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To calculate the energy costs of swimming or flying,

it is crucial to evaluate the drag force originating

from skin friction. This topic seems not to have

received a definite answer, given the difficulty in

measuring accurately the friction drag along objects in

movement. In [1], the incoming flow along a flat plate

in a flapping normal motion has been considered, as

limit case of a yawed cylinder in uniform flow and

applying the laminar boundary layer assumption, it

is demonstrated that the longitudinal drag scales as

the square root of the normal velocity component.

This lends credit to the assumption that a swimming-

like motion may induce a drag increase because of

the compression of the boundary layer, which is

known as the ’Bone-Lighthill boundary-layer thinning

hypothesis’. The boundary-layer model however

cannot predict the genuine three-dimensional flow

dynamics and in particular the friction at the leeward

side of the plate. A multi-domain, parallel, compact

finite-differences Navier-Stokes solution procedure is

considered, capable of solving the full problem. The

time-dependent flow dynamics is analysed and the

general trends predicted by the simplified model

are confirmed, with however differences in the

magnitude of the friction coefficient. A tentative skin

friction formula is proposed, for flow states along a

plate moving at steady as well as periodic normal

velocities.
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1. Introduction
There has been a considerable amount of studies on the energetics of swimming over the last

decades and in particular on drag reduction mechanisms (for a fairly recent review see [2]).

While many investigations focused on the drag reduction mechanisms employed by aquatic

animals, Lighthill and others proposed that drag may actually be enhanced by the swimming

motion. The explanation proposed by Lighthill in [3], quoting discussions with Bone, is what is

sometimes called the ‘Bone–Lighthill boundary-layer thinning hypothesis’, which states that a

plate of section s in an external stream velocity U‖ moving perpendicularly to itself at velocity

U⊥, has a frictional boundary-layer thickness δL = 0.6
√

νs/U⊥ (on the side towards which the

section is moving), such that the drag force per unit surface is τ ≈ µU‖/δL.

The drag enhancement formula being associated with simple uniform movements of the body

in the fluid, it may apply to flapping-like motions, rather than to fishlike swimming [4]. Free

flapping wings or plunging aerofoils have for instance been considered in [5]- [8], to cite just a

few studies. In [5], a rectangular wing flapping sinusoidally has been analysed and the observed

loss of symmetry of the wake induced by the lateral edges has been related to unidirectional

flight. Coherent motions as attracting states induced by flapping have also been reproduced

numerically [6]. The wake of a pinching foil in still environment has been analysed in [7] and the

experimental as well as computational investigation of a plunging aerofoils subject to uniform

flow is reported for instance in [8].

However, the skin friction along elongated bodies in swimming-like motion has found less

attention, due to the difficulty to measure this quantity. The hypothesis of drag enhancement,

as advanced by Lighthill [3], conflicts with suggested mechanisms of drag reduction [9], [10].

This discrepancy is sometimes attributed to the fact that drag is ill-defined, given the difficulty to

separate thrust and drag which balance on average when an animal is swimming at constant

mean velocity [2], [11], [12]. While pressure drag is difficult to define since thrust also arises

from pressure forces, there is however no doubt about the definition of skin friction drag.

Careful measurements of boundary-layer velocity profiles on swimming fish reported in [13]

confirmed that skin friction drag could be enhanced by factors up to 3− 5 for dogfish. Skin friction

enhancement has also been reported in numerical simulations [14], with however smaller factors.

One important point of the Bone-Lighthill hypothesis is that the enhanced drag is proportional

to
√
U⊥. It is remarkable that the same scaling was obtained by Taylor [15] when he analysed

semi-empirically the longitudinal drag on a yawed cylinder in uniform flow. In [1], the yawed

cylinder problem has been readdressed, applying boundary-layer theory and a drag coefficient

is derived. The plate with finite span is a limit case of this model problem and the scaling

of the boundary-layer thinning hypothesis is retrieved. This skin-friction enhancement can be

understood as resulting from the acceleration of the fluid particles and in [1] a two-dimensional

model problem which takes into account this effect has been proposed, by confining the flow

between the lower moving plate and a free upper boundary at height s/2. The factor 0.6 in

the frictional boundary-layer thickness δL proposed by Lighthill is retrieved in this model and

confirmed in [1] by two-dimensional numerical simulations of the Navier-Stokes system.

A full three-dimensional simulation, in the absence of reliable skin-friction measurements along

a moving plate, remains necessary to confirm the theoretical drag enhancement prediction. Here,

a moving rectangular plate with vanishing thickness, that is without form drag, is immersed in

a uniform flow. In most of the theoretical investigations on swimming or flying, the resistive

forces are decomposed into pressure drag and viscous drag, as for instance in a recent work

on the optimal design for undulatory swimming [16]. This decomposition justifies to analyse

separately the skin friction as one component of the total drag. The numerical solution procedure

must be capable of handling the plate’s edges, which are singularities for the flow field, and the

numerical method has to be sufficiently accurate as to provide reliable skin friction values. This is

achieved by using a multi-domain approach together with a high-order compact finite-differences

discretization, and full three-dimensional simulations have been undertaken in the present work
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Figure 1. Sketch of the plate of span s and length L in a uniform flow U‖ moving at normal velocity U⊥.

for different uniform plate velocities.

In section 2 of the paper the three-dimensional boundary layer model for the moving plate which

has previously been addressed in [1] is summarised. The three-dimensional numerical solution

procedure is explained in section 3 and validated for the fixed flat plate boundary layer. The

simulation results for the flow around the moving plate are reported in section 4. The prediction

for different plate velocities are analysed in section 5, addressing the question of a skin friction

formula and a periodic plate velocity is considered as well. Some conclusions are drawn in section

6.

2. Three-dimensional boundary layer model
A plate with span s in a uniform incoming flow U‖ and moving at normal velocity U⊥

is considered, the configuration being sketched in figure 1. The theoretical prediction of the

longitudinal drag provided in [1] is obtained for a yawed elliptic cylinder in a uniform flow

illustrated in figure 2, the plate problem being a limit case for an infinite aspect ratio of the

elliptic cross-section in the (y, z)-plane. In the following we briefly summarise the results in

[1]. The uniform flow U∞ is decomposed onto its tangential and normal components, U‖ and

U⊥ respectively, as illustrated in figure 2. The problem is considered to be independent of the

tangential direction and the x-component of the potential flow is simply U‖. In the normal

direction the potential flow Qe around the cylinder with elliptic cross section is solved using

conformal mapping techniques. To solve the boundary-layer inner problem around the elliptic

boundary in the (y, z) plane, coordinates ξ − η attached to the surface are used (cf. figure 2). The

boundary layer equations are written in the (ξ, η, x) coordinates which yields

uξ
∂uξ
∂ξ

+ uη
∂uξ
∂η

= Qe
Qe

ξ
+ ν

∂2uξ
∂η2

, (2.1)

uξ
∂ux
∂ξ

+ uη
∂ux
∂η

= ν
∂2ux
∂η2

, (2.2)

∂uξ
∂ξ

+
∂uη
∂η

= 0. (2.3)

In [1], a typical length l is defined such that πl is equal to the circumference of the ellipse

(and hence πl=2s when the ellipse degenerates into the plate’s cross section). The problem is

made dimensionless, considering l in the direction ξ tangential to the boundary of the ellipse

and a convenient boundary layer length scale l/Re
1

2

⊥ is considered in the normal direction η

(see [11] for general boundary-layer modelling), where the Reynolds number is Re⊥ =U⊥l/ν.

Accordingly, the reference velocities are U⊥ and U⊥/Re
1

2

⊥ in the ξ and η direction respectively.

The scaled equations equivalent to (2.1) and (2.2) are solved using the approximate solution of

the momentum equations, details being provided in [1]. Note that the developing boundary-layer

profile uξ can only be determined as far as the the flow is attached: hence, for each aspect ratio

b/a, a→ 0 being the limit case of the plate’s section parallel to the z axis, there is a limiting angle
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Figure 2. Sketch of the three-dimensional problem: (a) an elliptic cylinder is inclined with angle α in

a uniform flow of velocity U∞; (b) in the plane perpendicular to the cylinder axis, the boundary-layer

problem is two-dimensional. The boundary layer of thickness δ is developing around the elliptic cross

section (with a and b the two semi-axes), starting from the stagnation point until it separates at angle

θs. In the boundary layer, we define the local curvilinear coordinate system ξ-η.

θs, marked in figure 2(b), at which the flow separates. This boundary-layer analysis, solving uξ
and ux, provides a longitudinal drag coefficient C and the longitudinal drag force per unit length

is given by

D‖ =

∫πl
0

µ

(

∂ux
∂η

)

η=0

dξ = µU‖Re
1

2

⊥C. (2.4)

It is shown in [1], that C ≈ 1.8 on the whole range of the elliptic cylinder’s aspect ratios. For the

forthcoming numerical analysis it is convenient to use U‖ as reference velocity and the plate’s

span s as the length scale. Defining the Reynolds number

Res =
U‖s

ν
, (2.5)

and given that l= 2s/π, the theoretical prediction for the friction drag per unit length of the plate

is

D‖ =C3D µU‖ Re
1

2

s

√

U∗
⊥, C3D ≈ 1.4, (2.6)

U∗
⊥ =U⊥/U‖ being the dimensionless normal plate velocity. Note that this formula fails when

U⊥ → 0, in which case the classical friction drag formula for a motionless plate in uniform flow

U‖ has to be used instead [17]. The formula 2.6 is therefore relevant only for wall velocities above

a lower bound, which is likely to depend on the ratio between the plate’s span s and length L.

3. Three-dimensional numerical simulation procedure
In order to assess the reliability of the theoretical predictions outlined in the previous section,

the full three-dimensional problem is solved numerically, for a computational domain containing

the plate with vanishing thickness. This numerical problem is particularly challenging, given the

singularities associated with the leading and trailing edges as well as the lateral boundaries of the

plate. Also, the procedure must be sufficiently accurate as to provide reliable skin friction results

along the plate. A multi-domain approach has been used for the solution of the Navier-Stokes

system (in the following the dimensionless variables are written without asterisks)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2

u, (3.1)

∇ · u = 0. (3.2)

The partition is designed such that the edges of the plate coincide with contour lines of interfaces

between subdomains (cf. sketch in figure 3). The Reynolds number Re=U‖d/ν is formed with

the incoming uniform flow velocity U‖ and a typical length scale d of the rectangular plate
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Figure 3. Sketch of the multi-domain partition of the computational domain with the inserted plate

(black). Examples of interfaces Γij between domains (grey).

to be specified later. The main aspects of the solution procedure are summarised hereafter. A

semi-implicit second-order backward-Euler time integration is used, the nonlinear terms being

evaluated through a Adams-Bashforth scheme. A projection method is considered, that is a

fractional-step method by solving at each time step tn = n∆t an intermediate pressure and

velocity field followed by a pressure correction to ensure incompressibility, known as the Kim-

Moin scheme (see [18] and for a review on projection methods [19]). Hence, at each time step a

series of Helmholtz-type problems

∇2Φ− σΦ= f (3.3)

for the velocity components, with σ =3Re/(2∆t), and the pressure (with σ= 0) have to be solved.

The domain Ω =∪Ωk is partitioned into subdomains Ωk with interfaces Γij =Ωi ∩ Ωj (see the

sketch in figure 3) and the Helmholtz problems in each subdomain are

∇2Φk − σΦk = fk, in Ωk, Φk = g on ∂Ωk ∩ ∂Ω, (3.4)

where g is either an imposed boundary condition on the exterior of the whole computational

domain, or a kinematic condition on the plate in the interior, depending on the specific subdomain

considered. High-order compact finite differences schemes are considered for the discretization

in the three space variables (x, y, z). The schemes are derived for non-uniform meshes [20]: in

particular, as shown in [21], a clustering of the points near the boundary is appropriate for the

eighth-order scheme considered here, to avoid oscillations and which enables a boundary closure

scheme of the same order as the interior. In a pre-processing step, the second derivative operators

in each direction are diagonalised which gives rise to a fast direct solver of the Helmholtz

problems in each subdomain during the time-stepping procedure. Continuity of the solution as

well as of its normal derivative is required at the domain interfaces Γij and fields Φ0
k , Φ∗

k are

introduced such that

∇2Φ0
k − σΦ0

k = 0 in Ωk, (3.5)

Φ0
k = λ, k= i, j, on Γij , (3.6)

∇2Φ∗
k − σΦ∗

k = fk in Ωk, (3.7)

Φ∗
k = 0, k= i, j, on Γij , (3.8)

Φk = Φ0
k + Φ∗

k, k= i, j, if and only if ∂Φi/∂n= ∂Φj/∂n on Γij . (3.9)

In this system the right-hand side of equation (3.7), containing the explicit terms for the time-

discretization, is time-dependent and at each time step the boundary value λ on the interfaces has

to be computed to fulfil the continuity of the normal derivatives (3.9). The algebraic formulation

of this problem leads to a linear system, the solution of which providing the boundary condition

between adjacent domains. This system involves the Schur complement matrix [22], also called
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influence matrix, and its internal block structure is determined consistently with the subdomain

partition in a pre-processing stage. A parallel MPI algorithm has been designed using the Cluster

IBM x3750 of the French computer centre IDRIS, a process being assigned to each subdomain. The

Schur complement system is solved iteratively using the Portable, Extensible Toolkit for Scientific

Computing (PETSc) computational environment [23] and more specifically the Krylov subspace

package (KSP), using hierarchical GMRES options and Block Jocobi preconditioning [23]. In each

subdomain Ωk a 30× 30× 30 mesh has been used and the algorithm proved to scale almost

linearly with the number (up to 120) domains considered.

(a) Flat plate boundary-layer validation

Before addressing the flow along the moving plate, the steady boundary layer along the plate with

finite edges has to be computed which subsequently will be used as the initial condition when the

plate is set into motion. The edges of the plate, with vanishing thickness placed at y= 0 (cf. sketch

in figure 1), are singularities when the plate is in contact with an incoming uniform flow. This

difficulty is overcome by construction using the multi-domain approach, the edges being border

lines between adjacent domains and hence the singular value do not appear explicitly throughout

the computations. A computational Cartesian domain

Ω = [0, 60]× [−8, 8]× [−9, 9]

has been considered, the rectangular plate with length L= 36 and span s= 6 being located in

the y= 0-plane with the leading edge at xl = 6 and centred at z= 0. Uniform flow (1, 0, 0) (the

uniform flow U‖ at inflow being the reference velocity) at x=0 is considered and an advection

outflow condition is used at x= 60. The wall-normal and spanwise components of the flow

velocity, respectively v and w, are supposed to vanish far from the plate at y=±8, whereas

a far-field Neumann boundary condition is imposed for the streamwise component u. No-slip

conditions for the three components of the velocity field are imposed on the plate. A Reynolds

number Re= 200 has been considered, that is Res = 1200 when based on the plate’s span s.

The multi-domain partition used contains 120 subdomains, with (ndx,ndy, ndz) = (10, 4, 3) the

number of domains in the three directions, that is the plate ranges over 6 domains in x and one

domain in z. Starting with the uniform flow at inflow, the computations have been advanced in

time with a time-step ∆t= 0.005 and at t= 90 a quasi-steady flow field was reached. All variables

are now dimensionless and the displacement thickness δ(x) =
∫ymax

0 (1− u)dy is a convenient

lengthscale for the boundary layer along a flat plate. Figure 4(a) shows the displacement thickness

at different spanwise locations. The value does not vary significantly along the span, besides the

region close to the edge. The displacement thickness is seen to grow monotonically as expected

by the theory [17], except in the region close to the trailing edge of the plate (with vanishing

thickness) at xt = 42, where the flow field has a singular behaviour. Note that the maximum value

is δ(x)≈ 0.6 which yields a maximum Reynolds number based on the displacement thickness of

Reδ ≈ 120, that is the boundary-layer is stable with respect to infinitesimal perturbations (the

critical Reynolds based on δ being ≈ 520, [17]). Also, note that the far-field boundary ±ymax

(with ymax = 8) is sufficiently far away from the boundary-layer edge, the distance for which the

boundary layer profile recovers 99% of the uniform flow being ≈ 3δ.

The dimensionless friction drag force par unit surface, the skin friction, is computed as

cf =
τ

ρU2
‖

=
1

Re

∂u

∂y
(x, 0, z), (3.10)

τ being the shearing stress on the wall, and cf =0.57/Reδ(x) for the Blasius boundary layer along

a spanwise infinite flat plate, when made dimensionless with the displacement thickness [17].

This classical boundary layer formula applies for zero-pressure gradient flow as long as the flow

remains attached. More involved asymptotics, such as the triple-deck structure of the flow field

[24], have to be used to describe the behaviour near singular points such as leading and trailing

edges. In the present investigation we focus on the flow along the plate and only the classical
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Figure 4. (a) Displacement thickness along the plate of length L=36, ranging from 6≤ x≤ 42, at the

centre z= 0 (—), at z= 1.8 (−−−), and very close to the edge at z=2.95 (−.− .−). (b) Skin friction

cf = τ/(ρU2

‖
) = (∂u(x, 0, z)/∂y)Re−1 at the centre z =0 (—) and comparison with the theoretical Blasius

value (−−−).

Figure 5. z= 0-cut of the streamwise velocity field in the vicinity of the plate (made visible as the thin

black line) moving at different velocities U⊥ =0.1, 0.2, 0.3, at t=40

theory is considered for comparison with the numerical Navier-Stokes solution. Figure 4(b) shows

the computed cf value for the flow state at the centre of the plate, which exhibits as expected

a singular behaviour at the leading edge xl =6 and the trailing edge xt =42. Along the plate,

the skin friction is close to the theoretical Blasius value depicted as the dashed line. The plate’s

singularities do not induce significant oscillations of the wall-normal velocity gradient and for

this test case of a rectangular flat plate, the simulation procedure is seen to provide reliable skin

friction values.

4. Flow over the moving plate
Once the steady flow is established, the plate is set into motion, the dimensionless and constant

plate velocity U⊥ being from now on written without asterisk. The plate is initially located in the

plane y= 0 and its spatially uniform displacement is φ(t) =U⊥t. A mapping

y= ȳ + φ, −ymax ≤ ȳ ≤ ymax (4.1)

with ȳ the computational fixed normal coordinate is considered. In the Navier-Stokes system (3.1)

the time derivative has to be transformed accordingly and on the plate the kinematic condition
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Figure 6. Streamwise vorticity in the (z, y) plane at a position x=L/3 from the leading edge of the plate

(made visible as the thin black line) moving at different velocities U⊥ =0.1, 0.2, 0.3, at t=40.

Figure 7. Skin friction cf at x=L/3 from the leading edge along the span z of the plate moving with

U⊥ = 0.1, at —- : t = 20, −−−: t = 30, −.− .− .: t= 40. The dotted line is the skin friction for the fixed

plate. (a) lower side of the plate. (b) upper side of the plate.

applies, that is

∂

∂t
≡ ∂

∂t
− U⊥

∂

∂ȳ
, v=U⊥, u=w= 0, on the plate at ȳ = 0. (4.2)

In this procedure and according to the mapping, the far-field boundary, where the flow becomes

uniform, remains at a constant distance from the plate throughout the time-integration. For

the discretization, 120 subdomains have been considered in the multi-domain procedure with

the same 30× 30× 30 mesh per subdomain as for the boundary layer computation described

in section 4. The plate with zero thickness, length L= 36 and span s= 6 forms a rectangle

6≤ x≤ 42,−3≤ z≤ 3 in the ȳ= 0 plane inside the overall computational domain Ω= [0, 60]×
[−8, 8]× [−9, 9].
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Figure 8. Skin friction cf at x=L/3 from the leading edge along the span z of the plate moving with

U⊥ = 0.3, at —- : t = 20, −−−: t = 30, −.− .− .; t= 40. The dotted line is the skin friction for the fixed

plate. (a) lower side of the plate. (b) upper side of the plate.

The Reynolds number is Re= 200, or equivalently Res = 1200 when based on the plate’s span.

The system has been integrated in time (with a time-step ∆t=0.005) for different plate velocities

U⊥, starting with the flow velocity for the fixed plate as initial condition. The instantaneous flow

structure around the plate at t= 40 is illustrated in figure 5 for U⊥ = 0.1, 0.2, 0.3, the z =0-cut of

the streamwise velocity field u in the neighbourhood of the plate (with zero thickness but made

visible as a thin black line) being shown. For the smaller velocities U⊥ = 0.1, 0.2, the effect of the

motion is only visible near the leading edge and downstream the trailing edge, the boundary-

layer structure being qualitatively similar as for a motionless plate, the streamwise velocity

component recovering its uniform value u= 1 at a small distance from the plate’s boundary. For

the higher velocity U⊥ = 0.3 the flow however exhibits a separation at the leading edge which

leads to a formation of a reversed flow region at the lower side, the plate being in an upward

motion. The streamwise vorticity field ωx = ∂w/∂y − ∂v/∂z is depicted in figure 6 where a cut

at x=L/3 from the leading edge is shown in the plane (z, y). Two opposite counter-rotating

vortex structures form at the lateral edges of the plate as a consequence of its upward motion. The

intensity of the vorticity increases with U⊥. For U⊥ =0.3 some imperfect matching, the vorticity

involving the gradients of the velocity field, is visible at lines, corresponding to subdomain

boundaries, normal to the plate’s edges. This is due to the error tolerance of the iterative procedure

used to solve the Schur complement matrix system in this numerical problem.

Starting with the boundary-layer flow along the fixed plate and setting the plate into motion,

the flow structure undergoes a transient regime and a crucial question is whether it converges

to some quasi-steady state during the time integration. The dimensionless friction force per unit

surface

cf =
τ

ρU2
‖

=± 1

Re

∂u

∂y
(x, 0±, z) (4.3)

at the lower and upper face of the plate, that is at y =0− and y =0+ respectively, for U⊥ = 0.1

at x=L/3 and at different times t= 20, 30, 40 is shown in figure 7. It is seen that the flow at

t= 40 may be considered as to be in a quasi-steady state for this small plate velocity. Note that

the lateral edges at z =±3 are singularities for the flow field and the skin friction is plotted except

in the very vicinity of the plate’s edges. The skin friction for the motionless plate is shown as

well as the dotted line, which is of course constant along the plate except in the region adjacent

to the edges. The viscous friction enhancement is clearly demonstrated, already at this low plate

velocity. The skin friction for a higher velocity U⊥ = 0.3 is shown in figure 8. Now, while at the

upper side toward which the plate is moving the friction value shows a convergence behaviour,

at the lower side the flow remains unsteady. Indeed, as shown in figure 5, the flow at U⊥ = 0.3

exhibits a relatively strong separation at the leading edge which in general is synonymous with

an unsteady behaviour. Also, at the lower side, the skin friction exhibits two peaks, symmetric
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Figure 9. Spanwise integrated skin friction Cf = 1

s

∫
cfdz along the plate moving at U⊥ =0.4 at different

times t= 40: —-, t= 60: −−−, t= 80: −.− .−. (The regions of the plate, with length L= 36, in the

vicinity of the singular leading and trailing edges, at xl =6 and xt =42 respectively, are discarded.)

with respect to z = 0, which are more pronounced for the higher wall velocity. It is likely that this

local increase in friction drag is associated with the presence of the edge vorticity structures at the

lower side induced by the upward motion and shown in figure 6.

5. Skin friction formula for the moving plate
Making the longitudinal friction drag (2.6) dimensionless using the span s yields

D‖

sρU2
‖

=C3D Re
− 1

2

s

√

U⊥ =Cf =
1

s

∫
cf dz, (5.1)

the dimensionless plate velocity being written without asterisk and the integration is to be taken

along the upper and lower side of the span, omitting the plate’s edges which are singular points

in the numerical integration formula (a simple trapezoidal rule has been used). Whether a viscous

drag coefficient can be defined is intimately related to the existence of a quasi-steady state.

However, local features of the flow are likely to be unsteady at higher plate velocities, as shown

in the previous section, due to the strong separation of the flow at the leading edge and at the

lateral edges. The highest plate velocity considered here is U⊥ =0.4 and the spanwise integrated

skin friction Cf has been computed up to t= 80. The result is shown in figure 9, for t=40, 60, 80.

While near the leading edge the behaviour is highly unsteady, a quasi-steady evolution for this

quantity is seen more downstream. This gives some confidence that the viscous friction for

different plate velocities can be compared at some fixed time, after the initial transient behaviour

has disappeared. Results for U⊥ = 0.1, 0.2, 0.3, 0.4 at t= 40 are shown in figure 10. As expected,

no consistent behaviour of the Cf -values is observed in the region close to the leading edge, but

more downstream the curves are seen to be not far from parallel to each other. In figure 11, the

quantity

C3D =Cf Re
1

2

s U
− 1

2

⊥ (5.2)

is shown, starting at x= 15, that is discarding one fourth of the plate length near the leading

edge. While this quantity varies with x, a clustering of the curves, besides that for the lowest
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Figure 10. Spanwise integrated skin friction Cf = 1

s

∫
cfdz along the plate at t= 40 for different plate

velocities U⊥ = 0.1: —-, U⊥ =0.2: −−−, U⊥ = 0.3: −.− .− ., U⊥ = 0.4: · · · . (The regions of the plate,

with length L=36, in the vicinity of the singular leading and trailing edges, at xl = 6 and xt =42

respectively, are discarded.)

Figure 11. Value of C3D =Cf Re
1

2
s U

− 1

2

⊥ along the plate for different plate velocities U⊥ =0.1: —-, U⊥ =

0.2: −−−, U⊥ = 0.3: −.− .− ., U⊥ = 0.4: · · · .

wall velocity U⊥ =0.1, at a value around C3D ≈ 1.8 is observed. This value is higher than the

theoretical coefficient C3D =1.4 (cf. section 2), which is not surprising, because the friction drag

contribution beyond the separation line (the plate’s lateral edges) is not taken into account in the

theoretical model. Also, when deriving the friction drag formula, the boundary-layer structure

in the spanwise direction is considered, assuming streamwise invariance of the flow and leading
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Figure 12. Spanwise integrated skin friction Cf = 1

s

∫
cfdz over two periods, at x=L/3: —-, x=L/2:

−−−, for the periodic plate velocity U⊥ =0.3 sin(0.06 t).

precisely to the
√
U⊥ scaling (cf. section 2 and the detailed analysis in [1]). This scaling is of course

modified by the streamwise boundary-layer evolution which leads to the observed streamwise

dependence of C3D . Also, for low wall velocities it is more questionable to focus mainly on the

spanwise boundary-layer structure which explains that the result at U⊥ = 0.1 lies a little apart in

figure 11.

(a) Periodic plate velocity

The wall motion in any swimming behaviour is periodic and in [25] it is shown that the normal

body velocity for a large number of fishes and cetaceans typically varies from 0.1U‖ to 0.3U‖ from

head to tail. In the present model no explicit spatial undulation of the plate is taken into account,

but in order to address a periodic motion the wall velocity

U⊥(t) =A sin(ωt)

with A= 0.3 and ω= 0.06 has been considered. The maximum wall velocity is 0.3 and the

displacement φ(t) of the plate varies between ±A/ω=±5, which is a rather large amplitude

(compared to the plate’s length L= 36), at least with regard to typical undulatory swimming

amplitudes. It would of course be hazardous to infer from a spatially uniform time-periodic

motion of the plate the results one would get for a realistic undulatory motion. However, this

model problem is likely to be considered as a kind of extreme case, with respect to normal plate

velocity and amplitude of motion. The flow behaviour has been computed over two time periods

2T , with T ≈ 105, and the spanwise integrated friction value Cf is depicted in figure 12 at two

position (x=L/3, L/2) of the plate. This quantity is seen to inherit the periodicity of the plate’s

motion and as expected, after a transient initial time interval, the distance between two peaks, or

equivalently between two valleys, of the curves is T/2≈ 52.

The time-averaged skin friction <Cf >= 1
T

∫2T
T

Cfdt is shown in figure 13 and compared with

the spanwise friction drag for the motionless plate. Integrating these curves between 12≤ x≤
36, that is discarding the portions of the plate near the leading and trailing edges, provides

drag values of 0.34 and 0.58 for the motionless plate and moving plate, respectively, that is

a drag increase of 70 % for the plate with the periodic normal velocity. The dotted line in
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Figure 13. Time-average <Cf >= 1

T

∫
2T

T
Cfdt of the skin friction for the plate with the periodic normal

velocity U⊥ = 0.3 sin(ωt), ω=0.06: —-, compared with skin friction along the motionless plate: −−−.

Skin friction formula Cf = 1.8Re
− 1

2
s

√

< |U⊥|>, with < |U⊥|> the mean absolute value of the wall

velocity: · · · .

figure 13 shows the skin friction one would get with the formula (5.1) (for C3D =1.8), that

is Cf = 1.8Re
− 1

2

s

√

< |U⊥|>≈ 0.023, by considering the mean absolute value of the velocity

< |U⊥|>= 2A/π =0.191. This Cf value is seen to be surprisingly close to the computed mean

friction result, over two-third of the plate’s length.

6. Conclusion
In [1], the theoretical prediction of the so-called ’Bone-Lighthill boundary-layer thinning

hypothesis’ had been strengthened by exploring a boundary-layer model along a plate moving

at a normal velocity and considered as the limit case of a yawed cylinder configuration. The

three-dimensional numerical simulations of the present paper reinforce the theoretical prediction.

These simulations remain a challenging problem and are particularly time-consuming and only

one plate configuration with a length to span ratio L/s= 6 has been considered, using a multi-

domain Navier-Stokes solver, at a relatively small Reynolds number Res =1200, based on the

incoming uniform velocity U‖ and the span s. The longitudinal drag (per unit length) formula

D‖ =C3D µU‖Re
1

2

s

√

U⊥

U‖

is clearly reinforced, at least for wall-normal velocities U⊥ above some lower bound, by the

numerical simulation results, with however a drag coefficient C3D slightly varying along the

plate’s streamwise direction. The computed coefficient is higher than the theoretical value 1.4 and

may roughly be estimated as 1.7<C3D < 2 for the different plate’s normal velocities considered.

Interestingly, this result is not far from the semi-empirical value ≈ 2.1 used by Taylor [15].

Although a spatially uniform motion of the plate is oversimplified, it however exemplifies the

possibility of skin friction enhancement in swimming motion. In particular, a time-periodic

spatially uniform motion with a maximum normal velocity U⊥ = 0.3U‖ of the plate, which is

a upper bound regarding to fish swimming [19], is seen to provide a mean skin friction increase,



14

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

....................................................................

compared to a motionless plate, by roughly a factor 1.7. Again, it has to be emphasised that the

full three-dimensional numerical simulations are computationally involved and could only be

performed for a limited set of parameter values. Spatial undulation of the plate will also have to

be considered in the future.

Although based on simplified assumptions, our results lend credit to the conclusion that skin

friction is enhanced through swimming motion. However, increases by factors between 4 and 10,

as proposed among others in [3], [26], [27], are unlikely.
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