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Flexibility of marine animal fins has been thought to enhance swimming per-
formance. However, despite numerous experimental and numerical studies on
flapping flexible foils, there is still no clear understanding of the effect of flexibil-
ity and flapping amplitude on thrust generation and swimming efficiency. Here,
to address this question, we combine experiments on a model system and a weakly
nonlinear analysis. Experiments consist in immersing a flexible rectangular plate
in a uniform flow and forcing this plate into a heaving motion at its leading edge.
A complementary theoretical model is developed assuming a two-dimensional in-
viscid problem. In this model, nonlinear effects are taken into account by consid-
ering a transverse resistive drag. Under these hypotheses, a modal decomposition
of the system motion allows us to predict the plate response amplitude and the
generated thrust, as a function of the forcing amplitude and frequency. We show
that this model can correctly predict the experimental data on plate kinematic
response and thrust generation, as well as other data found in the literature. We
also discuss the question of efficiency in the context of bio-inspired propulsion.
Using the proposed model, we show that the optimal propeller for a given thrust
and a given swimming speed is achieved when the actuating frequency is tuned
to a resonance of the system, and when the optimal forcing amplitude scales as
the square root of the required thrust.

I. INTRODUCTION

Aquatic vertebrates can either use their caudal fin or their median and paired fins for
propulsion1. Generally, these appendages are flexible2–4, and it has often been argued
that flexibility enhances swimming efficiency5–7. Yet, the rigidity of caudal fins can
vary substantially between species: tuna have relatively rigid caudal fins1,8 compared to
goldfish2 or trouts9. To date, it remains to be proven whether or not fin flexibility is an
evolutionary advantage.
Swimming kinematics has been first explored through experimental observations of live

fish10–12. These experiments have revealed that most fish and cetacean species use a
particular mode of locomotion, called undulatory swimming, which consists in bending
the backbone to generate a propagative wave from head to tail. Some species like sharks
and tuna use an extreme form of undulatory swimming, a thunniform mode13,14, where
significant values of the curvature are located in the caudal peduncle region only. For
these animals, the anterior part of the body is almost rigid and can be considered as
a cargo, while the posterior flexible part (made of the caudal peduncle and caudal fin)
can be considered as a propeller. Such systems have obvious engineering applications
to the design of novel bio-inspired propellers15 and led to specific studies on oscillating
rigid foils16–18. In agreement with a two-dimensional, linear, and inviscid theory on
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oscillating wings19–21, it has been found experimentally that a combination of heave and
pitch with a phase difference of 90◦ corresponds to an optimum for propulsion22,23. For
these two-dimensional rigid foils, it was also found experimentally18 that the optimal
frequency corresponds to a Strouhal number St ≈ 0.3 (St = fA/U , with f the oscillating
frequency, A the peak-to-peak amplitude of the trailing edge motion, and U the swimming
velocity). Since the Strouhal numbers of many aquatic species have been measured in
the interval 0.2 < St < 0.4, some authors claimed that this interval corresponds to
optimal performance17,24. However the link between Strouhal number and optimality is
still debated today25.

Recently, these studies on oscillating rigid foils of large aspect ratio have been extended
to flexible foils. Experiments on such flexible foils have been performed with pitching
motions26,27, heaving motions6,7,28–31 or a combination of both motions32,33. For all
cases, it was shown that a resonance phenomenon occurs: thrust generation is maximal
at the natural frequencies of the system. In other words, when the system fluid+structure
is forced at one of its eigenfrequencies, the response in terms of elastic deformation is max-
imized, and thrust generation and performance have also been reported to be maximized.

Numerical simulations of a flapping flexible appendage have been conducted, either
in the limit of infinite Reynolds number using vortex methods5,29,34, or at small to
moderate Reynolds numbers using direct numerical simulations35–39. Similarly to ex-
periments, these simulations generally showed a connection between the resonance of the
fluid+structure system and the generated thrust. There is thus a strong contrast between
rigid and flexible foils: in the rigid case, optimal frequency is determined by a specific
value of the Strouhal number17,24; in the flexible case, optimal frequency is a natural fre-
quency of the deformable system. Interestingly, since the Strouhal number varies linearly
with amplitude while natural frequencies are almost independent on amplitude, these two
frequencies can be matched by adjusting the flapping amplitude26. But, to assess if this
particular amplitude corresponds to an overall optimum, one has to systematically study
the effect of the forcing amplitude on thrust production, a study that has rarely been
performed31.

Although thrust production by a flexible foil has been studied many times both ex-
perimentally and numerically, there have been comparatively few attempts to address
this problem analytically. Among these attempts, Moore40 recently extended the works
of Wu19,21 and Lighthill20 on the optimization of oscillating foils. He modeled a two-
dimensional rigid foil whose leading edge is forced into a heaving motion and which can
passively pitch. In agreement with experiments and numerical simulations, he found that
driving the foil near a resonance can dramatically increase the swimming performances.
Some of us also used Wu’s and Lighthill’s ideas to model the thrust produced by an active
flexible foil41, and this analytic model was used to calculate the optimal two-dimensional
swimming gait of a self-propelled foil. Finally, Alben et al.29 used a linear time-harmonic
model to rationalize the power-law scalings observed in their numerical simulations. How-
ever, these analytical studies are mainly linear and are thus limited to motions of small
amplitude. One objective of the present study is to extend these modeling approaches to
take into account nonlinearities.

The organization of the paper is as follows. Section II introduces the experimental set-
up, and Sec. III describes the weakly nonlinear model. Then, the results obtained with
both approaches are presented and compared, in Sec. IV, through the kinematic response
of the system, the wake, the production of thrust, and the efficiency of the propulsion
system. Finally, these results are discussed in the context of biological and bio-inspired
swimming in Sec. V.
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FIG. 1. (a) Experimental set-up and (b) two-dimensional modeling.

II. EXPERIMENTAL METHODS

The experimental set-up consists of a flexible foil with a rounded leading edge and a
tapered trailing edge. This foil (hereinafter called foil or plate indifferently) of bending
rigidity B is immersed in a uniform flow of speed U (Fig. 1). It is made of polysiloxane
and has an aspect ratio S/C = 1, where S = 6 cm and C = 6 cm are its half-span and
half-chord. Flapping is achieved by heaving harmonically the foil leading edge through
an inverted U-frame, with a heave amplitude aLE and angular frequency Ω.
The foil is isolated from the guiding rods and the free surface by two vertical and one

horizontal transparent confinement walls. The foil is clamped into the actuated rod to
ensure that its leading edge always remains parallel to the incoming flow. The foil density
being approximately 20% heavier than water, its deformation can be slightly asymmetric
in some experimental cases.
The plate deflection at the leading and trailing edges is measured with two laser sensors

Keyence G-402, while its full deformation is recorded by a video camera through a side
wall. The thrust is measured with two load cells Futek LSB210 assembled parallel to the
flow at the leading edge. In addition, a particle image velocimetry (PIV) system is used
to measure the wake beyond the trailing edge. The PIV acquisition system is composed
of two pulsed YAG lasers and a high precision camera (1336×2000 pixels). PIV velocity
fields are computed using the software DPIVSoft42.
In this experimental set-up, four parameters can be varied: the bending rigidity B, the

flow speed U , the forcing angular frequency Ω, and the forcing amplitude ALE. Table I
specifies the range of these parameters. To vary the bending rigidity, we use three foils
made of different polysiloxane formulae. Their rigidities are deduced from their first
natural frequency Ω0, which are measured from an impulse response test in water (Fig. 2).
We find that the natural frequencies of the system foil+fluid are Ω0 = 4.71, 6.22, and
8.17 rad s−1, corresponding to bending rigidities per unit span B = 19.6MC4Ω2

0 = 0.027,
0.047, and 0.081Nm respectively (see Sec. IVA for details on this calculation).
As it can be seen in Fig. 2, impulse response tests in water yield strongly damped os-

cillations. This damping can be decomposed into three components: internal viscoelastic
damping, linear fluid damping, and nonlinear fluid damping. From these impulse response
tests, together with additional tests performed in air, these sources of damping can be
quantified and included in a model (Appendix B).
A typical experiment consists in a frequency response test: for a plate of given bending

rigidity, the flow speed U and forcing amplitude ALE are fixed, and the plate response is
recorded as the forcing frequency Ω is gradually varied. Experiments are then repeated
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TABLE I. Characteristic parameters of the experiment.

Symbols Values Units
Forcing amplitude ALE 0.004 – 0.014 m

Forcing frequency Ω 2.51 – 37.70 rad s−1

Bending rigidity (per unit span) B 0.027 – 0.081 Nm
Fluid speed U 0 – 10.10−2 ms−1

Foil half-chord C 0.06 m
Foil half-span S 0.06 m
Foil surface density M 4.8 kgm−2

Fluid density ρ 103 kgm−3
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FIG. 2. The impulse response of the most flexible foil in water. A fast Fourier transform of the
signal gives the natural frequency Ω0 and (inset) the slope of the signal in semilogarithmic scale
gives the damping coefficient Σ.

for different amplitudes ALE, different flow speeds U , and using plates of different bending
rigidity B to assess the effect of these control parameters31.

III. ANALYTICAL MODEL

A. Governing equation

The system is made dimensionless by using C, C2
√

M/B and ρB/MC2 as character-
istic length, time and pressure respectively, with C the plate half-chord, B its bending
rigidity, M its mass per unit area, and ρ the fluid density (Table I). Using lowercase let-
ters to denote dimensionless variables, the system we want to model can be represented
as a flexible foil of infinite span, zero thickness, half-chord unity, immersed in a uniform
flow along the x-axis of speed u = UC

√

M/B (Fig. 3).
At the leading edge (x = −1), the foil is clamped and forced into a harmonic heave

motion, aLE cos(ωt), while the rest of the foil responds elastically with a deflection h(x, t).

The dimensionless frequency, ω = ΩC2
√

M/B, corresponds to the ratio of the forcing
frequency to a typical elastic frequency. In this problem, another dimensionless frequency
can be built, the reduced frequency k = ΩC/U = ω/u, which is the ratio between the
forcing frequency and a “fluid” frequency calculated as the inverse of the time taken by
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FIG. 3. Sketch of the problem.

fluid particles to travel one half-chord at speed U . In this section, we will assume that k
is asymptotically large (i.e. ω ≫ u), in conformity with the range of parameters explored
in the present experiments (Table I).

We assume that the plate deflection follows a linearized Euler–Bernoulli beam equation

∂2
t h+ ∂4

xh+ ν∂th+ µ∂t∂
4
xh+

cD
2m

|∂th|∂th+
p

m
= 0, (1)

complemented with clamped-free boundary conditions: h(−1, t) = aLE cos(ωt) and
∂xh(−1, t) = ∂2

xh(1, t) = ∂3
xh(1, t) = 0. In the equation of motion (1), the first two

terms represent the equation of an elastic beam in vacuum (inertia and elastic restor-
ing force respectively), the next two terms represent the linear damping in the system
(linear fluid damping and internal viscoelastic damping, see Appendix B), the fifth term
describes the nonlinear fluid damping (which takes the form of a transverse drag force
with drag coefficient cD), and the last term corresponds to the pressure forces on the
plate with p the pressure jump across the beam.

In the above equation of motion, the damping coefficients ν and µ, are determined
independently from linear impulse response tests (Appendix B). The ratio m = M/ρC is
small in the present case because the plate thickness is small compared to its chord and
the material has a density close to water.

Assuming that the deflection is small (i.e. h ≪ 1 and ∂xh ≪ 1), the pressure jump
across the foil p can be calculated using unsteady airfoil theory. This calculation is
based on the work of Wu19,21 with the simplifying assumption that the reduced frequency
k = ω/u is asymptotically large (Appendix A). Note that in Wu’s approach, the velocity
induced by the plate motion is implicitly assumed to be small compared to the uniform
flow velocity, i.e. ωaLE ≪ u or aLE ≪ k−1. This is an important restriction on the
amplitudes aLE that can be considered valid. Unfortunately, in most experimental cases
considered in this study, this assumption is not fulfilled. Yet, as it will be shown below,
we find a good agreement between theory and experiments.

Within this framework, the flow is assumed to be potential except in a thin wake
located at y = 0 for x > 1. This wake is due to vortex shedding at the trailing edge
and ensures the continuity of pressure through a Kutta condition43. However, an inverse
square root pressure singularity remains at the leading edge due to a non zero angle of
attack. This singularity smooths out if the finite thickness of the foil is accounted for,
but causes leading edge suction, a force along the x-direction that participates in the
thrust produced. As we shall see below, this force, also called suction force, is of crucial
importance.
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TABLE II. Values of the coefficients κi, αi and βij of Eq. (4) for the first three beam eigenmodes.

i=1 i=2 i=3
κi 0.938 2.347 3.927
αi 0.783 0.434 0.254
βi0 1.188 1.015 0.288
βi1 1.131 0.591 -0.014
βi2 0.591 1.004 0.251
βi3 -0.014 0.251 0.556

B. Modal analysis

To solve equation of motion (1), the deflection is decomposed as

h(x, t) =

(

aLE +

N
∑

i=1

aihi(x)

)

eiωt, (2)

where we have neglected higher time harmonics. It represents a combination of the
imposed displacement of amplitude aLE, and N eigenmodes hi(x) of a beam in vacuum of
complex amplitudes ai (cf. Appendix A). In practice, we will use N = 3, which is enough
to represent the foil deflection around the first two resonances. The eigenmodes hi(x)
have the property of being an orthonormal basis of the clamped-free deflections when the
following scalar product is used

〈f, g〉 = 1

2

∫ 1

−1

f(x)g(x)dx. (3)

Inserting the decomposition (2) into (1) and forming the scalar product with the N
eigenmodes hi(x) yields N nonlinearly coupled equations for the N unknown amplitudes
ai of the form

(iων − ω2)(αiaLE + ai) + (1 + iωµ)κ4
i ai

+ iω2 cD
m

2

3π

1
∫

−1

hi

∣

∣

∣

∣

∣

∣

aLE +

N
∑

j=1

ajhj(x)

∣

∣

∣

∣

∣

∣



aLE +

N
∑

j=1

ajhj(x)



 dx

− ω2

m



βi0aLE +

N
∑

j=1

βijaj



 = 0, (4)

for 1 ≤ i ≤ N . The coefficients αi and βij , whose expressions are given in Appendix A, are
universal and have been calculated (Table II). In the system (4), we recognize the same
terms as in Eq. (1): the first term gathers linear fluid damping and inertia, the second
term gathers elasticity and viscoelasticity, the third term is the nonlinear damping, and
the last term is due to the pressure forces. In the limit of large reduced frequency, ω ≫ u,
this last term is proportional to ω2 and therefore plays the role of an added mass. As it
can be seen in (4), the different eigenmodes are only coupled through the pressure term
and through the nonlinear damping term. Equation (4) represents a weakly nonlinear
model, correct up to the order O(a2LE). To develop an analytical model correct up to the
order O(a3LE), geometrical nonlinearities would have to be taken into account, making
the problem far more complex44.
The system (4) for 1 ≤ i ≤ N can be solved numerically for any values of the forcing

amplitude aLE and forcing frequency ω. Its solution gives the complex amplitudes ai as
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a function of the parameters aLE and ω (e.g., Fig. 6). In particular it gives the amplitude
aTE and phase φ of the trailing edge oscillation relative to the leading edge forcing

h(1, t) =

(

aLE +

N
∑

i=1

aihi(1)

)

eiωt = aTE ei(ωt+φ). (5)

IV. RESULTS

A. Resonance

We now examine the frequency response of the system, both experimentally and the-
oretically. In dimensionless units, it consists in measuring the relative amplitude of
the trailing edge displacement aTE/aLE and its phase φ, when the normalized forcing
frequency ω/ω0 is varied. Here ω0 is the first natural frequency of the foil+fluid sys-
tem. It is determined through impulse responses tests in the experiments (Sec. II) and

given by ω0 = κ2
1/
√

1 + β11/m ≈ 0.226 for the model [this formula results from taking
aLE = a2 = a3 = 0 in Eq. (4) and neglecting nonlinear terms]. Given the range of control
parameters (Table I), the system is investigated in the limit of small reduced mass and
large reduced frequency (m ≪ 1 and k ≫ 1). In this limit, we have shown in a previous
paper31 that the frequency response depends mainly on the forcing amplitude imposed
at the leading edge aLE. In other words, the fluid speed and the plate bending rigidity
have little influence on the response as long as deflection amplitudes and frequencies are
made dimensionless properly.
Figure 4 shows three frequency responses for different forcing amplitudes. Both exper-

iments (symbols) and theoretical predictions (solid lines) exhibit two resonant peaks in
the range of frequencies explored (Fig. 4a). Here, the only fitting parameter is the drag
coefficient cD: the value cD = 12 has been found by fitting the experimental value of
the first peak amplitude for the intermediate forcing amplitude aLE = 0.17. This value
appears much larger than the value cD ≈ 2 usually reported in the literature for a rigid45

or flexible plate46,47. This unexpected high value of cD could result from other nonlinear
contributions that arise in the problem, such as the rotational drag48 or the nonlinear
terms of order O(a3LE) and higher that have been neglected. The use of an “effective
drag” gathering all nonlinearities in a single term is validated by the agreement between
experiments and theory for the two other forcing amplitudes aLE = 0.07 and 0.24 (Fig. 4).
In particular, the first resonant peak around ω/ω0 = 1 is well predicted by the model,
both in terms of frequency and amplitude.
It should be emphasized that the differences in relative amplitude aTE/aLE for different

forcing amplitudes aLE are a signature of nonlinear effects (Fig. 4a). A linear model would
give the same relative response for any forcing amplitude (Fig. 4c).
For the second resonant peak in Fig. 4a, the agreement between experiments and theory

is good, except for the largest forcing aLE = 0.24. However, phase differences tend to be
underestimated (Fig. 4b), maybe because nonlinear effects of order O(a3LE) and higher
have been neglected in the analysis.
To go further in the comparison between experiments and theory, we now examine the

plate deflection at the two resonances (Fig. 5). The envelope of the first resonant mode
(Fig. 5a,b) is well captured by the model. It actually corresponds to a superposition of a
rigid oscillation and a contribution of the first beam eigenmode (Fig. 6). For the second
resonant mode, agreement is good, but some differences can be observed (Fig. 5c,d): in
the experiments, there is a bulge at about 1/3 of the plate chord that is not visible in the
model, and the neck at about 2/3 is less marked than in the prediction.
The kinematic response of the foil under an external forcing has now been characterized,

but a central question remains: how do the nonlinear forces affect thrust production?



8

0 1 2 3 4 5 6 7 8
0

1

2

3

ω/ω0

a
T

E
/
a
L
E

(a)

0 1 2 3 4 5 6 7 8
−2π

−3π/2

−π

−π/2

0

ω/ω0

φ
(r

a
d
)

(b)

0 1 2 3 4 5 6 7 8
0

3

6

9

12

15

18

ω/ω0

a
T

E
/
a

L
E

 

 

(c)

FIG. 4. Response of the trailing edge as a function of the forcing frequency ω/ω0: (a) relative
amplitude aTE/aLE, (b) corresponding phase shift φ. Plate bending rigidity is B = 0.027 Nm
and flow speed is zero. Symbols represent the experimental results while solid lines represent
theoretical predictions for cD = 12. Dark blue, medium blue, and light green correspond to
the forcing amplitudes: aLE = 0.07, 0.17, and 0.24 respectively. (c) Theoretical trailing edge
amplitude when nonlinear terms are neglected, i.e. cD = 0 or aLE asymptotically small (dashed
line). For comparison purposes, the nonlinear result for aLE = 0.07 is also shown (solid line,
similar as dark blue solid line in a).

B. Thrust

If the flapping flexible foil generates a thrust, one expects a reverse Bénard-von Kármán
vortex street in its wake49; well-known to be a characteristic of a propulsive regime50.
Figure 7 shows phase-averaged PIV vorticity fields when the frequency is tuned to the
first resonance. These fields confirm that a reverse Bénard-von Kármán vortex street is
indeed present.
To quantify the thrust production from PIV velocity fields, one can plot the time-

average of the x-component of the flow velocity ux (Fig. 7). It shows that, on average,
a jet is produced behind the heaving foil, with a maximum speed of about twice the
imposed flow in this particular example. From a momentum balance argument, it can be
shown51 that the thrust is given by

fT = u

∫

∞

−∞

(u− ux(x, y)) dy. (6)

This dimensionless thrust is related to the dimensional thrust force per unit span by
FT = ρBfT/MC. A priori, for a two-dimensional problem, this momentum balance
could be applied at any distance x far enough from the trailing edge. In practice an
optimal distance xoptim. should be chosen, which results from a compromise between a
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FIG. 5. Comparison between the experimental (a, c) and theoretical (b, d) deflection envelopes
These images shows superimposed images of the foil over one heaving period. Deformation at
the first resonance for ω/ω0 = 0.9 (a,b) and the second resonance, which appears experimentally
at ω/ω0 = 6.4 (c) and theoretically at ω/ω0 = 5.8 (d). These responses correspond to the dark
blue data in Fig. 4, for aLE = 0.07. Note that the asymmetry of the experimental deflections is
due to the foil density that is 20% heavier than water. Note also that the first 4% of the plate
near the leading edge are hidden by the U-frame and thus not shown here (a,c).
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FIG. 6. Contribution of the amplitude a1, a2 and a3 in the total amplitude aTE for aLE = 0.07.

distance large enough so the pressure variations across the wake are weak, and small
enough so the three-dimensional effects have not established yet50. In our case, it has
been found that xoptim. ≈ 3 is appropriate (Fig. 7f). However, this method is only a raw
approximation of the generated thrust, as three-dimensional and confinement effects are
important in the set-up used here.

To calculate the thrust produced by the heaving foil from the weakly nonlinear model,
we have to consider three contributions: the reactive forces per unit span, fP, due to the
pressure forces projected onto the x-direction21; the resistive forces, fR, which are due to
the nonlinear damping forces on the foil; and the leading-edge suction, fS.

Leading-edge suction corresponds to large negative values of the pressure near the
leading edge. However, the existence of important negative pressures can yield a stall
vortex or a leading-edge vortex52,53, whose shedding can strongly affect the flow and the
suction force. In practice, when the angle of attack (i.e. the angle between the relative
flow velocity and the plate) is too large, the suction force evaluated using linear theory
cannot be achieved18. Here, the maximal value of the angle of attack, which is given by
arctan(kaLE), is always larger than 15◦, such that leading-edge suction can be neglected
(when considering optimisation in the next section, this assumption will be lifted).
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FIG. 7. Phase-averaged vorticity field in the wake of the heaving flexible foil for ωt = π/2 (a)
π (b), and 3π/2 (c). Flow speed is u = 0.049 and plate bending rigidity B = 0.027 Nm. The
foil is forced at amplitude aLE = 0.07 and frequency ω = ω0. (d) Time-averaged x-component
of the flow velocity, ux, relative to the imposed flow speed u for the same parameters. (e) Mean
velocity profile ux(y) for different distances x behind the moving plate for the same parameters.
(f) Thrust fT calculated from (6) for several forcing frequencies ω/ω0 as a function of the position
x behind the plate. The evolution of fT reveals an optimal distance xoptim. (for which ∂xfT = 0),
which varies from 2.5 to 3 depending on the forcing frequency.

The expression of the total thrust can be written fT = fP + fR, with

fP = −1

2
ℜ
∫ 1

−1

p ∂xhdx, (7)

fR = −1

2
ℜ
∫ 1

−1

(

mν∂th+
4

3π
cD|∂th|∂th

)

∂xhdx, (8)

where ℜ stands for the real part and the overbar for the complex conjugate. For more
details on these calculations, see Appendix A and Refs. 19,21,and 41. It can be seen that,
when nonlinear terms are neglected, the thrust is quadratic in amplitude, as expected. It
is also proportional to the square of the forcing frequency. It is thus expected that the
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FIG. 8. (a) Comparison of the thrust calculated in the model (lines) and experimental measure-
ments (symbols). Dark blue (circles) and light green (triangles) correspond respectively to the
forcing amplitude aLE = 0.07 and 0.24, with the plate rigidity B = 0.027 Nm placed in water at
rest. Close-by symbols are obtained with load cells, while red and yellow symbols are obtained
from PIV and the momentum balance in Eq. (6) for u = 0.049. (b) Different contributions of
the total thrust for aLE = 0.07: reactive forces (dashed line) and resistive forces (dotted line).

dimensionless thrust will scale as fT = O(a2LEω
2), which corresponds to a dimensioned

thrust scaling as FT = O(ρU2
LEC), where ULE = ΩALE is the typical velocity of the

leading edge.

In Fig. 8a, the total thrust fT calculated with this method is compared to experimental
measurements. Despite some differences for the smallest forcing amplitude which are
likely due to the hypothesis of zero leading edge suction, the average thrust generated is
well predicted. In particular, the nonlinearities, which explain the differences between the
two sets of data of different forcing amplitudes, are well reproduced around ω/ω0 = 1. In
Fig. 8a, the thrust measured from the momentum balance equation (6) is shown together
with the average thrust recorded by the load cells. These measurements are consistent
for low frequencies (ω/ω0 ≈ 1), however thrust calculated from PIV data is only a raw
approximation for ω/ω0 > 2. This is likely due to the three-dimensionality of the flow.

These experimental results confirm the work of Michelin et al.34: resonances in thrust
appears at the same frequencies as resonances in amplitude. Indeed, the maximum of
thrust, fT/(a

2
LEω

2), occurs at ω/ω0 = 0.9 for the forcing amplitude aLE = 0.07 (dark
blue in Fig. 8a) and ω/ω0 = 0.7 for the forcing amplitude aLE = 0.24 (light green in
Fig. 8a).

As mentioned above Eq. (7), if leading edge suction fS is neglected, the total thrust
can be split up into two contributions: resistive forces fR and reactive forces fP (Fig. 8b).
Around the first resonance and for small forcing amplitude, fP dominates (it is 2.3 times
larger than fR at ω/ω0 = 0.9). But in all other cases (large forcing amplitude or ω/ω0 >
1), the resistive contribution is of same order, if not larger than fP. In the interval
2.7 ≤ ω/ω0 ≤ 5.1, fP can even be negative; in this interval, the total thrust is positive
only thanks to resistive forces.

C. Efficiency

Let us now address the question of efficiency of thrust generation. For simplicity, we
will make additional assumptions in this section: the foil will be considered near its first
resonance (such that its deformation can be represented by the first beam eigenmode
only), and linear damping terms will be neglected. However, we will lift the hypothesis
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of large reduced frequency k. With these assumptions Eq. (4) becomes

κ4
1a+

u2cDaLE
m

2

3π

1
∫

−1

h1 |ik(1 + ah1) + a∂xh1| (ik(1 + ah1) + a∂xh1) dx

− u2

m
(b0(k) + b1(k)a) = 0, (9)

with a = a1/aLE, h(x, t) = aLE(1 + ah1(x))e
iωt, and

b0(k) ≈ 1.188k2 − 0.995ikCTh(k), (10)

b1(k) ≈ 1.131k2 − 2.216ik− 0.261− (1.247 + 1.350ik)CTh(k), (11)

where CTh(k) is the Theodorsen function54

CTh(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (12)

with H
(2)
n the Hankel function of the second kind. In Eq. (9), we recognize the elastic,

nonlinear damping, and pressure terms respectively. In Eqs. (10–11), the first terms
corresponds to β10 and β11 in Eq. (4), as given in Table II, and the other terms arise
because we are no longer in the limit of asymptotically large k.
The average power needed to actuate the foil can be split into a reactive and a resistive

components: ̟ = ̟P +̟R, with

̟P =
1

2ω

∫ 1

−1

ℜ
(

p ∂th
)

dx, (13)

̟R =
1

2ω

∫ 1

−1

4

3π
cDℜ

[

|∂th+ u∂xh| (∂th+ u∂xh)∂th
]

dx. (14)

The dimensionless power ̟ is related to the dimensioned average power per unit span
through the relation P = ρBΩ̟/M (in Wm−1). From the power ̟ and the thrust fT,
the Froude efficiency η can be defined

η =
FTU

P =
fT
k̟

. (15)

Because our set-up does not allow us to measure the energy given to the system, we
are going to use the experimental data of Quinn et al.30 to assess the validity of these
theoretical predictions on power cost and efficiency. Their set-up is very similar to the one
used here, but the linear damping of their plates was not quantified and will be neglected
here. We will also assume that the drag coefficient is the same as in the present study:
cD = 12. Figure 9 shows how the trailing edge deflection amplitude, the thrust produced,
the average power needed, and the Froude efficiency vary as a function of the forcing
frequency when the forcing amplitude and flow velocity are fixed (frequency response
test). Similarly to the results of the present study, these plots exhibit a maximum around
the resonance ω ≈ ω0. Although we use the same value as in our study for the fitting
parameters cD, all quantities are well predicted by the model, except the thrust and power
that are slightly over-predicted. This may be because linear damping terms have been
neglected.
Using Froude efficiency to measure the performance of thrust generation has been

criticized by some authors (e.g., Refs. 55 and 56). These critics point out that Froude
efficiency does not allow to compare fairly different propulsion systems. Here, we propose
a different approach: we will formulate and solve an optimization problem with the
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FIG. 9. Experimental data from Quinn et al.30 compared to the presented model: (a) amplitude
response; (b) thrust generated; (c) power cost; and (d) Froude efficiency for aLE ≈ 0.1 and
u = 0.016.

constraint of constant thrust. Within this framework, the Froude efficiency η is a natural
measure of optimality (although, arguably, other choices would be equivalent).
Let us assume we want to design an optimal propeller for a given vessel at a given

traveling speed. In dimensioned units, we thus consider that the speed U , the fluid
density ρ, the foil surface density M , the foil half-chord C, and the desired average thrust
FT are known. On the other hand, the foil bending rigidity B, actuating frequency Ω
and amplitude ALE have to be chosen such that the average power needed P is minimal.
The five given variables can be expressed with three independent units, such that

two dimensionless numbers can be built: the mass ratio, m = M/ρC, and the Lighthill
number25, Li = FT/(ρU

2C) = fT/u
2. We will assume that m is asymptotically small,

which justifies a posteriori to neglect inertial and linear damping terms in (9). The
Lighthill number can be seen as the ratio between the desirable thrust, or the drag
that needs to be balanced, and a typical achievable thrust (per unit span): ρU2C. The
three design parameters B, Ω, and ALE correspond in dimensionless units to rigidity b =
B/(ρU2C3) = m/u2, reduced frequency k = ΩC/U , and forcing amplitude aLE = ALE/C
respectively. Note that, in Eq. (9), u always appears as u2/m, which is the reason why b
is used as a parameter instead of u.
The constrained optimization problem we want to solve consists in finding

max η such that

{

fT = Liu2,

(b, k, aLE) ∈ R
+3

.
(16)

To perform this optimization, we first fix the value of Li and assume a certain value
for b. Then, for each value of the reduced frequency k, we calculate the amplitude aLE
needed to generate a thrust fT = Liu2, and the corresponding efficiency η. To perform
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FIG. 10. Optimal heaving of a flexible plate: (a) ηmax as a function of the rigidity b for four
values of Li: 0.02 (dashed line), 0.05 (thin line), 0.1 (medium), 0.2 (thick). The dotted line shows
the loci of the optimal values ηoptim for Li ≥ 0.03. (b) Optimal value of the efficiency ηoptim,
and corresponding values of the rigidity boptim, reduced frequency koptim, and forcing amplitude
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LE , as a function of Li.

this calculation of the thrust fT, we do not neglect the leading-edge suction anymore
(cf. Appendix C). For a certain frequency k, the efficiency reaches a maximum value
ηmax(Li, b). We then repeat this operation for different values of the rigidity b to identify
the maximum of ηmax (Fig. 10a). This maximum actually corresponds to the optimal

value ηoptim associated to a triplet (boptim, koptim, aoptimLE ). Figure 10b shows how the value
of these parameters vary as a function of the Lighthill number in the range 0.03 ≤ Li ≤ 1.
For small thrust values, the optimum is achieved by a highly flexible foil flapping relatively
slowly at large amplitude. Meanwhile, for higher thrusts, stiffer foils flapping rapidly at
small amplitudes are preferable.

For smaller Lighthill numbers (Li ≤ 0.02), the optimum is reached in the limit of
vanishing rigidity b. In that case, the optimum motion corresponds to an infinite forcing
amplitude aLE, but finite leading edge speed kaLE. This shows the limits of the present
approach. For large forcing amplitude, the weakly nonlinear approximation is not valid
and, in any case, the results of the present optimization calculation are quite sensitive to
the way the leading edge suction and separation are modeled (Appendix C).

Nevertheless, Figure 10 shows that, for moderate values of the Lighthill number, an
optimal spot exists in the parameter space. This optimal motion always corresponds
to a resonance of the flapping plate: for 0.03 ≤ Li ≤ 1, the frequency is always in the
narrow range 1.03 ≤ ω/ω0 ≤ 1.07 corresponding to the resonance of the first eigenmode.
However, the optimal flapping amplitude does not correspond to a quasi constant Strouhal
number, contrarily to what has been recently suggested26. In the range where an optimal
motion exists (0.03 ≤ Li ≤ 1), the Strouhal number of the optimal flapping behaves as

Stoptim ≈ 0.5 Li0.5, thus varying between 0.08 and 0.5 in the interval considered. Here
the Strouhal number is constructed with the amplitude of the trailing edge deflection:
St = ΩATE/(πU) = kaTE/π. This can be compared to the scaling found in the limit
of elongated bodies25, where it was also found that Strouhal number is not constant
for the optimal motion: Stoptim ≈ 0.75 Li0.33 (note that the definition of the Lighthill
number was slightly different in this previous study because the problem considered was
three-dimensional).

To get an estimate of the Lighthill number for a fish, or a bio-inspired swimming vessel,
we can assume that the propeller half-chord C and half-span S are equal and that the
aspect ratio of the whole swimmer is 1/5: C = 0.1L, where L is the total swimmer’s length.
If most of the drag is due to skin friction, the thrust needed to balance this drag (per unit
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span) is approximately FT ≈ 1
2ρU

2Re−1/2L2/C when the boundary layers are laminar,
with the Reynolds number based on the length, Re = UL/ν. The resulting Lighthill

number is thus Li = FT /(ρU
2C) ≈ 50Re−1/2. This Lighthill number corresponds to

Stoptim ≈ 3.5Re−1/4, which is roughly the scaling found in a recent compilations of
biological data57 for laminar boundary layers, i.e. Re . 105. Note however that the
Strouhal number may not be a good measure of optimality, as it can simply be seen as
the result from a balance of thrust and drag for a specific swimming speed.

V. DISCUSSION

In summary, we have studied the kinematic and dynamic response of a flexible foil
actuated in heave at its leading edge. This experimental investigation has been performed
on a forcing frequency range including the two first resonances of the foil+fluid system. It
was found that the forcing amplitude is an important parameter to predict the response,
or, in other words, that nonlinearities are crucial even for relatively small deflections.
Based on this observation, a weakly nonlinear, two-dimensional, and inviscid model has
been developed. In this model, nonlinearities arise from a transverse drag force, which
acts as a quadratic damping (nonlinear cubic terms being neglected). The magnitude of
this drag, which is varied through a drag coefficient, is a free parameter of the model that
is adjusted to fit the frequency responses tests performed at different forcing amplitudes.
Once this adjusting parameter is set, agreement between experimental observations and
model predictions is good for the first two resonances, at all amplitudes tested.
With the same model, the average thrust generated by the foil and the average power

spent for actuation can also be calculated. There is a good agreement between the
predictions of these quantities and the data of the present study, as well as the data of
Quinn et al.30 who used a similar set-up. From the power and thrust, a Froude efficiency
can be defined. We have shown that this definition of efficiency is a natural choice to solve
the following optimization problem: given a certain thrust to be produced and a given
swimming velocity, what is the best design choice for the flexible propeller, i.e. the choice
of rigidity, forcing amplitude, and forcing frequency that minimize the power needed?
Within the framework of the proposed model, we have solved this optimization problem
and have shown that optimal motions always correspond to resonances of the foil+fluid
system. However, contrarily to recent findings26, the overall optimum is not achieved for
a quasi constant Strouhal number.
The proposed model has some drawbacks however that should be addressed in the future

if one wants to really design an optimal bio-inspired propeller. First, nonlinearities should
be taken into account more rigorously, maybe through numerical simulations. Then, the
two-dimensional hypothesis should be lifted to account for moderate aspect ratios such
as those encountered in nature. Finally, when the thrust force is relatively large (i.e. for
large Lightill numbers), the propeller kinematics cannot be fully dissociated from the bluff
body that needs to be be propelled. The flexible foil produced recoil torques on the body
that induce a pitch rotation that needs to be taken into account. One possible avenue
would be to use experimental optimization to find the best design choice58. However, one
has to be careful in defining the objective function and the constraints. We showed here
that Froude efficiency can be meaningful when comparing propeller generating the same

thrust force for the same swimming velocity.
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Appendix A: Amplitude equations

The modes hi(x) are found by calculating the eigenmodes of the linearized Euler–
Bernoulli beam equation in vacuum, with clamped-free boundary conditions. They are
given by59

hi(x) = coshκi(x+ 1) + cosκi(x+ 1) + ζi(sinhκi(x+ 1)− sinκi(x + 1)), (A1)

with

ζi =
sin(2κi)− sinh(2κi)

cos(2κi) + cosh(2κi)
, (A2)

where the wavenumbers κi are given in Table II for the first three eigenmodes.
To calculate the pressure jump across the foil, we will use a method first derived by

Wu19. The only difference is that we will make the additional simplifying assumption that
the reduced frequency is asymptotically large, i.e. k ≫ 1. Since the potential problem
is linear and we consider a perturbation of the uniform velocity field u, to each beam
eigenmode hi(x) corresponds a pressure jump perturbation pi(x) at leading order.
Each eigenmode hi(x) is decomposed onto the Chebyshev functions of the first kind

(i.e. Tq(cos θ) = cos(qθ))

hi(x) =
1

2
ξ1,1 +

Q
∑

q=2

ξ1,qTq−1(x), (A3)

where

ξiq =
2

π

∫ π

0

hi(cos θ) cos(q − 1)θ dθ. (A4)

To find the acceleration potential ϕi(x, y)e
iωt associated to each eigenmode of the plate

hi(x)e
iωt, one needs to solve a Laplace problem with a Neumann boundary condition (due

to the impermeability of the plate)

∆ϕi = 0, (A5)

∂ϕi

∂y
= −ω2 hi(x), on y = 0 (−1 < x < 1), (A6)

in the limit of large ω. As explained by Wu19, the solution of this Laplace equation has
been obtained by Küssner and Schwarz60. The corresponding pressure jump (factorized
by −ω2) is

pi(cos θ) =
1

−ω2

[

ϕi(cos θ, 0
−)− ϕi(cos θ, 0

+)
]

=

Q
∑

q=1

ξi(q+2) − ξiq

q
sin qθ, (A7)

where, in practice, we use Q = 10. Note that the numbers of Chebyshev fonctions Q is
independent of the number of eigenmodes N . The total pressure jump is then simply

p(x) = −ω2

(

aLE pLE(x) +
N
∑

i=1

aipi(x)

)

, (A8)

where pLE is the pressure associated to the heave of a rigid foil

pLE(x) = −2
√

1− x2. (A9)
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The amplitude equations are obtained by first inserting the decomposition (2) into (1),
and then by taking the scalar product [defined by (3)] with the N eigenmodes hi(x). This
yields Eq. (4) where the coefficients αi and βij are given by

αi = 〈hi, 1〉, (A10)

βi0 = 〈hi, pLE〉, (A11)

βij = 〈hi, pj〉, (A12)

for i and j between 1 and N .

Appendix B: Damping model

Impulse response tests in water and air have revealed the importance of damping in
the system. If the initial deflection amplitude is small, two linear damping terms can be
considered: linear fluid damping of coefficient ν and internal Kelvin–Voigt viscoelastic
damping61 of coefficient µ (in dimensionless units).
During impulse response tests, we can assume that only the first eigenmode is present.

The deflection of the plate is thus of the form

h(x, t) =
1

2
aTE(t)h1(x), (B1)

where the time-varying amplitude is a damped oscillation of the form

aTE(t) = eiω0te−σt. (B2)

The form of ω0 and σ is found by using the linearized Euler–Bernoulli equation (1) and
neglecting the nonlinear damping term. In the limit of small damping, it is found that

ω0 ≈ κ2
1

√

1 + β11/m
, and σ = − ν + µκ4

1

2(1 + β11/m)
. (B3)

From an experimental point of view, the natural frequency of the system, Ω0 =
(ω0/C

2)
√

B/M , is measured by performing a Fourier transform of the damped oscil-

lating signal. The damping coefficient Σ = (σ/C2)
√

B/M is measured by plotting in
log-linear plot the amplitude of the trailing edge deflection as a function of time (inset
of Fig. 2). In dimensional units, the damping coefficient Σ is related to the coefficient ν∗

and µ∗ through

2(1 + β11/m)Σ = − 1

M

(

ν∗ +
κ4
1

C4
µ∗

)

(B4)

where ν∗ and µ∗ are the dimensional equivalents of ν and µ given by

ν =
ν∗C2

√
MB

, µ =
µ∗

C2
√
MB

(B5)

In Figure 11, 2M(1+ β11/m)|Σ| is plotted as a function of κ4
1/C

4 for different impulse
response tests performed in water (for a single value of C) and air (for different half-chords
C). From the data in air and using the relation (B4), the viscoelastic coefficient µ∗ can
be measured: µ∗ = 1.02× 10−6 Nms. From the data in water, the linear fluid damping
coefficient can be measured: ν∗ = 47.64 kgm−2 s−1. Using the dimensionless forms of
these coefficient with Eqs. (B5), it is found that ν = 0.583 and µ = 9.64 × 10−4 for
experiments conducted in water with C = 0.06m. Note that the linear fluid dissipation
varies, the mean value is taken into the model is ν = 0.474.
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In addition to the linear fluid damping, the resistance to the transverse motion of
the plate is expressed through a nonlinear drag force, with a drag coefficient cD. From
the literature45–47, a classic value for a flat plate perpendicular to the flow is around 2
in the range of the Reynolds number tested. In the present case however, the plate is
confined between walls, a configuration that probably affects the value of cD. Moreover,
nonlinear effects of order O(a3LE) have been neglected in the analysis, but can be taken
into account approximatively by including them in an “effective” drag coefficient. The
value cD = 12 seems to fully capture the frequency response tests performed (cf. Fig. 4).
This unusually large value indicates that additional nonlinear effects should probably be
taken into account in the model, in particular for the largest forcing amplitudes.

Appendix C: Leading-edge suction

As discussed in Sec. IVB, a thrust force arises from leading-edge suction when the angle
of attack at the leading edge is non zero18–20,41. From a mathematical point of view, this
force can directly be linked to the intensity of the inverse square root singularity of the
pressure jump at the leading edge.
When this force is considered, the total thrust can be written as fT = fP+fR+fS, with

the reactive force fP given by (7), the resistive force fR given by (8), and the leading-edge
suction fS given by

fS = gS(kaLE)
π

4
a2LEω

2 |γLE + aγ1|2 , (C1)

where

γLE = −2ikCTh(k), (C2)

γ1 = 1.040ik+ 0.665− (2.507 + 2.713ik)CTh(k). (C3)

The coefficients γLE and γ1 are related to the intensity of the leading-edge singularity [in
Ref. 19, these coefficients correspond to the coefficient a0 given by Eq. (26b)].
The function gS(x) in (C1) is an ad hoc function, which decreases monotically between

1 and 0

gS(x) =
1− tanh(15x− 3)

2
, (C4)
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such that gS(0.2) = 0.5. It crudely models the fact that the theoretical leading edge
suction calculated with linear potential theory cannot be achieved when the angle of
attack is too large because of separation. Here, the maximal value of the angle of attack
is arctan(kaLE) and thus, we assume that leading-edge suction is decreased by a factor of
2 when the maximum angle of attack is equal to arctan(0.2) = 11.3◦ and by a factor of 8.7
for maximum angle of attack of 15◦. The fact that separation occurs around 15◦ has been
shown experimentally18 and numerically62, although the precise form of the function
gS remains to be determined. It should be noted that the results of the optimization
calculation performed in Sec. IVC can be quite sensitive to the way leading-edge suction
and separation are modeled. This is because this force, which always contributes to a
positive thrust, can take a large part in the production of thrust.
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61M. P. Päıdoussis, “Fluid-structure interactions - slender structures and axial flow,” (Elservier Academic
Press, 2004).

62M. H. Akbari and S. J. Price, “Simulation of dynamic stall for a NACA0012 airfoil using a vortex

http://dx.doi.org/http://dx.doi.org/10.1063/1.4709477
http://dx.doi.org/10.1017/jfm.2013.597
http://dx.doi.org/http://dx.doi.org/10.1063/1.4832857
http://dx.doi.org/10.1017/jfm.2014.533
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/doi:10.4319/lo.2011.56.6.2003
http://dx.doi.org/10.1103/PhysRevLett.105.194301
http://dx.doi.org/10.1017/S0022112005005847
http://dx.doi.org/10.1038/NPHYS3078
http://dx.doi.org/10.1017/jfm.2015.35


21

method,” J. Fluids Struct. 17, 855–874 (2003).


	Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality
	Abstract
	Introduction
	Experimental methods
	Analytical model
	Governing equation
	Modal analysis

	Results
	Resonance
	Thrust
	Efficiency

	Discussion
	Acknowledgments
	Amplitude equations
	Damping model
	Leading-edge suction


