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In this letter, we report experimental results on the stability of a fluid inside a precessing and
resonant cylinder. Above a critical Reynolds number, the Kelvin mode forced by precession triggers
an instability which saturates at intermediate Re and which leads to a turbulent flow at high
Reynolds numbers. Particle image velocimetry measurements in two different sections of the
cylinder have revealed the three-dimensional structure of this instability. It is composed of two free
Kelvin modes whose wavenumbers and frequencies respect the conditions for a triadic resonance
with the forced Kelvin mode, as is obtained for the elliptical instability. Moreover, an experimental
diagram of stability has been established by varying both the precessing angle and the Reynolds
number. It shows a good agreement with a scaling analysis based on a triadic resonance
mechanism. © 2008 American Institute of Physics. #DOI: 10.1063/1.2963969$

The knowledge of the flow forced by a precessional mo-
tion is of critical importance in several domains. In aeronau-
tics, the liquid propellant contained in a flying object can be
forced by precession. The resulting flow can create a desta-
bilizing torque on the object and thus modify its trajectory
dangerously. In geophysics the Earth’s precession modifies
the flow of its liquid core and is therefore of significant im-
portance in understanding the geodynamo !among other ef-
fects such as convection, boundary layers, and elliptic or
tidal instability1". The flow inside a cylinder subjected to
precession can be decomposed as a sum of a shear along the
cylinder axis and a superposition of Kelvin modes which
become resonant for particular precession frequencies.
McEwan2 first observed that this flow can become unstable
and even turbulent for large Reynolds numbers. This behav-
ior has also been reported by Manasseh,3–5 and Kobine.6

Several scenarios have been proposed to explain this insta-
bility. Studying the case of an infinite cylinder, Mahalov7

proposed a mechanism of triadic resonance between the flow
shear and two Kelvin modes. Kerswell8 suggested that a
given Kelvin mode can trigger a triadic resonance with two
other Kelvin modes leading to an instability. Another sce-
nario, suggested by Kobine,6,9 is that the main flow could be
modified by a geostrophic mode !due to nonlinear effects"
eventually leading to a centrifugal instability.

An experimental setup has been built to study the pre-
cession of a cylinder of height H along its axis ẑ and radius
R, full of water of kinematic viscosity !. More details about
the setup can be found in Ref. 10. The cylinder rotates at the
angular frequency "1 !measured with an accuracy of 0.1%"
around its axis. It is mounted on a platform which rotates at
the angular frequency "2 !measured with an accuracy of
0.2%". Once the spin-up stage is completed, the cylinder is
tilted with an angle # !determined with an absolute accuracy
of $0.1°" with respect to the rotation axis of the platform.
Particle image velocimetry !PIV" measurements in transverse

sections of the cylinder are made. To perform the acquisition
of a PIV field, we use small markers illuminated with a thin
light sheet created by a yttrium aluminum garnet !YAG"
pulsed laser. The particle images are recorded by a camera
mounted on the rotating platform. The horizontal velocity
and the axial vorticity fields in the cylinder frame of refer-
ence are thus measured. More details about PIV treatment
can be found in Ref. 11.

In the following, variables are made dimensionless by
using R and "="1+"2 cos # as characteristic length and
characteristic frequency. The dynamics of this precessing
system depends on four dimensionless numbers: the aspect
ratio h=H /R, the frequency ratio %="1 /", the Rossby
number Ro="2 sin # /", and the Reynolds number Re
="R2 /!. The cylindrical coordinates are used in the refer-
ence frame of the cylinder and noted !r ,& ,z", where z=0
corresponds to the midheight section of the cylinder.

Figure 1 shows the axial and instantaneous flow vorticity
for a small precessing angle !#=1° " and different Reynolds
numbers. The laser sheet is at an altitude z%h /4. For Re
=3500 #Fig. 1!a"$, the flow mainly consists of two stationary
counter-rotating vortices. A classical linear and inviscid
theory is sufficient to explain this observation. By assuming
a small Rossby number !weak precession, negligible nonlin-
ear effects" and a large Reynolds number !negligible viscous
effects", the linearized Euler equation at order O!Ro" is

"v
"t

+ 2ẑ ' v + #p = − 2Ro %r cos!%t + &"ẑ , !1"

where 2ẑ'v is the dimensionless Coriolis force and p the
dimensionless pressure including all potential terms. The
right-hand side of Eq. !1" is the precession forcing which
forces a particular solution of Eq. !1": vpart=−2Ro r sin!%t
+&"ẑ. This solution does not satisfy the boundary conditions
of no outward flow at z= $h /2. Thus, we must complete this
solution with a solution of the homogeneous equation #Eq.
!1" without forcing$, so that the boundary condition at thea"Electronic mail: lagrange@irphe.univ-mrs.fr.
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upper and lower walls is satisfied. Due to time and azimuthal
dependence of the forcing, the homogeneous solution is a
sum of Kelvin modes of azimuthal wavenumber m=1 and
angular frequency %. Finally the solution of Eq. !1" is

v = vpart + &
i=1

(

aivi!m = 1,%,ki" , !2"

where vi!m ,% ,ki" is a Kelvin mode of amplitude ai and
whose axial wavenumber ki depends on % by the dispersion
relation,

%ki
'4/%2 − 1Jm! !ki

'4/%2 − 1" + 2Jm!ki
'4/%2 − 1" = 0,

!3"

where Jm is the Bessel function of the first kind and Jm! its
derivative. The axial vorticity )i of the ith Kelvin mode is

)i = Jm!ki
'4/%2 − 1r"sin!kiz"cos!%t + m&" . !4"

When ki is equal to !2n+1"* /h, with n an integer num-
ber, the ith Kelvin mode “fits” inside the height of the cyl-
inder and becomes resonant. In our experiments !i.e., for h
=1.62 and %=1.18" the first Kelvin mode !which is theoreti-
cally characterized by two lobes of vorticity" is resonant !its
axial wavenumber, noted k, is equal to * /h". Because the
amplitude a1 is predicted to diverge by a linear analysis it is
necessary to include viscous12 and nonlinear effects. We
have shown in Ref. 10 that a1 scales as RoRe1/2 for low
Reynolds numbers !viscous regime, Re1/2Ro2/3+1" and as
Ro1/3 for large Reynolds numbers !nonlinear regime,
Re1/2Ro2/3,1". Since the nonresonant mode amplitudes
scale as Ro, the resonant mode is always predominant.

Figure 1!b" is a PIV measurement of the axial and in-
stantaneous vorticity field for Re=6500. For such a value of
Re the flow seen in Fig. 1 is unstable and the unstable mode
exhibits a ring with ten lobes of vorticity with alternate sign.
It corresponds to a free Kelvin mode #i.e., a solution of Eq.
!1" without forcing$ whose azimuthal wavenumber, noted
m1, equals 5. This mode m1=5 is superimposed to the forced
Kelvin mode m=1 shown in Fig. 1!a". #As seen on Fig. 1!b"
the average vorticity is negative for x-0 and positive for
x.0$. Such a flow, which is three-dimensional and nonsta-
tionary, corresponds to the instability discovered by
McEwan2 and studied by Manasseh3 using visualizations,
which was called “resonant collapse” since it decreases the
amplitude of the forced Kelvin mode. Indeed, the same struc-
ture has been observed for other aspect ratios !h=1.8 and h
=2" and it also leads to the decrease of the forced Kelvin
mode’s amplitude. The visualization of a sequence of instan-
taneous PIV fields shows that the free Kelvin mode rotates as
a function of time at a dimensionless frequency
%1=−0.34$11% in the cylinder frame of reference. For this
Reynolds number, the unstable mode beats probably due to a
nonlinear coupling with the geostrophic mode. However, the
amplitude of this unstable mode is stationary close to the
threshold !i.e., Re%4600".

Figure 1!c" represents the axial and instantaneous vortic-
ity field for even larger Reynolds numbers !Re=24 400". For
such a value of Re the flow is disordered and seems to be
turbulent. As suggested by Kerswell,8 this disordered flow
could be the result of successive instabilities: a cascade of
bifurcations could lead to a turbulent state. It can be noted

FIG. 1. Axial vorticity ) of the flow for different Reynolds numbers at z
=h /4. !a" For Re=3500 the stable flow exhibits the forced Kelvin mode. !b"
For Re=6000 the flow is unstable and exhibits a free Kelvin mode with
m1=5 superimposed to the forced Kelvin mode. The temporal evolution of
the instability can be observed in the corresponding movie. !c" For Re
=24 400 the flow is turbulent. For these three cases h=1.62, %=1.18, and
Ro=0.0031 !enhanced online".
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that the Kelvin mode m=1 forced by precession is still
present since the average vorticity is still negative for x-0
and positive for x.0.

Figure 2 is a PIV measurement of the axial and instan-
taneous vorticity field measured in a section of the cylinder
lower than in Fig. 1. The laser sheet is at midheight of the
cylinder !z=0". According to Eq. !4" the vorticity of the
forced Kelvin mode m=1 and of the free Kelvin mode m1
=5 is equal to 0. At this altitude a structure with 12 lobes of
alternate vorticity is clearly observed. It corresponds to a free
Kelvin mode whose azimuthal wavenumber, noted m2, is
equal to 6. Because it does not vanish at z=0 its axial vor-
ticity is given by Eq. !4", where sin!k2z" has been changed in
cos!k2z". This free Kelvin mode rotates at a dimensionless
angular frequency %2=0.79$2.5% in the cylinder frame of
reference.

The axial velocity #which is in quadrature with respect to
the axial vorticity given by Eq. !4"$ of the free Kelvin mode
m1=5 !resp. m2=6" is a cosine !sine" function of z. Boundary
conditions of no outward flow at z= $h /2 imply that the
axial wavenumber of the free Kelvin mode m1=5 !resp. m2
=6" is discretized as follows: k1= !2n1+1"* /h !resp. k2
=2n2* /h", n1 !resp. n2" being an integer.

Furthermore, Figs. 1!b" and 2 show that the unstable
Kelvin modes correspond to the first branch of the dispersion
relation since there is only one ring of vortices. We can thus
infer that k1=* /h !resp. k2=2* /h" since the point !k1
=* /h, %1(−0.34" !resp. k2=2* /h, %1(0.79" then falls
very close to the first branch of the dispersion relation !3" for
m1=5 !resp. m2=6" !Fig. 3".

These experiments have allowed to determine the struc-
ture of the instability of a fluid inside a precessing and reso-
nant cylinder. We have found that the unstable flow is the
sum of three Kelvin modes: the forced one and two free
modes. The azimuthal wavenumber and the angular fre-
quency of these free modes have been measured and satisfy

the conditions for a triadic resonance with the forced Kelvin
mode,

m2 − m1 = 1, %2 − %1 ( %, k2 − k1 = k , !5"

where k=* /h is the axial wavenumber of the forced Kelvin
mode. This suggests that the nonlinear coupling of the three
Kelvin modes can trigger an instability, in a similar way as
for the elliptical instability.13,14

The resonant condition given in Eq. !5" corresponds to
the crossing points of the dashed and solid lines in Fig. 3,
where the two dispersion relations are plotted in the same
plane; the dispersion relation with m1=5 !resp. m2=6" being
horizontally !vertically" translated of k !resp. translated of
−%". It can be noted that there is an infinite and denumerable
number of possible resonances. However, the free Kelvin
modes observed experimentally correspond to the crossing
point surrounded by a circle on Fig. 3. These modes satisfy
exactly the boundary conditions at z= $h /2 !i.e., the cross-
ing point lies on a vertical dotted line in Fig. 3". This exact
resonance is only valid for h=1.62. For h(1.62 “detuning”
effects shall come into play and thus decrease the instability
growth rate.

For h%1.62 two free Kelvin modes involving different
branches of the dispersion relations or different azimuthal
wavenumbers m1 and m2 can exactly resonate with the
forced Kelvin mode. Nevertheless, it can be shown that there
cannot be exact resonances for m1/4 for the first branches
of the dispersion relations. Thus, the aspect ratio h=1.62
corresponds to the exact resonance of the Kelvin modes with
the smallest wavenumbers. Since the volume viscous effects
increase with the wavenumbers of the free Kelvin modes,
h=1.62 is expected to be the aspect ratio for which the flow

FIG. 2. Vorticity field of the unstable flow at midheight of the cylinder for
the same parameters as in Fig. 1!b" !h=1.62, %=1.18, Ro=0.0031, and
Re=6500".
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FIG. 3. Dispersion relations of the Kelvin modes. The solid lines !resp.
dashed lines" correspond to the first five branches of the Kelvin modes with
azimuthal wavenumber m1=5 !resp. m2=6". The solid lines have been trans-
lated by k=* /h and the dashed lines have been translated by %=1.18. The
vertical dotted lines correspond to k=n* /h, with n an integer, !h=1.62,
%=1.18".
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is the most unstable. However, the previous observations are
very general and do not depend on the fact that the triadic
resonance is exact or not. Indeed, experiments with an arbi-
trary aspect ratio !h=1.8" have shown exactly the same in-
stability.

Finally we have plotted in Fig. 4 the stability diagram of
this instability in the Re-Ro plane. The majority of the ex-
periments close to threshold are in the viscous domain for
the base flow. This means that the amplitude of the forced
mode scales as a1)RoRe1/2.10 Based on similarities with the
elliptic instability, the inviscid growth rate 0 of the present
triadic instability is expected to scale as the amplitude of the
forced Kelvin mode: 0)a1. The natural decay rate of Kelvin
modes is due both to the boundary viscous layers and vol-
ume viscous effects. The surface !volume" decay rate 0surf
!0vol" scales as 0surf)−Re−1/2 !resp. 0vol%−#m1+k1

2!4 /%2

−1"$Re−1". In our experiments, 0surf%0vol for Re%3000.
When the instability is saturated by volume !i.e., Re-3000"
!resp. boundary, i.e., Re.3000", viscous effects, the ampli-
tude of the forced Kelvin mode at which the flow becomes
unstable satisfies a1c)Re−1 !resp. a1c)Re−1/2". Thus the
Rossby number at which the flow becomes unstable scales as
Roc)Re−3/2 !resp. Roc)Re−1". A “fit” of the experimental
threshold gives Roc)Re−1.38 !solid line", which is coherent
with the theoretical scalings.

In this letter we studied experimentally the flow inside a

precessing and resonant cylinder. At a given Rossby number
the flow is stable for small enough Reynolds numbers and
exhibits a Kelvin mode forced by the precessional motion.
Increasing the Reynolds number above a critical value the
flow becomes unstable !and even turbulent for high Re".
Measurements in two different cylinder sections have re-
vealed the presence of two Kelvin modes with high azi-
muthal wavenumbers. Their frequencies and their wavenum-
bers satisfy the conditions for a triadic resonance with the
forced Kelvin mode. Thus, this letter has confirmed the sce-
nario suggested by Kerswell8 that a Kelvin mode can be
destabilized by a triadic resonance mechanism. So, the pre-
cessional instability is very general since it appears as soon
as a Kelvin wave has been excited !through precession, com-
pression, in the nonlinear stages of the elliptical instability,
or in the turbulent flow of a rotating cylinder". A stability
diagram has also been established and showed that the scal-
ing of the critical Ro as a function of Re is coherent with
standard scaling laws in triadic resonances.

A linear stability analysis based on a mechanism of tri-
adic resonance between Kelvin modes is currently under
progress and will be the subject of a foregoing paper.

This study has been carried out under CEA-CNRS Con-
tract No. 012171.
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FIG. 4. Stability diagram of the flow inside a precessing cylinder for !h
=1.62, %=1.18". The circles represent stable experiments. The black tri-
angles represent unstable experiments. The solid line is an experimental fit
of the threshold. The dashed line separates the viscous and the nonlinear
domains of the base flow.
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