shape

6(s) of the filament axis is thus deduced as a function of theg | inear stability analysis

control parametet). Calculations are repeated for various ] )

values of the only free parameté),. Results obtained for In contrast to VIV, the observed flapping motion results

the same conditions as that of the experiments of Fi¢. 1 directly from an instability and not from a structural response

=12 cm andU from 0 to 13.6 m3)) and calculated with to hydrodynamical forcing. Linear stability analysis of the

Cp=0.8 and 0.9 are plotted in Fig. 6. static equil_ibrium_ positions is then performed to determine
Beyond the qualitative agreement revealed by comparind'e theorencal crlt!cgl values of the free stream velocity and

Figs. 1 and 6, a systematic quantitative comparison betwedfPPiNg characteristics at, or close to, the threshold.

the experiments and the theory is performed to determine the

suitable value of the drag coefficie@,. For this purpose,

the incidence angle at the free eAts=0) is used and ex-

perimental data are compared to the theoretical results ob- We first derive the governing equation for the filament

tained for various values ofy. The good agreement be- €lementdsundergoing a small displacemeyts, t) as seen in
Fig. 8. y(s,t) is measured from the stationary position de-

fined by 6(s) the solution of Eqs(1)—(3) at a givenU. Ac-
cording to the experimental observations, only vertical mo-
tions are considered. In this case, the normal and tangential
components of the fluid velocity relative to the filament are,
respectively,

. dg,
M(s=0)=0, i.e., d—s(s—O)—O. (10

1. Governing equation for small displacements

d J
vn(S,t)=Using+U cosb?—y - _y, (11
J ot
. &y)ay
st)=—-Ucosé+|Usinfd—-—|—. 12
vr( ) ( at ) as (12

The incidence angl@, between the free stream and the fila-
ment axis is then

ﬁ_y a COS@(?_y

0i=0+ .
as U at

(13

The structural damping of the filament material is ne-
() and th (with (sold line) and glected here in such a way that the forces and moment acting

FIG. 7. Experimental+) and theoretica[with C;=0.8 (solid line) an ; ; ;

Co=0.9 (dashed ling] values of the incidence angle at the free efd on the filament element are the same as listed in Sec. Il A

=0), for the filament =12 cm andd=1.2 mm, as function of the free stream (see also Fig. 5 Therefore, to .ﬁFSt_ Order_ iry, Newton’s
velocity U. second law projected onto thedirection writes
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Py d(_ay ay I(Q+ q) dence angle equal to the value at free @(g+0). From Egs.
PR 2 = g T&s +F+f+N+n- '— Js (1) and (5), a linear variation of the tensiof along the
filament results.
= (p=pn)gAcosd, (14)
and moment balance is 2. Results and comparisons
a(M +m) @20 agy For the analysis we consider periodic perturbations of
+ —=Ell — 15 the form
Q s ( a2 s3> (19 .
y(s,t) = R4 Y(s)e"“"], (20)

where upper case lettef§,Q,F,N,L, and M denote the
guantities(functions ofs only), to order zero iry, given by
the static equilibrium equationd)—(6). Lower case letters
q,f,n, andm correspond to the supplementary terms appear:
ing at first order iny, and are functions of andt.

Combining the derivative of Eq15) with (2), relation
(14) becomes

wherew is a complex frequency.
Assuming the filament is initially rectilineaii.e., 6 is
constant thereford is linear ins) and using the filament
length | to make the spatial variables dimensionlélet &
=s/l and »=Y/I) the governing equation for small displace-
ments(16) becomes

d*y d2 dzy
Py _J ( ay) gy _dYy = b§ 7+ (1 +iwCy) 2+ (wPey +iwe,) 7 =0,
A—>=—|T=|+f+n-L—=-El—. 16 d d d d
PRa2 ™ s\ g N hos ™ Elog (16) §4 ¢ ¢ ¢
(21)
The inviscid fluid force is(Lighthill") where the coefficienta,b,c,c,,€;, ande, depend nonlin-
9 9 early onU and 6, their expressions are given in the Appen-
Fa=pnA| o ~Ucose_ Jow, (17 dix. A dramatic simplification occurs whef=0, which cor-
responds to the classical case of a filament in an axial flow
where the normal velocityy(s,t) is given by(11); hence (e.g., see the work of Paidoussi. For the situation con-
2 2 sidered here, the coefficieat is nonzero; this induces a new
Iy Iy 2 . dody destabilizing term whose effect has never been into account
f= p”A( 2tV cost st Ucosdsin ¥4s3s before. The boundary conditions at the clamped &L,
2y are
- Uzcos’-ﬁ—) . (18) d
9’ n= d—;’ =0, (22)

In Eq. (16) nis the first order term of expressié#f) in which
0 has been replaced by the incidence anfylgiven by (13)
andU by (vZ+v2)Y2 where the two velocity components are d277 d3n

given by (11) and(12). It results that dgz d_§3 =0. (23

and at the free end;=0, are

To solve the whole governing equatigdl) we use a
Galerkin method involving the eigenfunctior(é) of the
filament without flow. This is applicable because we assume
+(2Cpsirtg + 6 Re—1/25in1/29)ﬂ , (19 that the fluid load is negligible at the free end in such a way

U that the boundary conditior(®2) and(23) are identical with
or without flow. Then, the method consist to approximate the
filament displacemeng(¢) by the truncated series

1
n= Epﬂduz{(CDsin 20+ 6 Re Y%cosd sint20) ¥

where W= (agyl3s)—(cosO/U)(ay/ it) and
u/U=—(sin 8/U) ay/ ét.

An equation similar to(16) has been derived by
Paidoussis™° to describe the small lateral motions of a fila-  7(8) =2 ai(é), (24)
ment in an axial flow, i.e., small displacements around the =1
static equilibrium state)(s)=0 for all s between 0 and. In  where
this case, and contrary to the present configuration, the gov-
erning equation(16) can be linearized with respect to the (&) =

chki(1-¢) - cosk(1-¢)

(smald incidence angl@. This situation has been extensively chk; + cosk

studied and references can be found in the recent series of shk(1 - &) - sink(1 - &

papers by Paidoussis and co-workéPaidoussiset al,’ - shk + sink . (25)
1 1

Lopeset al,® Semleret al).
Moreover, it should be pointed out that, for the lengthsFrom the boundary condition22) and(23) we deduce that
considered here, the filaments in static equilibrium are rectito obtain nontrivial solutions, the wavenumbeks must
linear on most of their length, specially close to the flappingverify cosk;chk;=-1. Relationg24) and(25) are substituted
threshold(Figs. 1 and & Hence, in the following we restrict into the governing equatiof21), and then the resulting equa-
our stability analysis to a filament having a constant inci-tion is projected onto the free modés The complex eigen-
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FIG. 9. Experimenta(+) and theoretica]Galerkin approximation wittC,=0.8 (solid line) and C;=0.9 (dashed ling] values of the critical velocityJ, as
function of the lengtH for the filament of diameted=1.2 mm(a) andd=1.8 mm(b).

frequenciesw are then determined from the solvability con- The theoretical values for the critical velocity. are
dition of the linear system that is obtained. Eachplotted in Fig. 9 as a function of the filament lengtfor the
eigenfrequency corresponds to a specific eigenmode of thediametersd=1.2 mm[Fig. 9a)] and 1.8 mm[Fig. 9b)]. A
instability, made of a combination of the free modgsThe  comparison with experimental results is also shown and re-
real part REw] is the angular frequencys# and its temporal  veals in both cases a good qualitative and quantitative agree-
growth rate is given by —lfiw]. It follows that a negative ment. It is noteworthy that this agreement is obtained with-
value of Infw] for at least one mode is indicative of a flap- out adjustable parameter. However, a slight shift of the
ping instability of the filament. The computations are re-calculated curves towards the lower length values can be
peated with an increasing numbeof modes in(24) in order  noted. This may be due to the fact that the filament is con-
to ensure the convergence of the solution with a good enougsidered as rectilinear on its whole lengtWhereas the actual
accuracy. The theoretical results in Figs. 9 and 10 are obrectilinear part is shorter.
tained withn=23 resulting in angular frequencies[g and The instability mode destabilized at the thresholdde-
growth rates —Irfw] evaluated with an accuracy better than pends on the filament lengthThus, the characteristic lobes
0.2 st for 1=35 cm, and better than 0.I'sfor | <20 cm. of the theoretical curved(l) in Fig. 9 correspond to various
For shorter filaments the convergence could be achieved witimstability modes that differ in their shapes and frequencies.
a decreasing number of moddgypically n<10 for | Note that these instability modes are combinations of the
<10 cm. Galerkin modesp; (and should not be confused with them
Theoretical and experimental measurements of flapping
frequencies are also compared in Fig. 9 for three filaments

7 (1=12 and 20 cm fod=1.2 mm,|=12 cm ford=1.8 mm).
o5} d In all cases, and although they are of the same order of
ol | magnitude, we note that the frequencies predicted by the
model are systematically overestimated when compared to
ssf- 1 the experimental results. In the same manner, their depen-
ol | dence with the filament length, as it is observed during the
':7.: experiments, is not fully recovered by the model. Neverthe-
§ % ] less, qualitative agreements can be found such as the depen-
Em_ i dence of the frequency on the free stream velocity
which is predicted with a very good approximation. Also,
®r T when considering results for filaments of a given length
a0l ) =12 cm) but of different diameter¢d=1.2 and 1.8 mmwe
can see that, in agreement with the experimental observa-
= il tions, the theory gives a flapping frequensythat decreases
2 o = > = - asd is increased.

Ums?)

FIG. 10. Comparison of experimental and theoretical values of the flappindV. DISCUSSIONS AND CONCLUSION

frequencyw. Experiments!=12 cm andd=1.2 mm(O), =20 cm andd .

=1.2mm (d), 1=12cm and d=1.8 mm (@®). Theory: 1=12¢cm, d A. Effect of mass ratio

=1.2 mm, Cp=0.8 (solid line and Cy=0.9 (dashed ling =20 cm, d . . .

=1.2 mm, Cp=0.8 (dotted ling; 1=12 cm, d=1.8 mm, Cp=0.8 (dash-dot Although the mass ratige has not been varied in the

line). present experiments, a comparison with the recent study of
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) ; 3 ; ; g ; 5 B. Beyond the linear regime
35} o & Finally we should also mention that our experiments
A & & 8 show that the transition from a static state to flapping exhib-
20 s & 7 its hysteresis and bistability. Actually, when experiments, as
vyy described in Sec. Il B, are repeated with a decreasing veloc-
= =r , i ity U, the flapping motion persists up to a valug_ lower
'§ - : | thanU,. This is illustrated in Fig. 11 that shows the angular
& i n frequency of the flapping for increasing and decreading
8 L i i for the filamentd=1.2 mm and =20 cm. While flapping ap-
i i pears at a critical valu&; of the wind velocity between 9.4
10} H i - and 9.6 mg&!, it is maintained toU,. between 8.7 and
v 8.9 m s whenU is decreased.
st . In the bistability domaifU,_,U.], the filament can eas-
' ily be forced to either a static state or flapping by external
G AWt w2 15 144 .  perturbations. Fou < U, andU> U, all attempts to change
U m.s) the spontaneous state of the filament are fruitless. Such an
FIG. 11. Flapping frequency for increasing(A) and decreasing¥) free .hyStere“Cal Cy.CIe has also been Ob.served I.n numerous f.IOW_
stream velocityU (1=20 cm,d=1.2 mm). induced vibration problems as for in experiments on a fila-

ment in an axial flow(Paidoussigt al’) or in a flowing soap
film (Zhanget al'¥. This bistability is supposed to be re-
sponsible for the dispersion of the experimental critical ve-

N 4. . , , locities observed in Fig. 2.
Facchinettiet al.” invalidates a VIV scenario to interpret our

observations. These authors present indeed results on a freely conclusion
hanging flexible cable of aspect ratibd=250, towed in a ) ) ) ) )
water tank with a mass ratja of about 2.07. They report the Observations of flow-induced vibrations for a filament
observations of waves propagating along the cable and cofifeely hanging in a vertical plane are reported. In contrast to
sisting in traveling transvers@e., perpendicular to the free |0W Mass ratio situation, no VIV have been observed. The
stream displacements of the cable. These waves appear QRersistence of steady states up to Reynolds number of several
soon as the Reynolds number Réd/v exceeds the critical hundreds, results in the appearance of another kind of insta-
value of the appearance of the vortex sheddisfgabout 50 bility where the filaments oscillate in the vertical plane. We
and consequently are locked on these vortex shedding. Thef@ve shown that this flapping results from a loss of stability
are evidences that these waves are excited by the perioa‘i'g the filament static equilibrium states under the action of
vortex shedding and a model of these VIV emphasizes thihe steady fluid flow loads. Our theoretical results confirm
resonance of the structure with the periodic fluid loading. the appearance of this instability and, in particular, the
In contrast, for the same aspect ratiofilament withl threshold values for its observation. The different character-
=30 cm andd=1.2 mm, for instance, resulting in an aspectiStiCS of the_ﬂappir_lg are also correctly predicted b_y the
ratio |/d of 250 we observe a critical value Re 610 (see ~Model and, in particular, the exchanges between different
Fig. 2) with vertical displacements of the filament. This flap- flaPPing modes when the length of the filaments is increased.
ping frequency appears clearly not to be locked on the vortekinally, a strong nonlinear behavior with the existence of a

shedding frequency that would correspond to a Strouhdpistable regime has been detected experimentally. This
number St#d/U of 0.21 (see, e.g., the recent review by would demand a nonlinear theoretical analysis in order to

Norberdz), while St is only of about % 1073 for the flap- describe the saturation of fIapping amplitudg @sis in-

ping oscillations(considering the total excursion of the free creased and the observed hysteretical behavior at threshold.
end of the filament instead of the filament diameter as length

scale, we obtain a Strouhal number of order10in this  APPENDIX

estimation, the incidence of the filament versus the flow has

been taken into account with the cosine correction proposed EXpressions of the coefficients of E@1):

by Williamson®® Therefore the flow-induced vibrations pre- 12
sented here appear to be clearly of a different nature that of a= anIAUZCOSZ 0,

the classical VIV. Our theoretical study shows that the flap-

ping of the filaments results directly from a loss of stability 3

of the filament stationary states under the action of external b=-—[L+ (p— ps)gAsind],
steady forces. Besides, this is also consistent with the VIV El
models(e.g., see the work by Facchinedti al?) that predict

3
the narrowing of the synchronization domain when the mass ¢ = - I_[(p_ p)gAsin 6+ lpf,dUZ(CDsin 20
ratio is increased. In our case, the VIV resonance domain is El 2
negligibly small and cannot be invoked to explain our obser-
vations. +6 ReY%cos6 sint’?0) |,
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