
Flow-Induced Draping

Lionel Schouveiler∗ and Christophe Eloy
Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, F-13384 Marseille, France

(Dated: July 23, 2013)

Crumpled paper or drapery patterns are everyday examples of how elastic sheets can respond to
external forcing. In this Letter, we study experimentally a different sort of forcing. We consider a
circular flexible plate clamped at its center and subject to a uniform flow normal to its initial surface.
As the flow velocity is gradually increased, the plate exhibits a rich variety of bending deformations:
from a cylindrical shape, to isometric developable cones with azimuthal periodicity two or three, to
eventually a rolled-up period-three cone. We show that this sequence of flow-induced deformations
can be qualitatively predicted by a linear analysis based on the balance between elastic energy and
pressure force work.
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Bending and stretching are the two deformation modes
of thin elastic plates. For plates of thickness h and typical
length R, the ratio between bending and stretching ener-
gies scales as (h/R)

2. It results that thin plates, for which
h � R, will favor bending to stretching if permitted by
the boundary conditions. For instance, a suspended piece
of fabric generally exhibits draperies that have a conical
shape. These particular deformations are almost every-
where isometric, i.e. the surface is not stretched nor com-
pressed compared to its initial state. In this example,
fold number and size are determined by the competition
between gravity and elasticity [1] and stretching is fo-
cused in a small area in the vicinity of the cone tip. Such
conical singularities are referred to as d-cone, for “devel-
opable cone”. They are one of the two kinds of elementary
singularities in thin plate deformations, the other being
ridges, in which stretching is focused along lines. These
two elementary singularities can be visualized by unfold-
ing a sheet of crumpled paper: they appear respectively
as crescent- or line-like permanent marks and result from
plastic deformations of the paper [2].

Developable cones have been the subject of specific
theoretical analyses [3], as well as experiments consist-
ing generally in pushing a flat elastic plate into a ring
[4, 5]. In addition to crumpled paper and gravity-induced
draperies, d-cones have also been reported in delamina-
tion processes [6], tissue growth [7], and in suspended
thin layers of viscous fluid [8]. In this Letter, we pro-
pose an experiment in which d-cones are induced by flow-
induced loads on a thin elastic plate. In this experimen-
tal setup, a rich variety of deformations can be observed:
cylindrical shapes, d-cones with two- or three-fold az-
imuthal symmetries, and a three-fold cone that is itself
folded, thereby breaking the azimuthal periodicity.

The deformation of thin flexible structures due to flow-
induced loads has been investigated in the past as a pos-
sible strategy to reduce the drag, comparatively to rigid
structures [9–11]. This phenomenon has been particu-
larly observed for plants that adopt more streamlined
shapes to withstand high winds or water currents [12, 13].

For instance, tulip trees have broad leaves that can recon-
figure into cones, thus allowing them to reduce their drag
and resist breakage [14]. This particular reconfiguration
has motivated analytical [15] as well as experimental [16]
studies that have considered circular flexible plates cut
along one radius, clamped at their center, and placed in
a uniform flow. These plates have been shown to roll up
into circular cones whose angle become sharper as the
flow velocity is increased.

In the present study, experiments are performed with
circular polysiloxane plates of thickness h = 6× 10−4 m,
bending rigidity B = 1.8 × 10−4 Nm, density ρp =
1200 kgm−3, and variable radius R in the interval 0.02 <
R < 0.1m. The plate is attached at its center to an
upstream elbow and held in a low-turbulence horizon-
tal water channel of 0.38m× 0.45m test section (Fig. 1).
This water channel can produce a uniform flow of veloc-
ity U perpendicular to the plane that initially contains
the plate. The flow velocity can be varied up to 1ms−1,
with fluctuations below 1%.

A typical experiment consists, for a given plate of ra-
dius R, of gradually increasing the flow velocity starting
from U = 0. As the plate deforms due to flow-induced
loads, it is imaged through the transparent channel walls,
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Figure 1. Experimental setup. A flexible circular plate is
clamped onto an elbow (a). When placed in a uniform water
flow of velocity U , the plate deforms (b). The function φ(θ)
describes the d-cone deformation of the plate.
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Figure 2. Draping modes of a circular plate of radius R = 0.05m. When the flow velocity is gradually increased, different
draping patterns become visible starting from “mode C”, a cylindrical mode (a), to “mode 2F”, a two-fold conical mode (b),
“mode 3F”, a three-fold mode (c), and eventually “mode 3F*”, a bent three-fold mode (d).

both along the y- and z-axes (Fig. 1). For each plate ra-
dius studied, the sequence of deformation modes is iden-
tical. At small flow velocities, the plate bends around one
of its diameters forming a cylindrical surface with genera-
trices perpendicular to the incoming flow (Fig. 2a). This
mode has been called “mode C”, for cylindrical. This sort
of bending deformation has been studied in the literature
with rectangular plates placed in a uniform flow [11], or,
in a two-dimensional geometry, with flexible filaments
placed into a flowing soap film [9, 10].

For larger flow velocities, different draping modes ap-
pear. These draping patterns are shown in Fig. 2b–d.
They have a conical shape that can be analytically de-
scribed by the angle φ(θ) (Fig. 1). When the flow velocity
reaches a first threshold, the plate reconfigures continu-
ously from its initial cylindrical shape into a cone with
n = 2 folds (Fig. 2b). After a second threshold, the plate
exhibits n = 3 folds (Fig. 2c). In some experiments, the
two- and three-fold modes can coexist intermittently on
an interval of flow velocities. Both of these deformations
are azimuthally periodic such that the function φ(θ) has
a period 2π/n. This periodicity is lost beyond the last
threshold. The last deformation mode still presents three
folds but these folds are themselves “rolled-up” or pushed
against each other, breaking the periodicity (Fig. 2d).
This last mode persists up to the highest flow velocity
explored during present study (i. e. U = 1ms−1). These
conical modes, which appear in sequencial order after the
“mode C”, are called mode 2F, mode 3F, and mode 3F*
respectively. Note that, although the elbow maintaining
the plate in the flow induces a breaking of the azimuthal

symmetry, the azimuthal phase of the different modes
presented in Fig. 2a–d is arbitrary and has been observed
to change when repeating the experiments.

To assess the influence of the plate radius on the ve-
locity thresholds, different experiments have been con-
ducted with different radii for 0.02 < R ≤ 0.1m. Qualita-
tively, the larger the plate radius, the smaller the thresh-
olds. The domains of observation of the four deforma-
tion modes in the plane U–R are reported in a mor-
phological diagram (Fig. 3). This diagram corresponds
to experiments performed when the velocity U is gradu-
ally increased. Note that, when the flow velocity is de-
creased, the reverse sequence of modes can be observed
(i.e. modes 3F*, 3F, 2F, and C), but the velocity thresh-
olds are systematically lower than for increasing veloc-
ities, revealing hysteresis loops. These hysteresis loops
can be as large as 50% of the velocity thresholds and are
likely due to energetic barriers between modes [17].

To gain better insight into the sequence of draping
modes observed in experiments, we now consider the en-
ergy associated with the flow-induced deformations. For
this purpose, we consider a thin circular sheet of bend-
ing rigidity B, radius R, area S, and thickness h that
initially lies in the plane z = 0. When subject to a flow
of density ρ and velocity U in the z-direction, this sheet
deforms into a conical surface, such that the streamwise
plate deflection can be written ζ(r, θ) = rf(θ), where
(r, θ, z) are the cylindrical coordinates with the origin O
at the cone tip (Fig. 1). The function f(θ) describes the
conical modes such that f(θ) = tanφ(θ).

In this problem, a Reynolds number, Re = UR/ν, can
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Figure 3. Morphological diagram in the U–R plane. The
symbols mark the transitions, as the flow velocity is increased,
between the different modes pictured. The error bars on the
triangles, associated to the C–2F transition, correspond to
a continuous transition, while the error bars of the 2F–3F
transition (circles) correspond to an intermittent coexistence
of the two modes. The solid lines are iso-values of the Cauchy
number as defined in Eq. (3).

be defined, which compares inertia to viscous forces, with
ν the kinematic viscosity of the fluid. This Reynolds
number being of the order of 105, viscous effects can be
neglected here. Since buoyancy can also be neglected be-
cause the plate material has almost the same density as
water, the total energy of the plate E is the difference
between its elastic energy and the potential energy cor-
responding to the work done by the pressure forces. In
the asymptotic limit of thin plates (h/R � 1), we will
assume that the plate undergoes pure bending almost
everywhere such that its elastic energy is dominated by
bending energy:

Eb =
B

2

∫
S

(∆ζ)
2

dS =
B

2
ln

R

Rc

∫ 2π

0

(f + f ′′)
2

dθ, (1)

where ∆ζ = (f + f ′′) /r is the local curvature of the plate
and primes denote derivatives with respect to θ. The cut-
off radius Rc in Eq. (1) comes from the logarithmically
divergent integral as r goes to 0. Physically this means
that pure bending deformations cannot persist up to the
cone tip (r = 0). Around the tip, in a region of typical
size Rc � R, stretching cannot be neglected anymore.
Yet, the precise value of Rc is not crucial since the bend-
ing energy Eb varies only logarithmically with Rc.

The work done by the fluid pressure when the plate
deforms into a cone can be evaluated as

Ep =

∫
S

∫ φ

0

pr dϕdS, (2)

where p is the local pressure jump across the plate. With
the assumptions made above, a dimensionless number
can be defined, which compares the typical work done

by pressure forces (ρU2R3) to the typical bending en-
ergy (B ln(R/Rc)). This elasto-hydrodynamic number is
a Cauchy number and can be written as

CY =
ρU2R3

B ln(R/Rc)
, (3)

with ρ = 1000 kgm−3 the density of water. This Cauchy
number is the only dimensionless number of the problem;
it has been varied on almost 6 orders of magnitude in the
experiments (0.003 < CY < 1800). Iso-values of CY are
reported on the morphological diagram in Fig. 3 and it
shows that the experimentally measured thresholds all
correspond to a fixed value of CY . The transition be-
tween modes C and 2F occurs at CY ≈ 1.8, while transi-
tion between modes 2F and 3F appears at CY ≈ 40, and
the one between 3F and 3F* at CY ≈ 180.

To go further, we have calculated the energy associ-
ated with linear draping modes with azimuthal wavenum-
bers n = 2, 3, and 4 (noted 2F, 3F, and 4F by analogy
with the experimentally-observed modes). In the limit
of small deflections, the developability condition reads∫ 2π

0

(
f2 − f ′2

)
dθ = 0 [2]. The simplest conical surfaces

with azimuthal wavenumber n that satisfy this condition
are given by f(θ) = f0(1 +

√
2/(n2 − 1) sinnθ) where

f0 is a small amplitude [3, 8]. To evaluate the pres-
sure jumps associated to these deformations, we assumed
that the pressure is constant along a generatrix of the
conical shape and is equal to the pressure on a circular
cone of same angle as determined in [16] using momen-
tum conservation arguments. It yields a pressure jump,
p = ρU2(1− sinφ).

To calculate the total energy of cylindrical deforma-
tions (mode C), we assumed a constant curvature every-
where on the plate, and a pressure jump, p = ρU2

n, with
Un the component of the flow velocity normal to the plate
surface. Note that, in order to compare cylindrical mode
(for which there is no stretching) and conical modes (for
which stretching is localized in a zone of size Rc), we
used ln(R/Rc) = 4. This value has been considered as a
fitting parameter and corresponds to Rc ≈ 1mm, which
is approximately the diameter of the central hole in the
plate.

For a given mode, C, 2F, 3F, or 4F, and a given
Cauchy number, we can thus calculate numerically the
deformation amplitude that minimizes the total energy
E = Eb − Ep. We can then compare these energies, as
the Cauchy number is increased (Fig. 4). According to
this analysis, the mode that minimize the energy follow
the same sequence as in the experiments: mode C for
CY < 4.6, mode 2F for 4.6 < CY < 318, and mode 3F
for CY > 318 [18]. However, the values of these thresh-
olds are different from experimental observations (Fig. 3).
The discrepancy is probably due to the rather crude mod-
eling of the pressure work, the assumption of linear de-
flections, or the absence of stretching energy in the bud-
get. Note that the mode with azimuthal wavenumber
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Figure 4. Energy as a function of the Cauchy number for the
modes C, 2F, 3F, and 4F. These energies are found by min-
imizing the total energy E when the deformation amplitude
is varied. The calculation for mode C is stopped when the
radius of curvature reaches 2R/π.

n = 4 has never the lowest energy, whatever the value
of the Cauchy number. And indeed, in the experiments,
even when we tried to force a 4-fold mode by hand, the
system always returned to its spontaneous two- or three-
fold mode.

The above approach does not allow one to model the
complex deformations of the mode 3F* observed for the
largest values of CY . However, for this mode, a quali-
tative explanation can be provided. On the one hand,
we note that the mode 3F* is formed of three folds that
are grouped whereas they are arranged periodically along
the azimuthal direction for the mode 3F. Therefore the
bending energy of the mode 3F* is probably only slightly
larger than its 3F counterpart. On the other hand, during
the process of grouping, the area swept by the three pe-
ripheral folds is important, and, as a consequence, yields
a substantial work of the pressure forces. For large flow
velocities, the importance of pressure work becomes rel-
atively more important, and the mode 3F* becomes fa-
vored compared to the mode 3F.

It should be stressed that the sequence of modes ob-
served in the present study is different from gravity-
induced draping [1, 8]. When the external force driving
the plate deformation is the weight, d-cones of increas-
ingly large number of folds are observed as the plate ra-
dius is increased. Additionally, the mode 3F* is never
observed. This can be qualitatively understood by not-
ing that the weight exerts a force that is always parallel
to the z-axis, thus providing no favorable work during
the wrapping process characteristic of the mode 3F*. On
the contrary, pressure force are normal to the surface and
can thus provide such a favorable work.

In summary, we have studied how a circular flexible
sheet deforms when subject to flow-induced loads. A se-

quence of four deformation modes has been evidenced.
For low flow velocities, the sheet deforms cylindrically,
while draping patterns appear for larger flow velocities.
In this latter case, the sheet deforms into d-cones of dif-
ferent azimuthal symmetries. As the flow velocity is in-
creased, a periodic 2-fold mode is first observed, then a
periodic 3-fold mode, and eventually a non-periodic 3-
fold mode. The transition between the first three modes
has been predicted using a linear model based on ener-
getic arguments and a qualitative explanation has been
proposed to explain why the azimuthal symmetry is even-
tually lost for the largest flow velocities. In addition, we
showed that the only parameter that governs the transi-
tion between modes is the dimensionless Cauchy number,
in agreement with experimental observations.
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