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The behavior of high mass ratio flexible filaments freely hanging in steady horizontal uniform flows
is experimentally and theoretically investigated. When the flow velocity is small, static equilibrium
states, where the filaments are inclined to the flow, are observed. Then, above a critical value of the
wind velocity, the filaments exhibit periodic oscillations in the vertical plane. The problem is
theoretically addressed considering the beam theory equations for the filament dynamics where the
action of the flowing fluid is modeled using semiempirical expressions. These equations are first
solved for the stationary equilibrium states. Then, the stability of these steady solutions relative to
small perturbations is analyzed. A good agreement between experimental and theoretical results is
found. © 2005 American Institute of Physics. fDOI: 10.1063/1.1878292g

I. INTRODUCTION

Interactions of flows with flexible elongated structures
are encountered in many industrial fields such as ocean en-
gineeringstowing cables, mooring lines, risersd or civil en-
gineeringscables of suspension bridges or of hanging roofsd.
Moreover, because they can induce structure vibrations that
are a potential cause of damage, they have received consid-
erable attention. Flow-induced vibrations can arise from dif-
ferent mechanisms which were classified by Blevins.1 For
steady flows, efforts have mainly concerned the vortex-
induced vibrationssreferred to, hereafter, as VIVd and com-
prehensive reviews were published by Bearman2 and more
recently by Williamson and Govardhan.3 Most of the studies
devoted to flow-induced vibrations of elongated bodies are
motivated by ocean engineering applications for which the
mass ratiom is usually less than 15. This parameterm is
defined as the ratio of the “oscillating mass,” including the
mass of the structure and the added fluid mass, divided by
the displaced fluid mass. The mass ratiom is the primary
parameter of VIVse.g., Ref. 2d: the lowerm, the higher the
susceptibility of structures to VIV.

On the contrary, in the present study, we consider flex-
ible filaments freely hanging in wind. This configuration
leads to a high value ofm of the order of 1000. Note that
similar investigations have recently been reported
sFacchinettiet al.4d for a mass ratiom slightly above 2. Com-
parison with our results will emphasize the strong influence
of m on the filament dynamics.

Finally, we should also mention the extensive work of
Païdoussis and co-workers, whose references can be found in
the recent paper of Païdoussiset al.,5 devoted to the stability
of a flexible cylinder in an axial flow, that is, with an initial
incidence angle equal to zero. The theoretical analysis re-

ported in the present paper generalizes these studies to the
case of a flexible cylinder inclined to the flow, i.e., for arbi-
trary angles of incidence.

In the following section, details on the experimental
setup and on our experimental observations are presented. In
Sec. III, we derive the governing equations describing the
filament equilibrium and dynamics. A theoretical linear sta-
bility analysis is also performed whose results are compared
with experiments. Finally, brief complementary discussions
are given in Sec. IV together with the conclusion.

II. EXPERIMENTS

A. Experimental setup

Our experiments are performed in a low turbulence wind
tunnel. Its horizontal working section is 1 m long and has a
square cross section of 0.530.5 m2. The free stream velocity
U is measured with a conventional Pitot tube and can be
continuously varied up to 25 m s−1. The quality of the tunnel
has been quantified, prior to this study, with a constant tem-
perature hot wire anemometer. At 25 m s−1 the free stream
uniformity was better than 0.5% over 80% of the tunnel
width and the turbulence level measured on the tunnel axis
was close to 0.1%. The filaments are made of silicone and
have a circular and constant cross sectionA=pd2/4 and a
variable lengthl.

To be maintained in the wind, each filament is inserted in
a steel tube having the same inner diameterd. This support is
fixed outside of the test section and crosses perpendicularly
the wind tunnel top wall. It is bent at right angle in such a
way that its final part is parallel to the free stream, this part is
10 cm long. The filament freely hangs at this tube end. This
setup assures a clamped boundary condition at the upstream
end with the filament parallel to the free stream, the other
filament end being free.

For the present study, visualizations of the filament are
performed through the transparent side walls of the wind
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tunnel test section. Images are captured with a video camera
operating at 60 Hz and then processed to get quantitative
results. For instance, the flapping frequencies of the filament
are obtained by a fast Fourier transformsFFTd analysis of
space-time images.

All the filaments are made of silicone with a Young’s
modulusE=2.5 MPa. Their flexural rigidity isEI where I
=pd4/64. Extensive experiments are carried out for fila-
ments of diametersd=1.2 and 1.8 mm, but some measure-
ments have been validated with filaments of diameterd
=1.6 mm. The lengthl of these filaments is varied up to
about 30 cm. The densityr of silicone is about 950 kg m−3

and experiments are performed at a temperature close to
20 °C in such a way that the valuesn f l =15310−6 m2 s− and
r f l =1.2 kg m−3 are considered for the kinematical viscosity
and density of the flowing air, respectively. This results in a
mass ratiom of about 800. Note that for a nonconfined cyl-
inder the added fluid mass is equal to the displaced fluid
massssee the detailed analysis of Lopeset al.6d in such a
way that the mass ratio simply writesm=sr+r fld /r fl.

B. Experimental observations

The first experiment consists in gradually increasing the
free stream velocityU for a given filamentsi.e., for givend
and ld. For low wind velocities, the filament appears to be
stationary. Then, whenU exceeds a well-defined critical
value Uc, it exhibits a flapping motion. A visual inspection
reveals that this motion takes place in a vertical plane, at
least for the wind velocities considered here.

The static equilibrium positions mainly correspond to
the balance between the gravity force and the fluid load.
Therefore they depend on the flow velocityU. Figure 1 pre-
sents superimposed views of steady positions of a filament of
diameterd=1.2 mm, lengthl =12 cm and for ten values ofU
ranging from 0 to 13.6 m s−1. For this particular filament, we
find Uc=13.7 m s−1. For all these static equilibria, the fila-
ment axis is totally contained in a vertical planesparallel to
gravity and free streamd. As U is increased, the filament
tends to align with the free stream, so its incidence angle

decreases. Moreover, images of Fig. 1 show that except close
to the clamped end, the filament is nearly rectilinear.

Unsteady behavior of the filament spontaneously takes
place when the free stream velocityU exceeds a threshold
Uc. Critical valuesUc are determined for numerous combi-
nations ofd and l and are reported in Fig. 2 ford=1.2 mm
and 1.8 mm. It appears thatUc depends on the lengthl and
diameterd of the considered filament. We first note the in-
crease ofUc with d. Besides, for both diameters, we can
observe that the thresholdUc strongly decreases withl for
short filaments, whereas the dependence ofUc on l is weaker
for l larger than 15 cm.

The unsteady behavior consists in a regular periodic
flapping of the filament in a vertical plane, i.e., a plane par-
allel to free stream and gravity. These vertical oscillations are
illustrated by Fig. 3 which shows pictures of ten superim-
posed successive views captured at 60 Hz during flapping
motion. In contrast to short filamentsfFig. 3sadg, one node
can be distinguished in the envelope of the flapping motion
of long filaments. One of these nodes has been marked by an
arrow in Fig. 3sbd. But the motion amplitude being quite

FIG. 1. Superimposed views of steady states of the filamentl =12 cm, d
=1.2 mm forU from 0 to 13.6 m s−1 sU=0.0, 1.1, 2.2, 3.4, 4.5, 6.0, 7.5, 9.5,
11.5, and 13.6 m s−1, flow from right to leftd.

FIG. 2. Experimental thresholdsUc for the appearance of flapping as func-
tion of the filament lengthl for d=1.2 mms+d and 1.8 mmssd.

FIG. 3. Superimposed successive views of the flapping filament forl
=12 cm, d=1.2 mm, U=16.9 m s−1 sad and l =21 cm, d=1.8 mm, U
=14.7 m s−1 sbd. Flow from right to left.
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small, except at the free end, it was not always possible to
determine precisely if one or more nodes are present along
the filaments and consequently to measure accurately the
boundary between zero- and one-node flapping.

The flapping of the filament is periodic. In Fig. 4, its
frequency f is plotted as a function ofU for various fila-
ments. Frequencyf is calculated by the spectral analysis of
sequences of 360 images captured at 60 Hz. This gives a
resolution of about 0.17 s−1. The frequency is found to be
constant along the filament. In Fig. 4, it appears thatf in-
creases withU and decreases for increasingd or l. Note also
that plateaus are sometimes observed at threshold. As already
mentioned and in contrast to the VIV where vibrations are
mainly transverse to the free stream, and perpendicular to the
gravity, in the present study strictly vertical, i.e., parallel to
the gravity, oscillations are always observed at threshold.

III. THEORETICAL ANALYSIS

A. Static equilibrium states

We introduce the curvilinear coordinates along the fila-
ment axis, withs=0 at the free end ands= l at the upstream
extremity. The incidence angleussd is the local angle be-
tween the free stream and the filament axis. We consider a

small filament elementds; forces and moments acting on this
small element are displayed in Fig. 5. They consist in a ten-
sion T and a shearQ in a cross section, a bending moment
M, the gravity force, and the fluid dynamics load. We con-
sider separately the inviscid forceF and the viscous force of
componentsL andN. F ,L, andN are forces per unit length.
We assume that a cross section of the straight filament re-
mains plane during all deformations in such a way that the
Bernoulli–Euler beam theory can be applied. Moreover, be-
cause no notable lengthening is detected during experiments,
the center line of the filament is considered as inextensible.

The force balance for static equilibrium writes in the
s-wise and transverse direction, respectively,

dT

ds
= L − sr − r fldgAsinu, s1d

dQ

ds
= F + N − sr − r fldgAcosu. s2d

The moment balance gives

Q =
dM

ds
= EI

d2u

ds2 , s3d

where the second equality results from the expression ofM
given by the Bernoulli–Euler beam theory.

Because the curvature radius of the filament is very large
relative to its diameterd, the flow is considered as locally
two dimensional. Therefore, for both componentsN andL of
the viscous force, we use the semiempirical expressions de-
duced by Taylor7 from force measurements on a smooth cir-
cular cylinder set at various incidence angles in a wind:

N = 1
2r fldU2sCDsin2u + 4 Re−1/2sin3/2ud, s4d

L = 1
2r fldU2s5.4 Re−1/2cosu sin1/2ud, s5d

where Re=Ud/v fl is the Reynolds number and the pressure
drag coefficientCD is treated as an adjustable parameter of
the model.

The inviscid fluid dynamic forceF is equal in magnitude
but opposite to the rate of change of the fluid momentum.
Using the expression deduced from an elongated-body po-
tential flow theory by Lighthill,8 we find that

F = − r flAU2du

ds
cos2u, s6d

where r flA is the added mass of fluid per unit length of
filament se.g., Lopeset al.6d. Thus F is proportional to the
filament curvaturedu /ds. It results that the drag of a straight
cylinder in a potential flow is zero, this is known as the
d’Alembert’s paradox.

At the clamped end the filament is maintained parallel to
the wind so that

uss= ld = 0. s7d

Forces and moment acting on the free end cross section are
supposed to be negligible giving

Tss= 0d = 0, s8dFIG. 5. Forces and moment acting on a steady filament elementds.

FIG. 4. Flapping frequencyf as function of the free stream velocityU for
l =12 cmsP,sd, l =16 cms.,,d, l =20 cmsh,jd, l =24 cmsL,ld. Open
and filled symbols are ford=1.2 mm andd=1.8 mm, respectively.
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Qss= 0d = 0, s9d

Mss= 0d = 0, i.e.,
du

ds
ss= 0d = 0. s10d

The above equation systems1d–s3d together with the
force expressionss4d–s6d and the boundary conditions
s7d–s10d are solved numerically using a shooting method
with a standard Runge–Kutta integration scheme. The shape
ussd of the filament axis is thus deduced as a function of the
control parameterU. Calculations are repeated for various
values of the only free parameterCD. Results obtained for
the same conditions as that of the experiments of Fig. 1sl
=12 cm andU from 0 to 13.6 m s−1d and calculated with
CD=0.8 and 0.9 are plotted in Fig. 6.

Beyond the qualitative agreement revealed by comparing
Figs. 1 and 6, a systematic quantitative comparison between
the experiments and the theory is performed to determine the
suitable value of the drag coefficientCD. For this purpose,
the incidence angle at the free enduss=0d is used and ex-
perimental data are compared to the theoretical results ob-
tained for various values ofCD. The good agreement be-

tween theory and experiments is illustrated by the example in
Fig. 7 wherel =12 cm,d=1.2 mm, andCD=0.8 and 0.9 for
the calculations. It allows to validate Taylor’s semiempirical
expressionss4d ands5d used for the viscous fluid load. Com-
parisons are repeated for several combinations ofd, l, andU
and the best agreement is found forCD ranging between 0.8
and 0.9. In the following these two values of the drag coef-
ficient will be considered.

B. Linear stability analysis

In contrast to VIV, the observed flapping motion results
directly from an instability and not from a structural response
to hydrodynamical forcing. Linear stability analysis of the
static equilibrium positions is then performed to determine
the theoretical critical values of the free stream velocity and
flapping characteristics at, or close to, the threshold.

1. Governing equation for small displacements

We first derive the governing equation for the filament
elementdsundergoing a small displacementyss,td as seen in
Fig. 8. yss,td is measured from the stationary position de-
fined by ussd the solution of Eqs.s1d–s3d at a givenU. Ac-
cording to the experimental observations, only vertical mo-
tions are considered. In this case, the normal and tangential
components of the fluid velocity relative to the filament are,
respectively,

vNss,td = U sinu + U cosu
]y

]s
−

]y

]t
, s11d

vTss,td = − U cosu + SU sinu −
]y

]t
D ]y

]s
. s12d

The incidence angleui between the free stream and the fila-
ment axis is then

ui = u +
]y

]s
−

cosu

U

]y

]t
. s13d

The structural damping of the filament material is ne-
glected here in such a way that the forces and moment acting
on the filament element are the same as listed in Sec. III A
ssee also Fig. 5d. Therefore, to first order iny, Newton’s
second law projected onto they direction writes

FIG. 7. Experimentals+d and theoreticalfwith CD=0.8 ssolid lined and
CD=0.9 sdashed linedg values of the incidence angle at the free enduss
=0d, for the filamentl =12 cm andd=1.2 mm, as function of the free stream
velocity U.

FIG. 8. Scheme of a filament elementds undergoing a small displacement
yss,td from its static equilibrium positionsdashed lined.

FIG. 6. Theoretical static equilibrium shapes of the filament calculated for
CD=0.8 ssolid lined andCD=0.9 sdashed lined. Same conditions as experi-
ments of Fig. 1.
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rA
]2y

]t2
=

]

]s
ST

]y

]s
D + F + f + N + n − L

]y

]s
−

]sQ + qd
]s

− sr − r fldgAcosu, s14d

and moment balance is

Q + q =
]sM + md

]s
= EISd2u

ds2 +
]3y

]s3D , s15d

where upper case lettersT,Q,F ,N,L, and M denote the
quantitiessfunctions ofs onlyd, to order zero iny, given by
the static equilibrium equationss1d–s6d. Lower case letters
q, f ,n, andm correspond to the supplementary terms appear-
ing at first order iny, and are functions ofs and t.

Combining the derivative of Eq.s15d with s2d, relation
s14d becomes

rA
]2y

]t2
=

]

]s
ST

]y

]s
D + f + n − L

]y

]s
− EI

]4y

]s4 . s16d

The inviscid fluid force issLighthill 8d

FA = r flAS ]

]t
− U cosu

]

]s
DvN, s17d

where the normal velocityvNss,td is given bys11d; hence

f = r flAS−
]2y

]t2
+ 2U cosu

]2y

]t ] s
+ U2cosu sinu

du

ds

]y

]s

− U2cos2u
]2y

]s2D . s18d

In Eq. s16d n is the first order term of expressions4d in which
u has been replaced by the incidence angleui given by s13d
andU by svN

2 +vT
2d1/2 where the two velocity components are

given by s11d and s12d. It results that

n =
1

2
r fldU2FsCDsin 2u + 6 Re−1/2cosu sin1/2udC

+ s2CDsin2u + 6 Re−1/2sin1/2ud
u

U
G , s19d

where C=s]y/]sd−scosu /Uds]y/]td and
u/U=−ssinu /Ud]y/]t.

An equation similar to s16d has been derived by
Païdoussis9,10 to describe the small lateral motions of a fila-
ment in an axial flow, i.e., small displacements around the
static equilibrium stateussd=0 for all s between 0 andl. In
this case, and contrary to the present configuration, the gov-
erning equations16d can be linearized with respect to the
ssmalld incidence angleu. This situation has been extensively
studied and references can be found in the recent series of
papers by Païdoussis and co-workerssPaïdoussiset al.,5

Lopeset al.,6 Semleret al.11d.
Moreover, it should be pointed out that, for the lengths

considered here, the filaments in static equilibrium are recti-
linear on most of their length, specially close to the flapping
thresholdsFigs. 1 and 6d. Hence, in the following we restrict
our stability analysis to a filament having a constant inci-

dence angle equal to the value at free enduss=0d. From Eqs.
s1d and s5d, a linear variation of the tensionT along the
filament results.

2. Results and comparisons

For the analysis we consider periodic perturbations of
the form

yss,td = RefYssdeivtg, s20d

wherev is a complex frequency.
Assuming the filament is initially rectilinearsi.e., u is

constant thereforeT is linear in sd and using the filament
length l to make the spatial variables dimensionlessslet j
=s/ l andh=Y/ ld the governing equation for small displace-
mentss16d becomes

d4h

dj4 + a
d2h

dj2 + bj
d2h

dj2 + sc1 + ivc2d
dh

dj
+ sv2e1 + ive2dh = 0,

s21d

where the coefficientsa,b,c1,c2,e1, ande2 depend nonlin-
early onU andu, their expressions are given in the Appen-
dix. A dramatic simplification occurs whenu=0, which cor-
responds to the classical case of a filament in an axial flow
se.g., see the work of Païdoussis9,10d. For the situation con-
sidered here, the coefficientc1 is nonzero; this induces a new
destabilizing term whose effect has never been into account
before. The boundary conditions at the clamped end,j=1,
are

h =
dh

dj
= 0, s22d

and at the free end,j=0, are

d2h

dj2 =
d3h

dj3 = 0. s23d

To solve the whole governing equations21d we use a
Galerkin method involving the eigenfunctionsfisjd of the
filament without flow. This is applicable because we assume
that the fluid load is negligible at the free end in such a way
that the boundary conditionss22d ands23d are identical with
or without flow. Then, the method consist to approximate the
filament displacementhsjd by the truncated series

hsjd = o
i=1

n

aifisjd, s24d

where

fisjd =
chkis1 − jd − coskis1 − jd

chki + coski

−
shkis1 − jd − sinkis1 − jd

shki + sinki
. s25d

From the boundary conditionss22d and s23d we deduce that
to obtain nontrivial solutions, the wavenumberski must
verify coskichki =−1. Relationss24d ands25d are substituted
into the governing equations21d, and then the resulting equa-
tion is projected onto the free modesfi. The complex eigen-
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frequenciesv are then determined from the solvability con-
dition of the linear system that is obtained. Each
eigenfrequencyv corresponds to a specific eigenmode of the
instability, made of a combination of the free modesfi. The
real part Refvg is the angular frequency 2pf and its temporal
growth rate is given by −Imfvg. It follows that a negative
value of Imfvg for at least one mode is indicative of a flap-
ping instability of the filament. The computations are re-
peated with an increasing numbern of modes ins24d in order
to ensure the convergence of the solution with a good enough
accuracy. The theoretical results in Figs. 9 and 10 are ob-
tained withn=23 resulting in angular frequencies Refvg and
growth rates −Imfvg evaluated with an accuracy better than
0.2 s−1 for l =35 cm, and better than 0.1 s−1 for l ,20 cm.
For shorter filaments the convergence could be achieved with
a decreasing number of modesstypically n,10 for l
,10 cmd.

The theoretical values for the critical velocityUc are
plotted in Fig. 9 as a function of the filament lengthl for the
diametersd=1.2 mm fFig. 9sadg and 1.8 mmfFig. 9sbdg. A
comparison with experimental results is also shown and re-
veals in both cases a good qualitative and quantitative agree-
ment. It is noteworthy that this agreement is obtained with-
out adjustable parameter. However, a slight shift of the
calculated curves towards the lower length values can be
noted. This may be due to the fact that the filament is con-
sidered as rectilinear on its whole lengthl whereas the actual
rectilinear part is shorter.

The instability mode destabilized at the thresholdUc de-
pends on the filament lengthl. Thus, the characteristic lobes
of the theoretical curvesUcsld in Fig. 9 correspond to various
instability modes that differ in their shapes and frequencies.
Note that these instability modes are combinations of the
Galerkin modesfi sand should not be confused with themd.

Theoretical and experimental measurements of flapping
frequencies are also compared in Fig. 9 for three filaments
sl =12 and 20 cm ford=1.2 mm, l =12 cm ford=1.8 mmd.
In all cases, and although they are of the same order of
magnitude, we note that the frequencies predicted by the
model are systematically overestimated when compared to
the experimental results. In the same manner, their depen-
dence with the filament length, as it is observed during the
experiments, is not fully recovered by the model. Neverthe-
less, qualitative agreements can be found such as the depen-
dence of the frequencyv on the free stream velocityU
which is predicted with a very good approximation. Also,
when considering results for filaments of a given lengthsl
=12 cmd but of different diameterssd=1.2 and 1.8 mmd we
can see that, in agreement with the experimental observa-
tions, the theory gives a flapping frequencyv that decreases
asd is increased.

IV. DISCUSSIONS AND CONCLUSION

A. Effect of mass ratio

Although the mass ratiom has not been varied in the
present experiments, a comparison with the recent study of

FIG. 9. Experimentals+d and theoreticalfGalerkin approximation withCD=0.8 ssolid lined andCD=0.9 sdashed linedg values of the critical velocityUc as
function of the lengthl for the filament of diameterd=1.2 mmsad andd=1.8 mmsbd.

FIG. 10. Comparison of experimental and theoretical values of the flapping
frequencyv. Experiments:l =12 cm andd=1.2 mm ssd, l =20 cm andd
=1.2 mm shd, l =12 cm and d=1.8 mm sPd. Theory: l =12 cm, d
=1.2 mm, CD=0.8 ssolid lined and CD=0.9 sdashed lined; l =20 cm, d
=1.2 mm, CD=0.8 sdotted lined; l =12 cm, d=1.8 mm, CD=0.8 sdash-dot
lined.
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Facchinettiet al.4 invalidates a VIV scenario to interpret our
observations. These authors present indeed results on a freely
hanging flexible cable of aspect ratiol /d=250, towed in a
water tank with a mass ratiom of about 2.07. They report the
observations of waves propagating along the cable and con-
sisting in traveling transversesi.e., perpendicular to the free
streamd displacements of the cable. These waves appear as
soon as the Reynolds number Re=Ud/v exceeds the critical
value of the appearance of the vortex sheddingsof about 50d
and consequently are locked on these vortex shedding. These
are evidences that these waves are excited by the periodic
vortex shedding and a model of these VIV emphasizes the
resonance of the structure with the periodic fluid loading.

In contrast, for the same aspect ratiosa filament withl
=30 cm andd=1.2 mm, for instance, resulting in an aspect
ratio l /d of 250d we observe a critical value Rec<610 ssee
Fig. 2d with vertical displacements of the filament. This flap-
ping frequency appears clearly not to be locked on the vortex
shedding frequency that would correspond to a Strouhal
number St=fd/U of 0.21 ssee, e.g., the recent review by
Norberg12d, while St is only of about 4310−3 for the flap-
ping oscillationssconsidering the total excursion of the free
end of the filament instead of the filament diameter as length
scale, we obtain a Strouhal number of order 10−1d; in this
estimation, the incidence of the filament versus the flow has
been taken into account with the cosine correction proposed
by Williamson.13 Therefore the flow-induced vibrations pre-
sented here appear to be clearly of a different nature that of
the classical VIV. Our theoretical study shows that the flap-
ping of the filaments results directly from a loss of stability
of the filament stationary states under the action of external
steady forces. Besides, this is also consistent with the VIV
modelsse.g., see the work by Facchinettiet al.4d that predict
the narrowing of the synchronization domain when the mass
ratio is increased. In our case, the VIV resonance domain is
negligibly small and cannot be invoked to explain our obser-
vations.

B. Beyond the linear regime

Finally we should also mention that our experiments
show that the transition from a static state to flapping exhib-
its hysteresis and bistability. Actually, when experiments, as
described in Sec. II B, are repeated with a decreasing veloc-
ity U, the flapping motion persists up to a valueUc− lower
thanUc. This is illustrated in Fig. 11 that shows the angular
frequency of the flapping for increasing and decreasingU,
for the filamentd=1.2 mm andl =20 cm. While flapping ap-
pears at a critical valueUc of the wind velocity between 9.4
and 9.6 m s−1, it is maintained toUc− between 8.7 and
8.9 m s−1 whenU is decreased.

In the bistability domainfUc−,Ucg, the filament can eas-
ily be forced to either a static state or flapping by external
perturbations. ForU,Uc− andU.Uc all attempts to change
the spontaneous state of the filament are fruitless. Such an
hysteretical cycle has also been observed in numerous flow-
induced vibration problems as for in experiments on a fila-
ment in an axial flowsPaïdoussiset al.5d or in a flowing soap
film sZhanget al.14d. This bistability is supposed to be re-
sponsible for the dispersion of the experimental critical ve-
locities observed in Fig. 2.

C. Conclusion

Observations of flow-induced vibrations for a filament
freely hanging in a vertical plane are reported. In contrast to
low mass ratio situation, no VIV have been observed. The
persistence of steady states up to Reynolds number of several
hundreds, results in the appearance of another kind of insta-
bility where the filaments oscillate in the vertical plane. We
have shown that this flapping results from a loss of stability
of the filament static equilibrium states under the action of
the steady fluid flow loads. Our theoretical results confirm
the appearance of this instability and, in particular, the
threshold values for its observation. The different character-
istics of the flapping are also correctly predicted by the
model and, in particular, the exchanges between different
flapping modes when the length of the filaments is increased.
Finally, a strong nonlinear behavior with the existence of a
bistable regime has been detected experimentally. This
would demand a nonlinear theoretical analysis in order to
describe the saturation of flapping amplitude asU is in-
creased and the observed hysteretical behavior at threshold.

APPENDIX

Expressions of the coefficients of Eq.s21d:

a =
l2

EI
r flAU2cos2u,

b = −
l3

EI
fL + sr − r fldgAsinug,

c1 = −
l3

EI
Fsr − r fldgAsinu +

1

2
r fldU2sCDsin 2u

+ 6 Re−1/2cosu sin1/2udG ,

FIG. 11. Flapping frequencyv for increasingsnd and decreasings.d free
stream velocityU sl =20 cm,d=1.2 mmd.
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c2 = −
l3

EI
2r flAU cosu,

e1 = −
l4

EI
sr + r fldA,

e2 =
l4

EI
r fldUfCDsin2u + 3 Re−1/2sin1/2ug.
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