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Experimental Study of the Multipolar Vortex Instability

Christophe Eloy, Patrice Le Gal, and Stéphane Le Dizès
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS UMR 6594, Marseille, France

(Received 28 January 2000)

The instability of a vortex subjected to a stationary dipolar or tripolar constraint is studied exper
tally by using a rotating deformable cylinder on which two or three rollers are applied. As the Rey
number and the aspect ratio of the cylinder are varied, different modes of instability are observe
their wavelength and frequency are compared to theoretical predictions. Secondary instability and
breakup are also evidenced in the elliptic geometry.

PACS numbers: 47.20.–k, 47.15.Fe, 47.27.Cn, 47.32.Cc
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One of the most challenging issues of fluid turbulence
to understand the dynamics of fine-scale structures in or
to give an insight into the global properties of the flow
Recently, intense vortical structures have been eviden
by experimental and numerical studies [1]. When pe
turbed by the surrounding turbulent flow, they eventua
undulate, split, form strands, and burst. This complex d
namical behavior has been associated with the presenc
Kelvin modes [2]. However, no convincing mechanism h
been proposed to explain the apparition of such modes
this Letter, we argue that theelliptic instability [3] whose
proper modes are precisely combinations of Kelvin mod
[4] is a good candidate. In this prospect, the ellipticity
the vortex streamlines [5] which is due to the nonaxisym
metry of the surrounding turbulent flow would provide th
source of instability.

Gledzeret al. [6] were the first to study experimentally
the elliptic instability. They used a rigid cylinder of elliptic
cross section filled with water which was sharply stopp
after solid body rotation was reached. During the transie
decay of the flow, they observed the development of t
elliptic instability. In addition to the limited time during
which instability was observed, the main inconvenience
their experiment was that a competitive centrifugal inst
bility could grow near the wall. This defect was avoide
by Malkus and Waleffe [7] who used the boundary to driv
the flow inside a deformable cylinder. In this paper, expe
ments are carried out with a similar setup. New results
obtained in the elliptic geometry, and the instability is ge
eralized to azimuthal symmetries of higher order.

The core of the experiment is a transparent plastic
truded cylinder of radiusR � 2.75 cm and variable length
H � 8 22 cm. The small thickness of its wall�0.5 mm�
allows its deformation with two or three rollers paralle
to the axis, as shown in Fig. 1. This deformed cylind
is rotated by a300 W variable speed electric motor at
chosen angular speedV � 0.5 10 rad s21. The cylin-
der is filled with water seeded by anisotropic particle
(kalliroscope). A laser sheet is formed in a plane co
taining the cylinder axis for visualization. As emphasize
by [8], this visualization technique does not permit one
have insight into the velocity field. However, it allows a
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unambiguous measurement of wavelengths and frequen
cies of modes appearing in the cylinder.

When the cylinder is rotated and after the transient phas
of spin-up, the basic flow is approximatively described, in
cylindrical coordinates�r , u, z�, by the stream function:

c�r , u� � 2
1
2

r2 1
´

n
rn sin�nu� , (1)

where´ measures the deformation of the streamlines (´

is the eccentricity of the ellipses forn � 2) andn is the
degree of azimuthal symmetry of the flow or equivalently
the number of rollers deforming the elastic cylinder (see
Fig. 2). Here, the variables are nondimensionalized by
using the characteristic lengthR and timeV21. The po-
sition of the rollers in the experiment is such that the de-
formation of the streamlines iś � 0.10 for n � 2 and
´ � 0.12 for n � 3. The outer streamline of the flow,
solution of c�r , u� � 2

1
2 , corresponds to the cylinder

boundary [9]. The stream function (1) provides a two-
dimensional flow of constant vorticity with ann-fold sym-
metry which is a generalization of the elliptical flow. Its
unstable character with respect to short wavelength per
turbations was shown in [10]. By using global tech-
niques [4,6], these results were recently extended to large
wavelengths for a Rankine vortex in Ref. [11], where, in
particular, the viscous selection process and the spatia
structure of the most unstable perturbations were deter
mined. This analysis can be adapted to the flow in a de
formable cylinder. The main ideas of the theory are the
following.

FIG. 1. Experimental setup: (I) plastic elastic cylinder filled
with water; (II) rollers.
© 2000 The American Physical Society



VOLUME 85, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 16 OCTOBER 2000
(a) (b)

FIG. 2. Streamlines of the flow given by (1), with ´ � 0.25,
and (a) n � 2 and (b) n � 3.

For axisymmetric flow �´ � 0�, Kelvin modes can be
superimposed linearly to the basic flow. Their velocity
field can be written as v�r , u, z, t� � U�r�ei�kz1mu2vt�,
with k the axial wave number, m the azimuthal wave num-
ber, and v the frequency. These kelvin modes are mar-
ginally stable for an axisymmetric and inviscid flow. In
the limit of small deformation ´, Kelvin modes still ex-
ist. Moreover, two Kelvin modes can resonate if they
have same k, same v, and have azimuthal wave num-
bers m1 and m2, such that m2 2 m1 � n. This reso-
nance can be interpreted as a triad resonance of two Kelvin
modes and the intrinsic “mode” of the deformation satisfy-
ing �k, m, v� � �0, n, 0�. A calculation of the growth rates
shows that all possible resonances are unstable. However,
particular combinations of Kelvin modes are significantly
more amplified than others. These combinations are named
principal modes and noted �m1, m2, i�, where i is an inte-
ger which is an increasing function of the resonant wave
number k. Frequencies and axial wave numbers of a few
principal modes are provided in Table I. For an invis-
cid flow and an infinite cylinder, all principal modes have
approximatively the same growth rate [11]. The selec-
tion is mainly due to viscosity which tends to damp the
large wave number modes. Contrary to [11], both bound-
ary layer and volume viscous effects are considered in the
analysis. Figure 3 plots the theoretical marginal stability
curves of all principal modes in the �k, Re� plane for the
elliptic deformation �n � 2�, where Re is the Reynolds
number defined as VR2�n, with n the kinematic viscos-
ity. This figure shows that all modes are stabilized by
viscosity for low Re. Above a critical Reynolds number,
Rec � 435, the first principal mode �21, 1, 1� becomes un-
stable. For larger Re, other modes of different azimuthal
structure and different critical wave numbers k can also
be destabilized.

TABLE I. Theoretical prediction of frequency vth and axial
wave number kth of few principal modes (for inviscid flow and
infinite cylinder) compared to experimental measurements vexp
and kexp.

n Mode vth vexp kth kexp

2 �21, 1, 1� 0.000 0.00 1.579 1.6
2 �21, 1, 2� 0.000 0.00 3.286 3.4
2 �1, 3, 1� 2.044 2.0 3.035 3.1
3 �21, 2, 1� 0.656 0.65 3.674 3.7
3 �0, 3, 1� 1.608 1.5 5.185 5.0
FIG. 3. Theoretical marginal stability curve of the elliptic in-
stability for an infinite cylinder and ´ � 0.1.

For a finite container, the principal modes are station-
ary waves, constituted by the superposition of two coun-
terpropagative waves. There is an additional constraint
due to boundary conditions on the end disks which se-
lects a discrete set of axial wave numbers given by k �
lpR�H, l being an integer. This constraint discards a
large number of modes. The shaded areas in Fig. 7a
below show the most unstable mode in the �H�R, Re�
space of experimental control parameters. The mechanism
of selection by viscosity and aspect ratio is similar for a
triangular deformation (see Fig. 7b).

The experimental observations are the following. In
both cases (n � 2 and n � 3), when the elastic cylinder
is rotated, the fluid is first spun-up. Solid body rotation is

FIG. 4. Four successive images of the flow for n � 2, Re �
5000, H�R � 7.96, and (a) Vt � 294, solid body rotation;
(b) Vt � 715, appearance of mode �21, 1, 1�; (c) Vt � 943,
vortex breakup; (d) Vt � 1113, relaminarization.
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reached after a time of order 6 to 25 rotations (Fig. 4a). If
Re is above threshold, the multipolar instability develops
and a mode appears in the cylinder (Fig. 4b). Since the
characteristic time of this growth is at least 10 times larger
than the spin-up time, the multipolar instability proper-
ties should not be affected by the transient regime. For
Re * 4000 and for elliptic deformation �n � 2�, the mode
grows until it breaks down into small scales (Fig. 4c).
This disordered state is not maintained by the rotation
of the cylinder. It eventually evolves back to solid body
rotation by a relaminarization process through viscous
dissipation of the small scales (Fig. 4d). The reestablish-
ment of solid body rotation allows anew the development
of the multipolar instability and so on. A cycle of instabil-
ity–disorder–relaminarization then takes place, as already
reported by Malkus and Waleffe [7]. However, contrary
to what they apparently observed, for Re sufficiently
close to threshold, the unstable mode grows and reaches
a saturation state which remains forever (at least for
1000 rotations).

For these low Reynolds numbers, in agreement with the
theory, the aspect ratio of the cylinder can be used to se-

FIG. 5. Visualizations of the flow for n � 2, Re � 2500, and
(a) H�R � 7.13; (b) 7.49, (c) 7.96. It corresponds, respectively,
to the principal modes �1, 3, 1�, �21, 1, 2�, and �21, 1, 1�. The
spatiotemporal diagram (d) shows the fast dynamics superim-
posed to the mode �21, 1, 1�. The horizontal line in (c) shows
which line has been extracted to construct (d).
3402
lect a preferential mode. This selection process is illus-
trated in Fig. 5, for n � 2. Depending on the length of
the cylinder, three different modes were observed for the
same Reynolds number. Each is characterized by a spe-
cific axial wavelength and frequency. Their wavelengths l

are determined by counting the number of identical struc-
tures along the cylinder (Figs. 5a–5c): H � 3.5l, 4l, and
2l, respectively. Similarly, the mode frequencies are mea-
sured from spatiotemporal diagrams (see examples below).
Both wavelengths and frequencies are in good agreement
with theoretical predictions, as shown in Table I. Note
that the primary modes associated with Figs. 5b and 5c
are steady. This is in agreement with the prediction for the
modes �21, 1, i�.

A fast dynamics superimposed to the saturated state
�21, 1, 1� has also been evidenced. It is likely to be an
observation of the secondary instability revealed in [12],
which is associated with a triad resonance of the principal
mode �21, 1, 1� and two modes of azimuthal wave num-
bers m � 2 and 3. The periodic and pulsing character
of this fast dynamics is shown in Fig. 5d where a spa-
tiotemporal diagram is constructed by extracting a hori-
zontal video line in each image of the video sequence. The
measured frequency is v � 2.3V, which is very close to
the value 2.27 predicted by [12]. It is worth mentioning
that, for Re & 4000, we have observed this secondary in-
stability to saturate, without breakup of the vortex.

For triangular deformations of the cylinder, similar ex-
periments have been carried out. For small aspect ra-
tios, two different modes have been evidenced. Figure 6
displays visualizations of the flow and associated spa-
tiotemporal diagrams for H�R � 3.4 and 3.8 and Re �
1200. The measurements of wavelengths and frequencies
given in Table I show good agreement with our theoretical

FIG. 6. Visualization of the modes �21, 2, 1� (a) and �0, 3, 1�
(b), together with their spatiotemporal diagrams (c, d). The ex-
perimental parameters are n � 3, Re � 1200, and H�R � 3.4
(a) and 3.8 (b).
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FIG. 7. Comparison between the prediction of the most
unstable mode and experimental observations for n � 2 (a) and
n � 3 (b). Each grey tone corresponds to a different mode pre-
dicted as labeled. Symbols represent experiments: �, �21, 1, 1�;
�, �21, 1, 2�; 1, �1, 3, 1� in (a) and �, �21, 2, 1�; 1, �0, 3, 1�
in (b). Symbols �3� correspond to visualizations with no
distinct mode.

predictions for principal modes �21, 2, 1� and �0, 3, 1�. The
difference of frequencies between these two modes is par-
ticularly visible on the spatiotemporal diagrams of the
same duration (Figs. 6c and 6d).

The comparison between linear predictions of the most
unstable mode and experimental observations is summa-
rized in Fig. 7. For elliptic deformations, the agreement
between theory and experiments is excellent, except close
to threshold where the instability is not detected by visu-
alizations. This is probably due to the small amplitude of
the modes for low Re, in accordance with the supercriti-
cality of the bifurcation [12]. By contrast, for triangular
deformations, the agreement between theory and experi-
ment is better close to threshold (Fig. 7b). In the range
of aspect ratios studied, the two different modes predicted
by the theory have been observed. Note, however that the
mode selection is not as sharp as in the elliptic case since,
for H�R . 5.5, principal mode �21, 2, 1� is always the
most unstable close to threshold. Interestingly, this par-
ticular mode is also observed for larger Re although it does
not have the largest growth rate. This could be related to
nonlinear effects which are probably also responsible for
the puzzling cycle observed between modes �21, 2, 1� and
�0, 3, 1� at H�R � 3.8, Re � 4300 and 5500 (see Fig. 7b).

The experimental results reported in this letter charac-
terize, for the first time, a large family of multipolar insta-
bility modes. In particular, oscillating modes have been
evidenced in elliptic and triangular geometries, as pre-
dicted by linear stability analysis. These results extend
the previous observations which were restricted to steady
modes in the elliptic geometry [6,7]. In this case, we have
also observed a secondary instability mode, in agreement
with recent simulations [12]. For Reynolds numbers below
4000, both primary and secondary instabilities have been
visualized in their saturated regimes. Above this value, the
vortex breaks up and the flow enters a cycle of disordered
and laminar states.

As seen in this Letter, the multipolar instability is very
rich. Its diversity makes it a promising mechanism to ex-
plain the complex dynamical behavior of vortices in tur-
bulent flows.
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