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Experimental visualizations of the coupled flutter of an assembly of two, three and four flexible
parallel cantilevered plates immersed in an axial uniform flow are presented. Depending on the flow
velocity, on the inter-plate distance and on the plate length different coupled modes are observed.
Selected modes and the associated thresholds and frequencies are compared with the results of a
linear stability analysis.

The flutter instability can take place when a flexible
body is immersed in a flow of sufficiently high veloc-
ity. Flutter of flexible plate has been widely studied as
a canonical example of aeroelasticitic instabilities1 and
is still today subject of works2–5. A coupling of flut-
ters can occur when two, or more, flexible bodies are
placed in proximity. For example, experiments with two
flexible filaments in a flowing soap film has been con-
ducted to model the coupling between one-dimensional
plate flutters6. As the separation distance was increased,
filaments were observed to flap first in phase, then out-
of-phase. For much larger distance, flutters of both fil-
aments became independent. These experiments have
been confirmed by numerical simulations7–9. The lin-
ear stability of the coupled flutter of two plates has been
analyzed10, and the absolute/convective transition of the
out-of-phase flutter has been investigated11. These two
analyzes have been performed in the limit of potential
flow and considering the plates as infinite. Finite length
effects have been taken into account in a theoretical
works that analyze the stability of an assembly of paral-
lel plates relatively to the mode for which adjacent plates
flap out-of-phase12, and more recently relatively to all the
coupled modes13. In the present paper we study exper-
imentally the flutter modes of assemblies of two, three
and four parallel plates in uniform flow and compare the
results with predictions of a linear stability analysis.
Experiments were performed in the horizontal square
(0.8× 0.8 m2) test section of a low turbulence wind tun-
nel. The wind velocity U was measured with a Pitot
tube, it could be varied up to 65 m.s−1. Plates made of
propylene, of 280 µm in thickness, of mass per unit area
m = 0.44 kg.m−2 and of flexural rigidity D = 9.7× 10−3

N.m, were used. Plate leading edge was clamped into
parallel vertical masts while the three other edges were
free. The masts, of 4 mm in thickness, were separated
by a distance d that could be changed by step of 0.02 m.
Plate span was of 0.1 m and length L could be varied
from 0.1 to 0.25 m. In order to limit three-dimensional
effects due to the flow around the side edges or to trans-
verse (vertical) flow, the plate assembly was confined be-
tween two horizontal plates, the upper one was made of
transparent material for visualization purpose. The gap
between the side edges of the plates and the confinement
plates was reduced to about 1 mm. An experiment con-
sisted to increase the flow velocity from 0 by step of about

0.75 m.s−1 and was stopped when a filament touched its
neighbor.
A camera (operating at 300 fps), placed above the trans-
parent top wall of the wind tunnel and aligned with the
masts, captured images of the side edges of the plate dur-
ing flutter. To illustrate the dynamics of plates during
flutter, a video line transverse to the flow at one half
of the plate length from the masts was extracted from
the successive frames. These lines were then stacked to
form a space-time diagram. Flutter frequency could be
deduced by Fourier analysis of these diagrams.

The stability of an assembly of n identical flexible
plates in a uniform flow is now addressed, this analytic
derivation is based on (and generalizes) that of10. Ini-
tially, plates are parallel to the xz plane and separated
by a distance d. The flow is parallel to the x axis and of
uniform velocity U . The plates and the fluid domain are
infinite both in x and z directions and the deflection of
each plate is assumed to be small and to depend only on
the longitudinal direction x and time t. For the i-th plate
initially lying in the y = yi plane, the deflection is noted
wi(x, t) and is governed by the linearized Euler-Bernoulli
beam equation

m∂2
twi +D∂4

xwi = −∆pi, (1)

where m is the mass per unit area and D the flexural
rigidity of the plate, and ∆pi is the pressure jump across
the plate.

The flow between the plates is assumed to be potential.
The perturbation potential between the plates i− 1 and
i is noted φi(x, y, t) and the corresponding pressure is
given by the linearized unsteady Bernoulli equation

pi(x, y, t) = −ρ (∂t + U∂x)φi, (2)

where ρ is the fluid density.
Each plate deflection is now assumed to be a propaga-

tive wave of frequency ω and wavenumber k

wi(x, t) = Aie
i(kx−ωt), (3)

where Ai is the complex amplitude of the i-th plate. The
perturbation potential φi follows the same x and t de-
pendence and has to satisfy the Laplace equation

∆φi = 0, (4)



2

with two kinematic boundary conditions on the sur-
rounding plates

∂yφi = (∂t + U∂x)wi−1 in y = yi−1, (5)
∂yφi = (∂t + U∂x)wi in y = yi. (6)

Solving equations (4–6), the potential φi is found to be
a sum of two terms: one proportional to the amplitude
Ai−1 and the other to Ai. Injecting this result in (2),
the pressure jump for each plate is found and can be
used in (1). Repeating this process for the n plates, a
linear system for the amplitude vector A = (Ai)i=1···n is
obtained

MA = 0, (7)

where M is a n× n tridiagonal matrix

M =


α b
b a b

. . . . . . . . .
b a b

b α

 , (8)

and the coefficients α, a and b depend on problem pa-
rameters ω, k, m, D, ρ, U and d

α = −mω2 +Dk4 − ρ (ω − kU)2

k

ekd

sinh kd
, (9)

a = −mω2 +Dk4 − 2ρ
(ω − kU)2

k
coth kd, (10)

b = ρ
(ω − kU)2

k

1
sinh kd

. (11)

The eigenvalue problem (7) is the typical system for
linearly coupled oscillators. Its n eigenmodes give the
possible coupled flutter modes of the n-plate assembly
and the corresponding eigenvalues give their dispersion
relations. The temporal stability of the system can be
addressed considering k > 0 and ω complex. With this
assumption, the growth rate of each eigenmode is given
by the imaginary part of its eigenfrequency, i.e. σ =
=(ω). The critical velocity Uc is obtained when σ = 0.
When the flow velocity is above Uc, the eigenmode is
unstable (σ > 0), and stable otherwise.

Using L, U and ρ as characteristic length, velocity and
density, the problem is made dimensionless (the dimen-
sionless quantities are noted with a star, i.e. k∗ = kL,
ω∗ = ωL/U , etc). The system is entirely governed by
three control parameters: the mass ratio M∗, the reduced
velocity U∗ and the dimensionless separation distance d∗

M∗ =
ρL

m
, U∗ =

√
m

D
LU, d∗ =

d

L
. (12)

To address the stability of the plate assembly, a
wavenumber k∗ has now to be chosen. In order to do
this, we first consider the vibration eigenmodes of a sin-
gle elastic beam in vacuo. If this beam is clamped at one
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FIG. 1: Experimental flutter thresholds for a single plate: no
flutter (◦) and flutter (+); thresholds predicted by the linear
model (—) for different values of k∗ and experimental thresh-
olds obtained by Huang14 (H) and Eloy et al.3 (N).

end, the other end being, free, its eigenmodes are found to
have a peak in their spatial Fourier transform for the val-
ues k∗ =1.875, 4.694, 7.855, 10.996, . . . For determining
the value of k∗ to consider in the present coupled flutter
analysis, experiments have been carried out with a single
plate. In Fig. 1, the critical velocities measured experi-
mentally and results of previous experiments3,14 are com-
pared with analytical results obtained with the values of
k∗ given above for a beam in vacuo. It clearly shows that
taking k∗ = 4.694 give a reasonably good agreement and
this value has therefore been retained for the rest of the
study.

We first present results for two plates of mass ratio
M∗ = 0.70 and for five values of d∗ between 0.137 to
0.685. Similar results have been obtained for three other
values of M∗ ranging from 0.48 to 1.20.
The case of two plates has already been studied by Jia
et al.10 In agreement with this work, two coupled flutter
regimes (i.e. regimes for which flutters of the two plates
are locked) have been observed during the present ex-
periments. These two modes are illustrated in Fig. 2 by
means of snapshots and space-time diagrams obtained
from visualizations recorded for a separation distance
d∗ = 0.137. When the flow velocity is increased from
0, the plates appears first straight, parallel to each other
and to the incoming flow. Then above a critical value of
the flow velocity they begin to flutter symmetrically in a
mode that will be referred hereafter to as varicose mode
[Figs. 2(a,c)]. When U∗ is further increased a second
threshold is observed where the coupled flutter sponta-
neously change to the sinuous mode shown in Figs. 2(b,d)
where the two plates flap in phase. For both modes, the
space-time diagrams of Figs. 2(c,d) show that the two
plates flap with the same amplitude and frequency. This
is in agreement with the stability analysis which shows
that the two possible coupled flutter eigenmodes corre-
spond to A1 = −A2 and A1 = A2. In Fig. 3 the experi-
mental stability diagram representing the observation do-
mains of the different regimes is plotted in the (d∗, U∗)
plane together with the thresholds of the two coupled
flutter modes deduced by the linear stability analysis. In
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FIG. 2: Visualization (2 plates) of the varicose mode at U∗ =
9.33 (a) and sinuous mode at U∗ = 11.46 (b) (flow from top)
and corresponding space-time diagrams (c,d); M∗ = 0.70,
d∗ = 0.137.
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FIG. 3: Observation of the coupled flutter modes of 2 plates of
reduced mass M∗ = 0.70: varicose (×) and sinuous (•) mode;
and no flutter (◦). Thresholds for the varicose (solid line) and
sinuous mode (dashed line) as predicted by the linear model.

agreement with experiments, analysis predicts that the
loss of stability of the steady plate gives rise to the vari-
cose mode with a critical reduced velocity of the same
order and increasing with d∗. In contrast, the model can
not predict the change of mode from varicose to sinuous
as observed in the experiments because the calculated
thresholds correspond to destabilization of the steady
(not perturbed) state. This mode exchange can not be
explained by argument based on growth rates either be-
cause the growth rate of the sinuous mode predicted by
the model is always the largest. The only conclusion than
can be derived is that the varicose mode is observed in
a region where it is predicted to be linearly unstable.
The limit between the observation domains of the two
coupled flutter modes appears as an increasing function
of the dimensionless separation distance d∗ in agreement
with previous numerical simulations7–9 or experiments6
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FIG. 4: Visualization (3 plates) of mode 1 for U∗ = 14.26
and d∗ = 0.137 (a), mode 2 for U∗ = 8.40 and d∗ = 0.137 (b)
and mode 3 for U∗ = 7.46 and d∗ = 0.274 (c) (flow from top);
and corresponding space-time diagrams (d,e,f); M∗ = 0.70.

that report transition from in-phase to out-of-phase flut-
ter for increasing distance at a given and sufficiently high
flow velocity.

Considering flutter frequencies, we first note that
Fourier analysis of the space-time diagrams always ex-
hibits the same frequency for both plates as it is expected
for locked regimes. In addition, analysis and experiment
reveal a higher frequency for the varicose than for the
sinuous mode. For example, for d∗ = 0.137 we measure
2.31 < ω∗ < 2.73 (depending on U∗) for the varicose
mode and 1.55 < ω∗ < 1.66 for the sinuous one, while
analysis predicts ω∗ = 1.81 and ω∗ = 0.77 (indepen-
dent of U∗) respectively. Discrepancy with experiments
is probably due to the infinite plate hypothesis made in
the model.

For an assembly of three plates, analysis predicts the
three following coupled eigenmodes: mode 1 defined by
(A1 = A3, A2 = κ+A1), mode 2 (A1 = −A3, A2 = 0) and
mode 3 (A1 = A3, A2 = −κ−A1); where κ+ and κ− are
positive coefficients depending on k∗d∗ (here k∗ = 4.694)
and evolving from κ+ = 1 and κ− = 2 for d∗ = 0 to
κ+ = κ− =

√
2 when d∗ →∞.

The three modes observed during experiments are illus-
trated in Fig. 4. In agreement with the analytical results
above, for mode 1 [Figs. 4(a,d)] and mode 3 [Figs. 4(c,f)]
the two outer plates flap in-phase with the same ampli-
tude. The ratio of the inner-outer plate amplitudes can
be deduced by measuring amplitude at mid-length di-
rectly on space-time diagrams [Figs. 4(d,f)]. It is found
to be 1.09 for mode 1 (comparable to the analytical value
of κ+ = 1.18 for the same parameters) and 1.43 for mode
3 (analytically: κ− = 1.56 ).

We also consider an assembly of four plates with the
dimensional separation distance between plates fixed to
d = 0.02 m and changing the plate length L. This
has also the effect of changing the dimensionless dis-
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FIG. 5: Visualization of mode 1 for M∗ = 0.96, U∗ = 12.96
and d∗ = 0.100 (a), mode 2 for M∗ = 0.70, U∗ = 9.46 and
d∗ = 0.137 (b), and mode 4 for M∗ = 0.48, U∗ = 8.49 and
d∗ = 0.200 (c) (flow from top); and corresponding space-time
diagrams (d,e,f).

tance d∗. It is noteworthy that for this configuration
we have only been able to observe three of the four cou-
pled flutter eigenmodes predicted by the analysis. The
four analytical modes are respectively mode 1 defined by
(A1 = A4, A2 = A3 = κ1A1), mode 2 (A1 = −A4, A2 =
−A3 = κ2A1), mode 3 (A1 = A4, A2 = A3 = −κ3A1)
and mode 4 (A1 = −A4, A2 = −A3 = −κ4A1) where κ1,
κ2, κ3 and κ4 are positive coefficients larger than unity
and depending only on k∗d∗. The three experimental
modes are illustrated in Fig. 5. In Figs. 5(a,d) the four
plates flap in phase as mode 1. Similarly to mode 2,
Figs. 5(b,e) shows a mode where the two plates on the
left are in phase and out-of-phase with the two plates on
the right. In Figs. 5(c,f) each plate flaps out-of-phase
with its neighbor as for mode 4. The mode 3 for which
the two outer plate are in phase and out-of-phase with
the two inner plates has never been observed. There is
no explanation for the absence of this mode . It could
be due to the particular experimental set-up used in this
study or to more intrinsic reasons. A nonlinear analysis
would allow to address this particular issue.

In Fig. 6, the experimental observation domains of the
different modes are compared to the theoretical thresh-
olds given by the linear analysis for four plates. As with

two plates, the threshold for the appearance of the flutter
is reasonably well predicted and the three different modes
are observed in regions where they are linearly unstable.
However a nonlinear theory would be necessary to ex-
plain the mode selection for large flow velocities.

In conclusion, experiments performed with assemblies
of two, three and four plates have allowed to identify
different coupled flutter modes as the flow velocity, the
inter-plate distance or the plate length was changed. A
linear stability analysis has also been conducted consid-
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FIG. 6: Observation of the coupled flutter modes of 4 plates :
mode 1 (+), mode 2 (•) and mode 4 (×); and no flutter (◦).
Lines are thresholds for mode 1 (dot), mode 2 (dash), mode 3
(solid) and mode 4 (dash-dot) as predicted by the linear model.

ering small deflections for a simplified system of infinite
parallel plates in a uniform potential flow. Despite its
simplicity, this analysis captures the main characteristic
of the instability: the eigenmodes are predicted and the
critical velocity for the first instability is predicted with
an accuracy better than 25%. Results of two-dimensional
theories for a single plate taking into account the finite
length of the plate has been compiled by Watanabe et
al.15 and compared with various experiments, they does
not lead to better accuracy. This is due, at least in part,
to the finite span of the plates which makes the prob-
lem fully three-dimensional as demonstrated by Eloy et
al.2,3. Some aspects of the instability however are inher-
ently nonlinear. When several eigenmodes are linearly
unstable for instance, the linear stability analysis cannot
predict the mode selected (the observed mode is not the
mode with the largest growth rate).
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