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Many eukaryotic cells use the active waving motion of flexible flagella to self-propel in
viscous fluids. However, the criteria governing the selection of particular flagellar wave-
forms among all possible shapes has proved elusive so far. To address this question, we
derive computationally the optimal shape of an internally-forced periodic planar flagel-
lum deforming as a travelling wave. The optimum is here defined as the shape leading to
a given swimming speed with minimum energetic cost. To calculate the energetic cost,
we consider the irreversible internal power expanded by the molecular motors forcing
the flagellum, only a portion of which ending up dissipated in the fluid. This optimisa-
tion approach allows us to derive a family of shapes depending on a single dimensionless
number quantifying the relative importance of elastic to viscous effects: the Sperm num-
ber. The computed optimal shapes are found to agree with the waveforms observed on
spermatozoon of marine organisms, thus suggesting that these eukaryotic flagella might
have evolved to be mechanically optimal.

1. Introduction

Many microorganisms swimming in viscous fluids actuate slender appendages, be they
flagella or cilia, in a wavelike fashion in order to propel themselves (Brennen & Winnet
1977; Lighthill 1975; Childress 1981; Lauga & Powers 2009). The origin of this wav-
ing motion rests in the mechanical properties of the surrounding fluid at low Reynolds
number. In the absence of inertia, the Stokes equations are time-reversible and thus any
time-reversible deformation of a swimmer or its appendages would result in no average
locomotion (Purcell 1977). To bypass this constraint, microorganisms swim, in general,
by using the simplest deformation kinematics indicating a clear direction of time: the
travelling wave (Lauga 2011).

As we are all too aware from our efforts at the pool, being able to swim does not however
mean one does it efficiently. In the context of cell motility, a question that has received
some attention in the literature is the issue of optimal low-Reynolds number locomotion.
With infinite degrees of freedom in shape, design, and actuation mechanism, what is
the most effective way to self-propel in the absence of inertia? Since the locomotion
kinematics in the Stokesian regime scales linearly with the typical actuation frequency
of the body, a swimming efficiency needs first to be defined to normalise the swimming
speed and make the optimality criterion frequency-independent (Lighthill 1975). This is
typically done by comparing the work done against the fluid to swim (total power) to
the work that would be expended by a force dragging the same swimmer at the same
speed (useful power). Optimal swimming is then equivalent to either swimming at a fixed
speed with minimum power or swimming at fixed power with maximum speed.

For some swimmers amenable to precise mathematical or numerical analysis, calcu-
lations of optimal kinematics have been proposed. For instance, the optimal swimming
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gait of a Purcell’s three-link swimmer (Purcell 1977) has been characterised by Tam &
Hosoi (2007) and Avron & Raz (2008), as well as the optimal kinematics of the related
three-sphere swimmer (Alouges et al. 2008). Shapere & Wilczek (1987, 1989a,b) showed
analytically that the optimal swimming by surface deformation of spheres and cylinders
is achieved by surface waves akin to metachronal waves observed in ciliary fluid trans-
port (Brennen & Winnet 1977), for which the optimal kinematics has also been studied
(e.g. Osterman & Vilfan 2011). For swimmers able to impose a tangential velocity on the
fluid at their surface without deforming their shapes, a swimming motion referred to as
squirming, infinite efficiency can be obtained for infinitely slender swimmers as shown by
Leshansky et al. (2007). For a spherical squirmer however, the optimal large-amplitude
swimming (Michelin & Lauga 2010) or feeding (Michelin & Lauga 2011, 2013) problem
has a finite efficiency and displays, again, surface waves.

Unfortunately, most microorganisms do not have shapes allowing detailed mathemat-
ical derivations. The most common shape is that of a cell body, somewhat spheroidal
in shape, attached to one or several flagella (Bray 2000). Eukaryotic cells have active
internally-forced flagella forming planar waves, while bacteria rotate passive helical flag-
ella. The presence of slender flagella allows, physically, microorganisms to take full advan-
tage of drag anisotropy at low Reynolds number in order to generate drag-based thrust
(Lauga & Powers 2009). In the context of this flagellar swimming, once the issue of op-
timal body-to-flagella size has been addressed (Higdon 1979a,b; Fujita & Kawai 2001),
the important question becomes how to actuate a flagellum optimally?

For bacteria locomotion, the optimal shape of rotated rigid helical flagella was recently
derived and found to agree with experimental observations (Spagnolie & Lauga 2011). For
eukaryotic cells however, the optimal flagellar shape has to be different from the bacterial
one since eukaryotic flagella are deformed actively. A pioneering study demonstrated
that, for a given flagellar shape, the optimal instantaneous shape deformation is that of
a travelling wave (Pironneau & Katz 1974). Using a local analysis for the fluid dynamics,
Lighthill then derived the optimal shape for a flagellar travelling wave. For an infinite
swimmer, he obtained a sawtooth wave (Lighthill 1975), an optimal which remains valid
for finite-size swimmers (Pironneau & Katz 1974, 1975).

The optimal flagellar shape thus appears to be mathematically singular. Yet experi-
mental observations do not show any singularity (Brennen & Winnet 1977). To resolve
the discrepancy, different possibilities can be considered. A first possibility could be that
the shapes of eukaryotic flagella have not evolved to be optimal for locomotion, either
because locomotion contributes to relatively small energetic costs, or because other con-
tributions are more relevant. Another possibility could be that cells cannot reach the
mathematical optimum because of physical or biological constraints. A last possibility
could resolve the apparent discrepancy: flagella might well be optimal but the energetic
costs measured through the power lost in the fluid might not be pertinent. The internal
structure of an eukaryotic flagellum, called the axoneme, is made up of a small number
of polymeric filaments (microtubule doublets) which are caused to slide past each other
by the action of a motor protein called the dynein (Alberts et al. 2007). It is the action of
these molecular motors on the filaments that performs useful work through the consump-
tion of ATP. Only a fraction of this work ends up dissipated in the fluid though, the other
fraction being spent on irreversible bending of the flagellum. Because it quantifies the
real biological cost of actuating the flagellum, the work done by these molecular motor
is the correct energetic measure and we believe that efficiency should be defined on this
measure to perform adequate optimisation calculations (Eloy & Lauga 2012).

In this paper we use this internal energetic measure to derive the shape of the optimal
active flagellum. After introducing the physical model for an active, internally-forced
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Figure 1. Mathematical model and notation. We consider an infinite planar flagellum of wave-
length λ along x, with curvilinear coordinate s and tangent unit vectors ŝ. The wavespeed is
denoted V in the +x direction and the flagellum is assumed to be swimming with speed −U .
The wavelength measured along the curvilinear direction is Λ ≡ λ/α (α ≤ 1).

periodic planar flagellum in §2, we compute the travelling-wave shape that maximises the
swimming speed for a fixed energetic cost in §3. The shape is a function of a dimensionless
Sperm number, Sp, quantifying the relative importance of bending to viscous forces. For
finite values of Sp, the optimal flagellar waveform is smooth and becomes singular only
in the hydrodynamic limit, Sp → ∞. In the elastic limit Sp → 0, the optimal waveform
appears to be composed of circular arcs with constant curvature of alternating signs. Our
optimal shapes are found to agree with experimentally-measured waveforms of marine
microorganisms as discussed in §4.

2. Mathematical model of active flagellum

2.1. Kinematics

We consider an infinite, active, and flexible planar flagellum deforming periodically such
that it swims at constant velocity −U in the x-direction (figure 1). The flagellum de-
formation is assumed to be a travelling wave of velocity V and wavelength λ along x
(or, equivalently, Λ along the curvilinear coordinate s, with λ = αΛ, α ≤ 1). The local
tangential unit vector is defined as ŝ.

In the frame moving with velocity V − U compared to the laboratory frame, the
deformation of the flagellum appears steady (Lighthill 1975). In this frame, the material
points on the flagellum move thus necessarily tangentially with velocity −c ŝ, where
the speed c is such that a material point travels one wavelength Λ over a period T .
Consequently, we have T = Λ/c = λ/V and thus V = αc, where

α =
λ

Λ
=

1

Λ

∫ Λ

0

cos θ ds, (2.1)

and θ is the local angle between the flagellum and the swimming direction (figure 1).
The relative velocity between the fluid and the flagellum is therefore given, at any point
along the flagellum, by

u = (V − U)x̂− c ŝ, (2.2)

with a spatial dependence coming implicitly through the variation of ŝ.

2.2. Swimming

In order to compute the fluid forces on the waving flagellum, we use the classical frame-
work of resistive force theory (Gray & Hancock 1955), which is the leading-order term
of slender-body theory (Cox 1970). Within this approximation, the force per unit length
exerted by the fluid on the flagellum can be written as

F = ξ⊥u + (ξ‖ − ξ⊥)ŝŝ · u, (2.3)
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where ξ⊥ and ξ‖ are the perpendicular and parallel resistance coefficients respectively,
and we will further assume that ξ⊥ = 2ξ‖ (Gray & Hancock 1955). Inserting (2.2) into
(2.3) yields a spatial distribution of force such that

1

ξ⊥
F · x̂ = (αc− U)(1− 1

2 cos2 θ)− 1
2c cos θ. (2.4)

To determine U , we enforce that the net sum of all hydrodynamic forces projected along

the x-direction is zero (free-swimming condition), i.e.
∫ Λ

0
F · x̂ ds = 0 (Lighthill 1975),

leading to the swimming velocity U given by

U =
1− β
2− β

αc, with β =
1

Λ

∫ Λ

0

cos2 θ ds. (2.5)

Note that since c > 0 and β ≤ 1, then U ≥ 0: a wave travelling to the right leads to
swimming to the left.

2.3. Energetics

In order to evaluate the power needed to deform periodically the flagellum, we first need
to calculate the active internal torques necessary to the deformation. We use Kirchhoff
equations for a flexible rod (Audoly & Pomeau 2010) expressing the local balance of
forces and moments. In that case, the internal tension, T, and bending moment, M, are
related to the external force according to

T′ = F, M′ + ŝ×T + q = 0, (2.6)

where primes denote differentiation with respect to the local curvilinear direction s, and
q denotes the active torque produced by the internal molecular motors. Assuming a
Hookean constitutive relation, M = Bθ′′ẑ, where B is the bending rigidity, the equations
(2.6) yields an explicit expression for the internal torque as

q = −Bθ′′ẑ + ŝ×
∫ L

s

F ds, (2.7)

where L denotes the end of the flagellum or any point with the same phase (in practice
any point can be chosen for L since a s-shift is equivalent to a time shift).

The average power needed to perform the deformation is obtained from the scalar
product of the internal torque and the local angular velocity

P =

∫ Λ

0

[
q · θ̇ẑ

]+
ds, (2.8)

where θ̇ = −cθ′ is the angular velocity and the notation [·]+ expresses that only positive
works are included in the energy budget. In other words, we assume that the flagellum (or
more precisely, the molecular motors actuating it) cannot harvest energy from the fluid
when the local power given to the fluid is negative. This means that the elastic energy is
not conserved and that the work expended by internal torques is not totally transferred
to the fluid, but instead a portion of it is wasted internally due to the irreversibility of
internal motors. This assumption is similar to what is classically done when modelling
the muscle mechanics, except that, in the present study, the work is done in bending
instead of longitudinal compression or extension (Alexander 1992).

2.4. Swimming efficiency

The efficiency, η, of a given flagellum deformation, θ(s), is then expressed as the ratio
between the power needed to drag one period of the straightened filament in the fluid to
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the actual power spent to actuate the internal motors

η =
ξ‖ΛU

2

P
· (2.9)

Note that the choice of the power ξ‖ΛU
2 to normalise η is somewhat arbitrary in the

present context and does not affect the optimisation results (Childress 2012). The effi-
ciency depends on a single dimensionless parameter, the Sperm number Sp, measuring
the ratio of the wavelength, Λ, to an elasto-viscous persistence length, ` and defined as

Sp =
Λ

`
, with ` =

(
TB

ξ⊥

)1/4

. (2.10)

In the traditional approach for optimisation of locomotion at low Reynolds number, the
efficiency, denoted ηfluid here, is defined as in (2.9) but P is taken to be the rate of energy
dissipated in the fluid, and the elastic nature of the flagellum is not considered (Lauga &
Powers 2009). This was the assumption made by Lighthill in his optimisation calculation
(Lighthill 1975). With P defined as in (2.8), the optimisation approach proposed allows
us to de-singularize the optimal flagellum shape, and to rigorously quantify the net
molecular energy expenditure.

3. Shape of the optimal active flagellum

3.1. Numerical optimisation

The optimisation procedure consists in computing, for a given Sperm number Sp, the
flagellum shape that maximises the efficiency. This optimisation problem can be solved
numerically by decomposing the flagellum shape onto Fourier modes, such that the local
angle is given by θ(s − ct) =

∑N
n=1An cos [2πn(s− ct)/Λ] , where, in fact, even terms

are zero for the optimal shapes due to the problem symmetry. The swimming veloc-
ity can then be determined using (2.5), and the efficiency using (2.9). From a practical
point of view, the Fourier series has been truncated with N = 100 to have a sufficient
spectral resolution, and integrals along s have been discretized onto 1000 elements. The
optimisation itself is carried out with Matlab using the sequential programming (SQP)
algorithm, starting from a guess value picked as the best efficiency among 1000 random
trials. The optimisation calculation is typically ran 20 times for each Sperm number
to ensure that the algorithm has reached the global optimum. This approach has been
validated by comparing the results for large values of Sp with the analytical study of
Lighthill (1975). He found that, in the hydrodynamic limit where all the work is dissi-
pated in the fluid (equivalent to vanishing bending rigidity, or infinite Sp), the maximum
efficiency ηfluid = (1 −

√
1/2)2 ≈ 0.0858 is reached for a sawtooth shape such that

θ = ± arcsin(1/(1 +
√

2))1/2 ≈ 40.06◦.

3.2. Optimal shapes

The optimal shapes found numerically by maximising the efficiency at constant Sp are
shown in figure 2. As the value of Sp is increased, the calculated shapes do converge
toward Lighthill’s sawtooth function. For finite values of Sp however, the singular points
in x = λ/4 and 3λ/4 are smoothed out.

The efficiencies of these optimal shapes are shown in figure 3 as a function of the Sperm
number. We see that the efficiency is a monotonically increasing function of Sp, which
reveals, as expected, that an increase of the bending rigidity leads to an increase of the
internal energetic cost. The external energetic cost, or the energy given to the fluid, is
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Figure 2. Energetically-optimal flagellum shapes for different Sperm numbers, Sp. The saw-
tooth function, with an angle of ±40.06◦, is the solution of Lighthill (1975) and corresponds to
an infinite Sperm number (thin black line). The percentages in (a) refer to the proportion of the
power expended by the internal motors (torques) which ends up dissipated in the viscous fluid
(see also inset of figure 3). In (a) and (b) we display the overall shapes over a single wavelengths,
both superimposed (a) and shifted (b). In (c) we zoom in on the part of the flagellum which
intersects its swimming axis and in (d) we show a zoom of the region with largest curvature.

quantified in this figure by also plotting the efficiency ηfluid using (2.9) but with P equal
to the rate of dissipation in the fluid alone. The ratio between η and ηfluid corresponds to
the ratio between the power given to the fluid and the total power spent and is plotted as
an inset in the figure (that ratio is also reported for the five optimal shapes in figure 2).
When Sp . 2.7, more than half of the power is spent internally whereas when Sp & 5,
the power spent internally is almost negligible (although the optimal shapes continue to
depend on the value of Sp).

In figure 4, the angle and curvature of the optimal shapes are analysed as Sp is varied.
First, it appears that the maximum curvature of the shape (located in x = λ/4 and 3λ/4)
is an increasing function of the Sperm number. As anticipated, increasing the bending
rigidity yields a smoother shape. As illustrated in figure 4c however, this monotonic
increase of the maximum curvature corresponds to qualitatively different distributions of
the curvature along the flagellum length. For small Sp, the curvature is almost constant
on the intervals 0 < x < λ/2 and λ/2 < x < λ with an abrupt jump (change of sign) at
x = λ/2. In that limit, the flagellum shape is an assembly of arcs of circles with identical
radii. For 1 . Sp . 5, the curvature is no longer constant on the half-wavelengths, but
there is still a jump of curvatures in x = λ/2. Finally, for Sp & 5, the jumps disappear
and the curvature is zero in two intervals centred around x = 0 and λ/2; in this limit
of large Sp, the region of non-zero curvature is concentrated in small intervals around
x = λ/4 and 3λ/4, the extent of these region decreasing as Sp increases. These different
regimes are also apparent in figure 4b when looking at the maximum angle θmax between
the flagellum centreline and the swimming direction (see also the zoom on the shapes in
figure 2c). For small values of the Sperm number (Sp . 3.4), this midpoint angle increases
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Figure 3. Efficiency, η, of the optimal flagellum shape as a function of the Sperm number
(line with circles). The coloured symbols correspond to the cases from figure 2. The additional
solid line shows the efficiency ηfluid calculated by considering only the fluid power while the
dashed line shows the solution of Lighthill (1975), ηfluid = (1−

√
1/2)2 ≈ 0.0858, corresponding

to an infinite Sperm number. Inset: proportion of the total internal power dissipated in the
surrounding fluid.
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Figure 4. Curvature and maximum angle of the optimal solutions. (a): Maximum curvature
(normalised by λ) as a function of Sp. (b) Maximum angle (in degrees), located at x = λ/2,
as a function of Sp. (c) Distribution of dimensionless curvature along the flagellum axis, x, for
Sp = 1, 4, 6, and 10 (same colour code as in the other figures).

with Sp to reach a local maximum of roughly 57◦, followed by a decrease toward to the
value of 40.06◦ predicted by Lighthill (1975) corresponding to an infinite Sperm number.

4. Discussion

In this paper, we have computed the energetically-optimal shape of a flagellum deform-
ing as a pure travelling wave. When the energetic cost is defined as the irreversible power
expended by the internal molecular motors actuating the flagellum, this optimisation
calculation yields a family of shapes parametrised by a single dimensionless number, the
Sperm number, which quantifies the ratio between viscous and elastic effects. When the
Sperm number is asymptotically small, the optimal shape appears to be an assembly of
circular arcs of constant absolute curvatures. When it is asymptotically large, the opti-
mal shape tends to the sawtooth shape found by Lighthill (1975) by considering only the
power dissipated in the fluid.

At this point, two comparisons with past work should be made. First, the calculated
shapes can be compared with the results of past optimisation studies. Specifically, we
look back at the study of Spagnolie & Lauga (2010) who proposed a physical regular-
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Figure 5. Comparison between the optimal flagellum shape obtained in the present model (solid
line) and the one obtained by Spagnolie & Lauga (2010) (dashed line) in the elastic regime (i.e.
Sp� 1): (a) waveforms; (b) distribution of curvatures.

isation of Lighthill’s shape by replacing, in (2.9), the rate of viscous dissipation in the
fluid by a linear combination of that dissipation rate and the bending energy stored elas-
tically in the flagellum per period. In the limit of strong elastic cost, or equivalently in
the asymptotic limit of vanishing Sperm number, our results are compared to the ones
of Spagnolie & Lauga (2010) by juxtaposing the optimal waveforms (figure 5a) and the
corresponding distribution of curvatures (figure 5b). The optimal shape obtained in the
present work for vanishing Sperm number is composed of circular arcs with constant cur-
vature alternating in sign, and has an hydrodynamic efficiency ηfluid ≈ 7.1%. In contrast,
the optimal shape in Spagnolie & Lauga (2010), which is also smooth, is characterised by
a sinusoidally-varying shape angle θ(s) (and thus a sinusoidally-varying curvature) with
a smaller hydrodynamic efficiency of ηfluid ≈ 6.1%. The crucial difference in the analysis
between the two studies is that the work of Spagnolie & Lauga (2010) penalises all cur-
vature along the flagellum equally through the use of the bending energy measuring the
mean square curvature along the shape. As a difference, the present study only penalises
location along the flagellum where irreversible work is being done.

A second comparison can be made with the shapes of actual biological organisms.
This can be done both qualitatively and quantitatively. In a famous 50-year-old study,
Brokaw & Wright (1963) described in detail the flagellar waveform of Ceratium, a marine
dinoflagellate, and reported that contrary to common knowledge “the regular form of the
wave is not sinusoidal” but the bent regions are “circular arcs in which the curvature is
constant throughout the bend”. In a followup work analysing the shapes of spermatozoa
of marine invertebrates, Brokaw (1965) similarly found that the observed shapes “contain
regions of constant bending, forming circular arcs, separated by shorter unbent regions”.
These results indicate that the optimal shapes found in the present study for small Sp,
which exhibit constant curvature, agree qualitatively with those observed experimentally.

From a quantitative standpoint, we can further compare the results of the present work
with experimental measurements of five flagellar shapes of spermatozoa (Chaetopterus,
Ciona, Colobocentrotus, Lytechinus, Psammechinus), and one eukaryotic cell (Tripano-
soma cruzi), all displaying two-dimensional flagellar beat (Table 1), and whose charac-
teristics have been reported in Brennen & Winnet (1977), Brokaw (1965), and Gray &
Hancock (1955). Averaging over all six species, the typical ratio between the flagellar
wave amplitude and wavelength is found to be h/λ ≈ 0.165, while the typical max-
imum curvature is θ′max ≈ 5.75/Λ. Lighthill’s optimal shape gives h/λ ≈ 0.209 and
θ′max = ∞. By contrast, in our optimal calculation for Sp = 4, the optimal shapes are
characterised by h/λ ≈ 0.163 and θ′max = 7.75/Λ, while for Sp = 1, we obtain shapes
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λ h h/λ θ′maxΛ

Experiments annelid (Chaetopterus) 19.5µm 3.8µm 0.194 5.93
tunicate (Ciona) 22µm 4.3µm 0.195 5.45
sea urchin (Colobocentrotus) 30µm 2.8µm 0.093 –
sea urchin (Lytechinus) 22.6µm 4.6µm 0.203 5.86
sea urchin (Psammechinus) 24µm 4.0µm 0.166 –
protist (Trypanosoma cruzi) 3.5µm 0.5µm 0.142 –

Models present model (Sp = 1) 0.856 Λ 0.110 Λ 0.128 4.45
present model (Sp = 4) 0.806 Λ 0.131 Λ 0.163 7.75
present model (Sp = 6) 0.774 Λ 0.150 Λ 0.194 16.9
present model (Sp = 10) 0.768 Λ 0.158 Λ 0.205 45.7
Lighthill’s model (Sp =∞) 0.766 Λ 0.161 Λ 0.209 ∞

Table 1. Comparison of the wavelength, λ, amplitude, h, amplitude-to-wavelength ratio, h/λ,
and the maximum dimensionless curvature, θ′maxΛ (when available), of five spermatozoa flagellar
shapes and one protist displaying two-dimensional beating (data from Brennen & Winnet 1977;
Brokaw 1965; Gray & Hancock 1955), with the results of the present model and Lighthill’s
optimal shape.

with h/λ ≈ 0.128 and θ′max = 4.45/Λ. What is the value of Sp that should be used for
comparison? For spermatozoa, the bending rigidity of the axoneme is believed to be of
the order of B ≈ 2.5× 10−23 – 4.4× 10−22 N m2 (Hines & Blum 1983; Gittes et al. 1993;
Camalet et al. 1999), the typical period T ≈ 0.04 s (Brokaw 1965), and the drag coeffi-
cient ξ⊥ ≈ 0.003 Pa s in water (assuming an aspect ratio Λ/a = 200, with a the radius of
the flagellum, Lighthill 1975). Using equation (2.10), the value of the persistence length
is therefore ` ≈ 4 – 9µm. Since Λ ≈ 28µm on average for the spermatozoa reported
in Table 1, the Sperm number of a typical spermatozoon is Sp = Λ/` ≈ 3 – 7. Our
optimization approach is therefore able to generate shapes which are close to the experi-
mental observations, suggesting that perhaps eukaryotic flagella are indeed mechanically
optimal. In the future, it would be interesting to extend the present study to account for
finite-size effects and hydrodynamic interactions between multiple flagella.

We thank Mario Sandoval for his help gathering the data in Table 1. We acknowledge
supports from the European Union (fellowship PIOF-GA-2009-252542 to C.E.) and the
US National Science Foundation (grant CBET-0746285 to E.L.).
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