Soft Matter

ARTICLE TYPE

Rebound and scattering of motile Chlamydomonas algae
in confined chambers

Cite this: DOI: 00.0000/XXXXXXXXXX

Albane Théry,** Yuxuan Wang,b, Masha Dvoriashyna?, Christophe Eloy,© Florence Elias,? and
Eric Lauga“’

Received Date
Accepted Date
Motivated by recent experiments demonstrating that motile algae get trapped in draining foams,

we study the trajectories of microorganisms confined in model foam channels (section of a Plateau
border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic
chamber and show that their spatial distribution exhibits strong corner accumulation. Using empiri-
cal scattering laws observed in previous experiments (namely, scattering with a constant scattering
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angle), we next develop a two-dimension geometrical model and compute the phase space of trapped
and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell
trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorpo-
rating the distribution of scattering angles observed in our experiments and including hydrodynamic
interactions between the cells and the surfaces into the geometrical model enables us to reproduce
the experimental probability density function of micro-swimmers in microfluidic chambers. Both our
experiments and models demonstrate therefore that motility leads generically to trapping in complex
geometries.

1 Introduction
of swimming cellsT315), In particular, the flow generated by the

breaststroke motion of free-swimming CR cells used in this paper
has been quantified experimentally and modelled in the far field
using three point forces for the body and two ﬂagella.

Microorganisms display a wide range of mechanisms in order to
swim in fluids on small scalesT™3. Although the flagellar struc-
ture is a highly conserved trait in both prokaryotic and eukaryotic
motile cells, the detailed mechanisms for self-propulsion differ.
Most bacteria use the passive rotation of helical flagellar filaments
by a basal rotary motor™®, In contrast, eukaryotic cells swim us-
ing active flexible flagella that bend in periodic waves through the
coordinated contraction of distributed motor proteins?8. Mam-
malian spermatozoa are propelled by a single flagellum?, while
the model green algal genus Chlamydomonas has two flagella®?
and ciliates, such as the model genus Paramecium, are actuated
by an array of small synchronised flagella termed cilia™L.

These diverse swimming mechanisms have been extensively
studied, in particular those of model microorganisms with well-
established experimental protocols, such as the bacterium Es-
cherichia coli (E. coli) or the alga Chlamydomonas reinhardtii
(CR)13014, Along with experimental work, significant theoretical
modelling has been developed to quantify and predict the motion

The habitat of microorganisms is often far from the idealised
bulk fluids considered in model biophysical experiments and the-
oretical modelling. Cells interact with their surroundings through
complex hydrodynamic and steric interactions222, Rigid bound-
aries, free surfaces and other obstacles in suspensions are known
to strongly affect swimming behaviour2$24, Relevant complex
media include thin films12, porous media such as s0il2%, the ovary
tract in the case of mammalian spermatozoa, or tissues within
higher organisms, including the bloodstream” and gastrointesti-
nal mucus for pathogens?®. Complex environments are therefore
ubiquitous in the life of self-propelled microswimmers, and as a
result their swimming patterns have been studied both theoreti-
cally and experimentally in a wide range of geometries, including
near rigid surfaces, corners, in strong conﬁnement, in
the interstices between inclined plates, in channels, as well
as droplets and crowded environments36-38)

Long-range hydrodynamic interactions between microswim-
mers and any obstacles surrounding them are governed by the
flow created by the beating flagella and the motion of the cell
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body®?. Swimming organisms are typically divided into two cat-
egories, depending on the type of long-ranged flow they create
in the surrounding fluid: pushers, a group that includes sperma-
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Fig. 1 Local structure of a foam. (a) Image of the internal foam liquid skeleton with the liquid channels, called Plateau borders, appearing in black
(Image credit: own work); (b) Structure of a single Plateau border, at the intersection between three soap films making equal angles of 27/3; (c)
Cross-section of a Plateau border, with three concave edges, each of constant curvature R.

tozoa and E. coli bacteria®?, are pushed from the back by their
flagella; in contrast, pullers, such as CR cells, swim flagella
first. This distinction originates from the symmetries in the flow
field created by the swimmers, with a puller being equivalent to a
pusher seen under a time-reversal symmetry, and as a result these
two categories lead to very different dynamic behaviours close
to boundaries and obstacles. Noise4? and steric interactions>741
also affect the trapping and scattering of swimmers of surfaces,
including CR in microfluidic chambers“2,

An important instance of swimming in a complex environment
is the propagation of microorganisms in porous media such as
soils*? and foams*#. The formation of aquatic foams on certain
rivers, lakes and coastlines has been reported to be associated
with a loss of phytoplanktonic biomass in the water column#546,
The role of aquatic foams on microorganism populations has,
however, yet to be understood. The trapping of algae brings them
out of their aquatic environment, thus leading to depletion, but
this could also favour dissemination to new environments. Ex-
ploring the physical mechanisms at play in the interactions of
motile organisms with foams would strengthen our understand-
ing of the influence of foam formation on local ecosystems.

Recent work in this direction investigated the fate of planktonic
biomass trapped in foams, showing experimentally that flagel-
lated CR cells remain actively trapped over long periods of time
in a draining foam, while passive bodies of the same size and
density (including dead cells) escape the foam with the gravity-
driven flow*#. The liquid part of a foam consists of intercon-
nected micro-channels formed by the edges of contacting bub-
bles, in which the liquid flows as in a pipe. These microchannels,
called Plateau borders, have a well-defined structure imposed by
interfacial minimisation and are classically described by Plateau’s
rules®” wherein bubbles always meet by three. The cross sec-
tion of the Plateau border is therefore triangular with concave
curved sides (see illustration in Fig. [I)). Microscopic observations
of CR cells swimming in a chamber mimicking the cross-section of
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foam Plateau border further revealed that cells accumulate near
the corners of the Plateau border®®. We note that the presence
of surfactants rigidifies the foam boundaries in the experiments,
thus allowing comparison with no-slip walls from the chamber in
Ref 44,

In this article, we present a combined experimental and the-
oretical analysis of the experimental swimming behaviour of CR
cells in two-dimensional (2D) microscopic chambers imitating the
cross-section of a single foam Plateau border. We first use track-
ing data on the swimming dynamics of the cells in three different
chambers to derive the full steady-state probability distribution
function (pdf) of swimming CR cells. This distribution is seen
to be strongly peaked in the corners of the chambers. Next, we
use empirical scattering laws observed in previous experiments
(namely, scattering with a constant scattering angle) to analyse
theoretically the phase space of trapped and escaping trajectories
inside a three-circles billiard. We show that the experimentally-
observed accumulation of swimmers in the corners has a geomet-
rical origin. We then develop a more detailed theoretical model
based on experimental data to reproduce quantitatively the prob-
ability density function of swimmers in the chambers. We show
that the trapping of CR is controlled by the shape of the concave
microchambers, the finite size of the CR cells, and the angle dis-
tribution of the cells scattering off the walls. We also observe that
the microswimmers are significantly slowed down in the vicinity
of walls at distance much larger than those of contact interac-
tions, an effect which, as we quantify using numerical simula-
tions, is of purely hydrodynamic origin.

2 Probability density function of cells in a quasi-
two-dimensional chamber

2.1 Experimental set-up

Individual microswimmers cells were incorporated in microscopic
chambers mimicking the cross-section of a foam channel, as
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Fig. 2 (a)Experimental setup: PDMS micro-chamber mimicking the
cross-section of a foam channel with a single CR organism (circled); (b)
Sketch of the chamber shape (top view and side view); (c) Swimming
trajectory of the organism for 30 s; (d) Tracking of the CR cell for 250 s
with time shown along the z axis.

shown on Fig. 2h. The chambers consists in a triangular shape
with concave curved sides with identical radius of curvature R.
The thickness of the chambers is of 20 um.

The microswimmer used is the model alga Chlamydomonas
reinhardtii (CR), which is a single-cell green alga about 10 um
in diameter that swims with two flagella at the front of the or-
ganism. We used the strain CC124~, whose axenic culture was
obtained from the Chlamydomonas Resource Center (Department
of Plant and Microbial Biology, University of Minnesota). The cul-
ture medium was High Salt with Acetate (HSA), as described in
Ref48 and the algae were kept on HSA medium agar plate. For
experiments, algae were propagated in liquid HSA medium on an
orbital shaker in an incubator at 25°C on a 12h/12h bright/dark
light cycle to optimise cell uniformity and motility. Experiments
were consistently conducted between 48h and 72h after inocula-
tion in liquid medium to ensure reproducibility of the response.

The micro-chambers were designed using soft lithography tech-
niques. Polydimethylsiloxane (PDMS) chips were obtained from a
mould consisting in an array of identical micro-chambers. Three
different sizes of PDMS microchambers were used, with R =
260 um, 520 um and 1040 um. Just before any experiment, the
PDMS device was made hydrophilic by oxidation using air plasma
device over 2 minutes.

Immediately after oxidation, a ~ 3 uL drop of suspension of
CR algae in their culture medium was deposited on the PDMS de-

vice and a microscope slide was placed gently on the top. Cham-
bers containing one or two cells were used for experiment. The
position of each CR cell was recorded under an inverted phase
contrast microscope during 5 min at a rate of 10 fps, using a red
illumination (wavelength > 630 nm) to avoid any phototactic ef-
fect (see Fig.[2b). Each experiment was repeated 15 to 17 times.
We excluded the data from 14 experiments for which two cells or
more were present in the chamber, to avoid any algae algae inter-
action interfering with the single particle tracking. Indeed, we are
interested in trapping in foams, which occurs at very low density,
rather than in interacting algal cells. Having multiple cells in a
given experiment happened more frequently in the larger cham-
bers, as the filling solution had constant algae concentration. -We
1 i . ! . el e celli
i the_el 11 . L o inf ,
hiel 1 Jensity-rather-than ini e aleal
eells— In total, we analyse 33 trajectories, 17 for the R =260 um,
9 for R =520 um and 7 for R = 1040 pm. We show videos of
experiments in each of the three chambers in the supplementary
movies SM2, SM3 and SM4.

We track the position of each CR cell in the chamber by sub-
tracting the first image of the sequence and finding the local
intensity maximum, which corresponds to the algae body. We
check for errors in the points by defining a maximum speed of
260 ums~!. If a single point is out of this speed scope, we re-
place it by the average of the previous and subsequent points. If
more than one point is wrong, we move to manual tracking for
this set of images. Obtained trajectories lasting 30 s and 250 s, re-
spectively, are depicted in Fig. 2k and Fig. [2ld, with the colormap
indicating the direction of time, from dark blue to yellow. For clar-
ity, the z-direction of Fig.|2(d also represents time. Supplementary
video SM1 also shows tracking in a R = 520 um chamber.

2.2 Probability density function

The positions of each cell in the experiments were statistically
averaged over all experiments in a given chamber and converted
into relative probability density maps for the algae position. Addi-
tional averages were performed using rotation of the entire map
by angles 27/3 and 4r/3, thereby exploiting the angular sym-
metry of the Plateau border cross-section. These pdfs are pre-
sented in Fig. for the three different chambers, with both colour
and height (bottom panel: side view) representing the magni-
tude of the probability density function for the swimmer position.
Lengths are non-dimensionalised using the radius R of the three
walls as unit.

The most striking feature of the pdfs is a sharp accumulation
of the swimmers in the corners of the Plateau borders. The mod-
els developed in the following sections of the paper will explain
this phenomenon of corner accumulation, a key element to un-
derstanding the trapping of motile cells in complex geometries
such as foams.

We measure that cells spend about a third of their time in cor-
ners, with details varying with the chamber (and therefore the
sharpness of the corners); the exact fraction of time spent is
shown in Fig. 3| (top). Inspecting individual trajectories where
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Fig. 3 Probability density function for the location of the swimming cells in the three chambers with different wall radii R (260 um, 520 um and
1040 pum), nondimensionalised using R for unit length and using bins of size 1/150. Text in parenthesis: percentage of time spent in corners is given
for each chamber. The red circles represent the theoretical circles of radius 1, and the white dashed lines show the corner domains used to quantify
corner accumulation (which depends on corner sharpness of the chamber). The bottom panel is a side view of the distribution in the small chamber.

algae swim into a corner, we see that after some time the trapped
cells turn back and escape. That cell follows then a new trajectory
and eventually ends up stuck in another corner, and the process
repeats. Those half-turn motions of the trapped cells will be ex-
plicitly taken into account in Section@

A second feature of the algae trajectories is that the cells spend
more time swimming near boundaries than in the centre of the
channel. Contact interaction of CR with walls has been previ-
ously studied in Ref#L and the authors showed that cells have
a tendency to swim along the boundary before scattering away.
Wall accumulation of CR has also been reported in spherical and
elliptical channels, which has been rationalised using an active
Brownian model42, By measuring the range of the interaction,
we show below that, while contact interactions dominate surface
interactions 41 far-field hydrodynamic effects must also be taken
into account in order to reproduce quantitatively the distribution
of swimming cells in chambers. We will also show that corner ac-
cumulation is not due to boundary-following swimming but that
instead it has a geometrical origin.

In Fig.[3] we further observe some smaller peaks in the pdf close
to some walls, especially in the 1040 um chamber (light colours).
These correspond to experimental irregularities or dust particles
close to the chamber walls, which then decrease the time spent
in corners by the cells; they not relevant for our analysis in the
context of foams and wall interactions and can thus be ignored in
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our modelling approach.

3 A geometrical approach to trapping in corners

3.1 Two-dimensional model for algae scattering with con-
stant scattering angle

In this section, we develop a simple geometrical model to explain
the most striking aspect of the algae spatial distribution, i.e. the
accumulation of the swimming cells in the chamber corners. We
take a two-dimensional geometrical approach to the problem and
consider a cell swimming in a domain obtained as the outside of
the three tangent circles (Fig. [4). We study mathematically all
possible trajectories of the cell and show that most of them end
in a corner.

We assume that the cells swim along straight lines before scat-
tering off walls. Experimentally, the swimming behaviour of CR
cells is ballistic at short times and diffusive at long times*L with
a transition time of several seconds. When the cells are confined
in a plane, however, the trajectories become predominantly bal-
listic*2, justifying this modelling assumption.

A key element is the modelling of individual scattering events
when the swimmer encounters a wall. We assume each scatter-
ing event to be punctual, and neglect here any sliding of the al-
gae along the chamber wall (this will be incorporated in the de-
tail model of Section [4). Motivated by the experimental data in
Ref.@, we assume here that the orientation of the swimmer after



Fig. 4 Parameters and geometry of the system. (a) Individual scattering
event of a swimmer, with incident angle 6;, and scattering angle 6,,:;
(b) Geometry of the chamber with the three circles of radius R =1, the
position of their centres and an example trajectory with the constant
scattering angle 6,,, = 0.7 rad. The trajectory starts on the bottom circle
at the initial angle 6y = 0.2rad, coming from the left. The consecutive
contact points are characterised by the circle on which they occur, their
position measured by 6 and the side of the normal from which the swim-
mer arrives.

the wall-bounce is independent of its initial orientation. Specifi-
cally, if we denote, for a given scattering event, the incident angle
of a CR cell 6;, and the scattering angle 6,,, (see notation Fig.[4h),
we assume 6,,, to be independent of 6;,.

Additionally, we take in this section the scattering angle 6,,, to
be fixed and constant for a given swimmer. This choice for 6,,,
is an important difference with well-studied classical billiards42,
including three-disks ones>%>l. where the particle reflection is
specular, meaning that 6;, = 6,,,. Microorganisms billiards with
constant scattering angle 6,,, also motivated by the work of
Ref.4U have been previously studied in polygonal geometries=°
as well as ellipses and more complex closed curves®2, We ex-
tend here these analysis to the particular geometry of the Plateau
border section, thus providing a link between past work on mi-
croorganisms billiards and our new experiments.

Because of the existence of cusps in our billiard geometry (cor-
ner points with zero interior angles), ’trapping’ events in which
the swimmer never exits a corner can occur. Note that this would
also be true in geometries with acute angles, such as triangles. In
this paper we denote ‘escaping’ the opposite of trapping, keeping
in mind our initial motivation of understanding the fate of algae
in foams. We are interested in what follows in characterising the
possibility of trapping events, and in quantifying how likely they

are to occur as a function of the value of 6,,;. We demonstrate
that the concavity of the walls makes the future of a given tra-
jectory (trapped vs escape) dependent on the initial position of
the swimmer, which is not the case for polygons such as the ones
studied in Ref®3. Consequently, in this section, we aim to de-
termine the phase space of trapped trajectories as a function of
the initial conditions of the cell and on the (constant) scattering
angle.

3.2 System geometry

In order to list all the possible trajectories, we parametrise our
system as shown in Fig. A trajectory is characterised by the
value of 6,,, and the initial position and swimming direction of
the cell. Instead of listing all possible starting points and orienta-
tion in the chamber, we may only take consider the first contact
point with the walls and the side of the normal from which the
swimmer arrived. Taking into account the angular symmetry of
the three circles for rotations of 27/3 and 47 /3, we can limit our
analysis to trajectories starting from the bottom circle first. The
first contact point is defined by the angle 6, measured from the
centre of the bottom circle and taking its value between —x/6
(left corner) and m/6 (right corner) (see illustration in Fig. E-h).
In what follows, all angles defining the position of the swimmers
on the circles are oriented counter-clockwise. Further, for a given
contact point, the swimmer comes from either left or right side
of the normal. Recalling the mirror symmetry between 6, and
—0y, we only consider trajectories coming from the left at the first
contact point. For consistency with past experiments®! and pre-
vious analysis of microswimmers billiards®?, the model swimmer
is assumed to always leaves from the opposite side of the normal,
which means that 6,,, € [0;7/2]. Possible reversals of the swim-
ming direction upon scattering on a wall will be included in the
following section where non-constant values of 6,,, are discussed.

With the appropriate symmetries, each possible swimmer tra-
jectory in the geometrical approach is therefore indexed by a sin-
gle (6y,6,4) pair, with 6y € [—7/6;7/6] and 6,, € [0;7/2], and
the trajectory of the swimmer is fully deterministic. The consecu-
tive contact points with the walls are characterised by a position
measured by the angle 6 € [—7/6;7/6] on one of the three circles
(see Fig. ) , and by the direction of arrival of the swimmer with
respect to the normal at the contact point. We investigate the out-
come of all the possible trajectories, either trapped in a corner or
escaped, for each pair of angle (6y,0,.).

3.3 Phase map of the trajectories

By integrating the model numerically, we can obtain the out-
come of all possible trajectories indexed by the (6, 6,,) pairs
and look at whether they end up in a corner. To do so, we run
simulations for 250 evenly spaced values for both 6y € [—7/6 +
0.05;7/6 —0.05] and 6, € [0;7/2]. We stop each simulation af-
ter 200 bounces and look at the position of the swimmer in the
chamber. We plot the results for all trajectories in the phase map
of Fig[5] There are four different possible outcomes for each (6,
Oour), as illustrated using four colours: no trapping after 200 re-
flections (black) trapping in right (blue), top (yellow) and left

Journal Name, [year], [vol.], 1 |5



/2

/3

/4

(i) |

0
-m/6 -7/8

0
0, (rad)

-:_fj.,/ ./
S

b =073 (vi)

0y =0.31 ?

| (vii)

| (vii)

Fig. 5 Phase map of the trapping vs escaping outcome for swimmers undergoing 200 bounces with different initial positions 6y and scattering angles
Opus. These results are obtained numerically. The escaping trajectories are shown in black and are illustrated on the right panels (v to viii). The
trapping trajectories are shown in colours, with illustrations on the left panels: blue for the right corner of Fig. E and iv, yellow for the top corner (iii),
and red for the left one (ii). The white lines correspond to analytical limits for some of the regions of the phase map: the plain line depicts periodic
triangular orbits, the dotted line six-points periods, and the dashed lines some coloured regions areas. In the panels, the colour of the trajectory
indicates the swimming direction (increasing time from blue to yellow), and the dashed black line shows the attraction range of the corner region, as

detailed in Section

(red) corners. Illustrative trajectories are also shown on the fig-
ure, with trapped trajectories on the left and escaping ones on the
right.

The most striking feature of this phase map is that a large ma-
jority of the trajectories, over 80%, end in one of the three corners.
For small values of 8,,,, or 6, all trajectories end up in the right
corner from the first bounce (blue colour in Fig. [5), a result true
for nearly half of all swimmers. For large values of 6,,,, the struc-
ture of the phase space becomes more complex. This is due to
the existence of regions of the chamber around the corners from
which the swimmer cannot escape. We show later that the size of
these trapping regions decreases with 6,,,, leading to the appear-
ance of more intricate trajectories before trapping and even es-
caping ones at high scattering angles. We further note that there
are two regions where some trajectories escape the corners (these
are the black areas on the phase map): some orbits with interme-
diate values of 6,,, are perfectly periodic, and some trajectories
come close to the corners but escape them as 6,,; — n/2. In the
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rest of this section, we interpret the main areas of the phase space
and obtain some analytical expressions for their boundaries; these
analytical limits are depicted as white lines in Fig.

3.4 Understanding the phase map

3.4.1 Trapped trajectories

Close to each corner, there is a critical trapping region where all
entering swimmers end up in the corner. This region is depicted
with a dashed black lines on trajectories (i) to (iv) of Fig.[5| The
limit trajectory entering this region is the one where the swimmer
reaches a wall along the normal to the contact point, as shown in
Fig.[f] Using the law of sines in the triangle shown in Fig. [, we
can define the critical contact angle 6, in the following way:

sin [% + 90,4,} _sin [77:7 (5 +60u)) — (54 GC)]
2R N R

. 1
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Fig. 6 (a) Above the dashed line is the trapping region: if the swimmers
enters this region, it will swim into the corner. (b) Size of the trapping
region H, (defined in (a)) as a function on the scattering angle 0,,. The
vertical dashed line at 6,,, = /6 shows the limit scattering angle below
which all trajectories are trapped

A swimmer coming from outside this region is therefore sure to
be trapped in the corner when if it touches a wall with |6| > 6, ,
with

cos(Bpur)

- } L @)

6. = arccos { G

We note that a trajectory might leave this region if it starts inside
it but is oriented outwards. We also compute the extension of the
trapping region H, defined as the distance between the corner
and the boundary of the trapping region, as shown on Fig.[6h. H,
is the height of the previously used triangle, with

. T H,
in(Z +6,) = 2© 3
sin( 3 +6,) R 3
which we rewrite using eq. (@) as
0,
H,. = Rsin {arccos (cos(%u,)) - 90m:| . 4

The dependence of the size of the trapping region with 6, is
plotted Fig. E]) and we see a systematic decrease, with 6,,,, from
H. = R\/§/2 at zero scattering angle to 0 when 6,,, = 7/2, as
shown in Fig. [6p.

When the sizes of the three trapping regions are made to in-
crease (by lowering the value of 6,,,), we can reach a point where
all three cover the whole chamber; this occurs for H. = R/+/3 and
0, ~ 0.35 . We therefore know that there exists a limit value for
Oour, €qual or bigger than 0.35 below which all swimmers end up
trapped, as we can see on the phase map of Fig. |5} In order to find
the exact value of this limit, we investigate the limit case. It corre-
sponds to the lowest 6,,,; for which the swimmer can successfully

escape all three corners. In this trajectory, the swimmer reaches
all three circles precisely at the border of the trapping regions, as
presented on Fig. [5| (viii). This occurs for 6,,; = w/6, which is the
desired limit.

eeetrsfor- Oy —=#/6— In that case, all trajectories arrive normally

and are therefore aligned with the three circle centres.

We note that the experimental measurements of the scattering
angles in Ref.4ll find that the distribution of 6,,, exhibits a peak
at 6,,; ~ 0.28 rad. Using this value in our model results in a pre-
diction of trapping of swimmers with any initial position.

The existence of a trapping region due to the cusps in the ge-
ometry considered in our paper is an important difference with
the case of a polygonal chamber, and in particular a triangular
one. It means that attractive periodic orbits, if they exist, only
have a limited attraction range, making trapping more likely.

3.4.2 Periodic orbits

We now focus on a first type of escaping trajectories, namely peri-
odic orbits. These periodic trajectories can be attractive, so trajec-
tories starting at a close enough value of 6, will tend to the peri-
odic one, and are thus escaping trajectories as well. The only pe-
riodic trajectories that lead to a non-zero probability of escape for
a given value of 6,,, are the attractive ones. As we are interested
in the geometrical mechanisms for corner accumulation, we now
identify some of these periodic orbits, in particular the attraction
basin of the attractive ones. We therefore look for periodic values
(65,6,,) as well as neighbouring trajectories (8; 4+ 66y, 6,;,,) and
tending to the periodic trajectory (as in Fig.|5| (vi) and (vii)).

Since periodic orbits are, by definition, trajectories that reach
the same point after a number of bounces, we look for a mathe-
matical relationship between the position of consecutive contact
points. A swimmer starting from a circle can reach either of the
two remaining walls, and its scattering orientation depends on
the side of the normal from which it arrives at the wall; there
is therefore, unfortunately, no general analytical expression for
the position successive contact points of a trajectory. However,
we can find expressions relating consecutive scattering angles in
some specific cases. This enables us to express the position of
some of the regions on the phase map, in particular some posi-
tions for periodic (6, 6,,*) and attraction range.

To do so, we use the relationship between the Cartesian co-
ordinates of contact points and the orientation of the swimming
segment between them. From Fig.[7| (a), for a swimmer leaving
the bottom circle at 0; towards the right one at 6,, this gives
V3 —cos 8) —sin <g + 62)

N ®)
1+sin0; — cos(g +6)

tan(0; + Opyr) =

Similarly, for a trajectory starting on the bottom circle at 6; and
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reaching the left one at 8,, we get

V3 —cos ) —sin

/N

T
T o
—6)

tan(0; + Opyr) =

1+ sin 0 + cos(

SR
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Fig. 7 (a) Position of successive contact points on the circles, which we
use to derive Egs. and (6). (b) Periodic triangular orbits. (i) Position
of the triangle edges as in Eq. . (ii) Complete range of periodic
triangular orbits, with two stable orbits (60, = 7/6,0.7) and two unstable
orbits (6, =0.9,7/3). (c) Trajectories for constant value 6y = 0.08 and
decreasing values of 6,,; showing dynamics ranging from (i) trapping, (ii)
six-points periodic orbit, and (iii) asymptotic motion towards the stable
triangular periodic orbit.

There are no two-point periodic orbits for this system, as a
swimmer scattering between two circles with constant 6,,, goes
monotonously towards or away from the corner. The simplest pe-
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riodic orbits are therefore triangular ones with a swimmer scat-
tering successively on the three circles. These triangular periodic
trajectories exist when the point reached after one reflection has
the same value of 6 (this corresponds to a 27/3 rotation), and
is reached from the same side of the normal. The first condition
can be met when only when 6,,; < n/3 (see Fig. ). Next, the
condition for the two sides of the triangle to be on different sides
of the normal yields 6,,; > 7/6 (see Fig. [5iii).

We thus find that for 6,,, € [1/6;7/3], periodic triangular orbits
do exist. We illustrate some of these periodic triangular orbitsin
Fig. , including the limit ones. Using 6; = 6, in Eq. , some
trigonometric manipulation leads to the position of the triangle
vertices at

0* = arccos |:\é§ cos (% + 9;,;,)} - (% + Gou,> . @)
The values of the pairs (6;,6,,,) corresponding to periodic tri-
angular orbits of the system are plotted as a solid white line on
Fig.|5| Numerically, we observe that the only stable periodic tra-
jectories are some of these periodic triangular orbits, as illustrated
in Fig. [Bvii. We now consider their attraction range, and focus on
those fo the trajectories that tend to periodic triangular orbits.
These are included within the central black area in Fig. |5} and
the smaller black areas for higher values of 6 . The smaller black

zones are trajectories that reach the same value of 8 as the central
one after a few reflections (thus leaving the left corner).

We therefore focus only on the central black area of the phase
map. It is delimited, on the left, for decreasing values of 6y, by
the line for which the swimmer enters the right trapping region
(blue) after one bounce. From the previous section, we know this
oceurs for 6y = 6, as in Eq. (2). The right boundary, for increasing
values of 6, is the line for which the swimmer enters the top
trapping region (yellow) after two bounces. This corresponds to
taking 6, = 6. in Eq. (5)) which gives

V3 - sin(% +6,) —cos(6p)

1- cos(% +6,) —sin(6p) '

tan(Bpyr + 6p) = ®

Finally, when increasing the value of 6, the limit of the yellow
region corresponds to trajectories reaching the left circle first. In
the limiting case, the left circle will be reached tangentially, giv-
ing rise to 8 + 6,,; = /3 + 6,. Incorporating this to Eq. @, we
obtain

T {1+cos(60u,)}

0, = — — O, + arccos 2

3 9

These mathematical boundaries to the blue and yellow areas of
the phase map are plotted as dashed white lines in Fig. |5} with
excellent agreement with the numerical simulations.

We obtain that the limit of the attraction region of periodic tri-
angular orbits for increasing values of 8, is given by six-point
periodic orbits. This can be intuitively understood by inspecting
trajectories for a given value of 6y, such as the three trajecto-
ries shown in Fig. [7c. We take a swimmer starting close to the
triangular periodic orbit vertex, at 6y = 0* + 66, (66, is small),
and scattering successively on the three circles. We then look



for the condition for the swimmer to go towards, or away from,
the triangular orbit. Its position after two bounces is given by
6; = 6* 4+ 005 (see Fig.|7p for notations). If 665 < 66, then the
trajectory is going towards the triangular periodic orbit, and will
thus escape the corner; this is shown in Fig. [7}ii. In contrast, if
66; > 86y, the swimmer goes away from the periodic orbit and
ends up reaching the limit for a trapping region, as in Fig.[7}). The
limit case is for the exact equality 6y = 63, which is a periodic tra-
jectory with period 6, as in Fig. i. The location of these six-point
periodic orbits on the phase map can be found using the 6; = 6,
relationship, after an intermediate bounce at 6,. This leads to a
system of two equations, namely Eq. together with the same
equation inverting the 1 and 2 indices. We can numerically solve
this system and we obtain the dotted line shown on Fig. |5| This
theoretical prediction is seen to be in excellent agreement with
the numerical simulations.

We finally note the existence of some escaping (black) trajecto-
ries on the phase map with 6,,, higher than the six-point periodic
orbits. This corresponds to trajectories that will end up in a cor-
ner at larger times but go slowly away from the six-point periodic
orbits. From the previous notations, this means that 66, is slowly
increasing but the swimmer is not yet trapped after 200 bounces.

3.4.3 Limit 8,,, — n/2 and 6, > w/2

From the phase map, we see that the largest black region is the
one for an increasing value of 6,,,. Trajectories at high scattering
angles appear to be more complex (see illustration in Fig. |S5f and
v), and for increasing values of 6,,, they are less likely to end
up in a corner. In contrast with the central region of trajectories
going to periodic orbits, this area does not have a well-defined
boundary. In fact, its size can be made to decrease arbitrarily by
increasing the number of bounces in the simulated trajectories.
Rather than periodic trajectories, it corresponds therefore to cells
spending more time swimming before getting caught in a corner.
This is due to the decrease of the trapping region size, which
goes to O in the limit 6,,, — ©/2 (see Fig. @3). Swimmers can
arrive close to corners and leave them without being trapped, as
in Fig. and in the limit where 6,,, — 7/2, the time before
trapping becomes infinite.

We note that this model could be extended to consider a swim-
mer which consistently turns around when touching the wall and
leaves in the same direction it arrived from, leading to a constant
scattering angle 6,,; > m/2. This would not apply directly to CR,
which is more likely to maintain its swimming direction*}42, 1n
that case, the attraction region we studied for « — 6,,, would now
contrarily repel the swimmer away from the corner it entered.
New orbits of periodicity two, three four or higher, including sta-
ble ones, occur, and can be analytically studied using eq. [56]l.
However, periodic trajectories in this case do not alter the future
of the swimmer which has a 1 probability of escaping regardless
of the details of its trajectory.

3.5 Suppressed escapes: noise and finite algae size

With the 2D geometrical approach, we have observed the ten-
dency of swimmers to accumulate in corners. However, we have
also identified two situations in which some trajectories do not

1r s X y
0.5
(a) “noise = I
0 0.3}
0.8
——0.06| g5
—0.11
© gghLl—017| o1
s —0.22
2 028 93 02 01 01 02 03
& 04r 823 noise
0.44
0.2 05 Increasing
noise
0 .
0 /8 7/6 /3 37/8 w2
90
out
1
(b) s/R
0.05
0.8 0.03
0.025
—0.02
v 0.6 ——0.015
5 ——o0.01
% ——0.005
~ 0.4 H{——0.0025
& ——0.001 Increasing
—0 size
0.2
0 L L NN
0 /8 /6 /3 3n/8 /2
out

Fig. 8 (a) Probability for a model cell to escape (i.e. to not end up in a
corner) after 200 bounces as a function on the average scattering angle
09, for different values of the noise standard deviation, Gyise. The inset
shows histogram of the corresponding total noise distribution 6,5 (b)
Probability for a swimmer to escape after 200 bounces depending on the
scattering angle 0,,, for different values of the cell size s relative to the
circle radius R. Inset shows trapping for finite size. Experimental values
of the cell size/bubble size ratio in foams are s/R~ 0.01 —0.03; for these
values, escapes for high 6,,, is suppressed.

reach the chamber corners: periodic trajectories for intermediate
values of the scattering angle and trajectories with a trapping re-
gion size going to 0 in the limit 6,,, — 7/2. We now show that
incorporating simple additional physical elements, namely noise
and the finite size of the swimmer, leads to the suppression of
both these escaping regions.

Firstly, we include noise in the scattering angle.
want to keep a simple geometrical model, we consider small de-
viation around a constant 8,, rather than a more realistic dis-
tribution of scattering angle as we do in the next section. We
choose a scattering angle of the form 6,,; = 67, + 6,,0ise; We take
Onoise to be normally distributed with a noise strength a = 0.2
Bnoise ~ AN (0, 0npise) and vary the value of the noise standard
deviation 0y,is. For the swimmer to remain in the chamber, we
check that it does stay in the interior side of the tangent to the
circle after a bounce, and otherwise we redraw 6,,;se.

We plot the resulting probability for a swimmer to escape as
a function of 6,,, in Fig. . This corresponds to integrating the
phase map over all values of the initial position ). Without noise,
we observe the escaping trajectories for both periodic orbits and
large scattering angle. Adding even a small amount noise (as
shown in the inset histogram of Fig. [8h) leads to a rapid decrease

Since we
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in the number of trajectories going to periodic orbits. When 6,5,
is above 0.28 approximately, the periodic trajectories are entirely
suppressed. We note that this corresponds to variation in the
scattering angle that are much weaker than the ones measured
experimentally in Ref.4L. This suppression of periodic trajectories
for noisy values of 6,,, is not unexpected, since noise makes the
swimmer more likely to go out of the basin of attraction of a peri-
odic orbit. On the contrary, escapes at values of large 6,,, appear
to become more likely in the case of noisy scattering angles.

A closer look at the escaping trajectories at high values of 6,,,
reveals that the cells are likely to approach the corners closely
before leaving (see Fig.[5f). However, in practice we expect this
to be impossible experimentally, as the swimmer has a finite size.
Taking into account its body size s, we may then declare a swim-
mer to be trapped when it reaches a point where the distance
between two walls is smaller than s. This occurs when the swim-
mer approaches a corner closer than the critical distance d.. From
the inset in Fig.[§] (b),

d. =Rsin(a) and s=2R(1—cos(cx)) 10)
and therefore
. s
d. = Rcos [arcsm <1 - ﬁ)] . 1D

With this, we can then plot the escape probability as a function
of the value of 6,,, for different ratios between the swimmer size
s and the surface radius R in Fig. [8p. Including the finite size of
the swimmer in our simulations leads clearly to a decrease in the
number of escaping trajectories for high values of 6,,,. The rele-
vant experimental parameters for CR in foams and our chambers
are s ~ 10um for swimmers and R ~ 1 mm for bubbles. The rel-
evant size ratios s/R are 0.01 to 0.03, which correspond to sharp
decreases in escaping trajectories (Pescape < 0.2), though without
completely suppressing them. As expected, however, the periodic
trajectories are unaffected by finite swimmer size in the absence
of noise.

These simple considerations show that noise tends to suppress
periodic orbits while including the finite size of the swimmers re-
duces the number of escaping trajectories at high values 6,,;. By
choosing parameters for our model that match experimental con-
ditions (average value of 6,,, noise level and algae size), trapping
would in fact be predicted to occur for all trajectories. Our purely
2D geometrical model is thus able to explain the main features
of the spatial distribution of CR cells in the experiments, namely
their tendency to swim in the corners.

While the geometrical model is able to rationalise corner ac-
cumulation, it cannot reproduce quantitatively the distribution of
swimmers in the chamber. There are two main reasons for this:
not only do the trapped swimmers in our model never escape the
corners, but also the geometrical model is very sensitive to the
chosen value of scattering angle, 6,,,, which is nor constant nor
normally distributed around a central value in the experiments.
A full understanding of the probability density functions shown
in Fig. |3|requires therefore to incorporate additional elements to
our model. In the next section we present a quantitative anal-
ysis of the swimming behaviour of the confined algae, and find
appropriate laws for our simulations to match the experimental
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distribution.

4 Detailed modelling of the probability density func-
tion

In this section, we build on the geometrical model above to repro-
duce quantitatively the distribution of CR cells in the microfluidic
chamber measured experimentally. To do so, we examine the
experimental values of parameters that control the spatial distri-
bution of algae in the chambers. We know from our geometrical
model that contact interactions with the walls, including the val-
ues of scattering angle, are crucial to understanding the corner
accumulation of CR cells. We therefore start by analysing the ex-
perimental distribution scattering angles and reproduce it in our
simulations. We next show that sliding along surfaces also affects
the probability of cell presence in the corners. As opposed to the
simple approach above, we will now also allow swimmers to es-
cape the corners once they have been trapped. Finally, we go
beyond corner trapping and investigate the accumulation along
curved boundaries observed in the our experiments (which was
absent from the geometrical model).

4.1 Scattering angle

We first focus on the individual contact events with the walls,
and in particular on the orientation of the CR cells before and af-
ter encountering a wall. We measure experimentally the incident
and scattering angles, 6;, and 6, respectively, of Chlamydomonas
in our quasi two-dimensional chambers. A contact event occurs
when the swimmer is on, or very close to, the surface. We de-
fine the surface to be a region of thickness 20 yum near the three
theoretical circular walls (Fig. ) and we measure the distribu-
tion of residence times in the experiments, with results shown in
Fig.[17] (b).

To do so, we define a surface region to start 20 um away from
the wall. This region is shown as a dashed line in Fig.[9] Con-
tact events begin when the cell first enters the wall region of the
chamber and end when it leaves it for abeve more than a sec-

wall-and-stays—awayfre or-abow O afn—a end— We
check that histograms for the distribution of angles do not change
significantly when the minimal take-off time exceeds a threshold
of 0.5 s. This definition enables us to ignore imperfections in the
chambers and details of the steric interaction between the cell and
the wall. Short consecutive contact events, where the cell bounces
on and off the surface while swimming along it, are therefore ex-
cluded, and instead considered as continuous sliding along the
wall. When comparing our data to the scattering angle measure-
ments presented in*142 this takes out some small values of 6,,,
and skews our data towards higher scattering angles. -therefere
exeludes-contaets-where-the-ecell swims-along-the-surface; leading
to-very-small-values-of O —found-in-t142.  Unfortunately, we

do not have a sufficient precision in our measurement to describe
further the sliding events -inelude-these-events in our description.
This does not affect our results which which focus on the proba-
bility density function of the algae in the chamber as opposed to
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Fig. 9 (a) Sketch defining the incident and scattering angles, 6;, and
Opus, respectively. (b) Illustration of all possible angular configurations of
contact events in the (0,7) range for both 8;, and 6, in the R =520 um
chamber; the dots are the alga trajectory while the and the lines show the
measured angles. The dashed line represents the 20um surface region
with respect to which wall contact is defined.

details of the contact interactions.

We also only consider contacts that occur outside the corner
region, where steric interactions could instead involve more than
one wall at a time so that the measure angles are independent of
the local corner geometry and can be readily extended to other
microfluidic chambers geometries.

We define the incident and scattering angles, 6;, and 6,,,, as the
angles with respect to the tangent at the incidence and departure
points, x;;, and x,,,, measured using a linear fit to the 0.5 s-long
trajectories before and after the contact event (see Fig. Eh). We
allow the values of 6;, and 6,,, to be more than #/2 when the cell
crosses the normal to the incidence or leaving point, respectively.

0.8

(@) IR = 1040 pm
06 IR =520 um
1R =260um
0.4
0.2
0

0 /4 /2 3n/4 ™

0 /4

0.
- 0.25
©
0.2
3n/4 -
5
Qbo 0.15
/2 r
0.1
/4
0.05
0 0

Fig. 10 Experimental probability distribution functions for (a) scattering
and (b) incident angles for all three chambers (radians) for a total of 2094
contact events. Inset: comparison between experimental and modelled
distributions for the incident angle using the experimental distribution of
6ps from (b). (c) Conditional scattering probability p(6,u|6:n) measured
in our experiments.

In particular, an incidence angle above 7/2 coincides with the
algae sliding along the wall in the direction opposite to its arrival
at the wall. ~ We show in Fig. [9] (b) examples illustrating all
possible contact configurations in the R = 520 um chamber, along
with the fitted angles.

We plot the histogram of 6;, in the three chambers in
Figs. (b). We note that there are only small qualitative dif-
ferences between them. We next use our results to plot the his-
togram of 6,, in Fig (a). As mentioned above, our defini-
tion of contact events leads to a distribution of scattering angles
shifted towards larger values of 6,,, (Fig. (a)) compared to
past work4L,

We further note that the contact angles are not significantly
affected by the curvature of the chamber walls. This can be un-
derstood by recalling that the contact interaction dominates the
interaction of swimmers with the walls and thus the scattering an-
gle. Since the radii of the chambers (R ~ 260 — 1040 um) are large
relative to the size of a CR (body radius, s ~ 5 um with flagella
~ 10 um), there is a clear separation of length scales.

The distribution of incidence angles is maximal around x/2
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and decreases continuously towards 0 and = (Fig. d)). Is
it predominantly set by local cell-wall interactions or the global
chamber geometry? To understand the origin of the distribution
triangular shape, ‘What-exaetly-sets—thedistribution-of-ineident
towards-0-and-7(Fig-[F0)?— we compare it with the same his-

togram obtained from the section 3 geometrical model. We note
that in that case, we always had that 6;, < /2 since we did not
include the displacement of the cell along the surface. We find
that the distribution of 6;, obtained using a constant value of 6,,,
does depend on the value of 6,,,. However, if we draw the value
of the scattering angle from the experimental distribution shown
in Fig. (a), we obtain a histogram qualitatively identical to
experiments, as shown in the inset of (b). Using other physical
distribution of scattering angle, for example the one from Ref.41,
produces the same result. We -therefere-get have thus shown that
the distribution of incident angles is dominated by the geome-
try of the system described in the previous section rather than by
hydrodynamic interactions of the swimmers with the wall.

As a difference with the incident angle, the distribution of 6,,,
in Fig. shows two distinct regions, pg,, <z/2 and pg,,~z/2,
with a peak for 6,,; < n/2. Overall, the probabilities for 6,,, to
be below or above /2 are approximately 66% and 34%. We then
consider the conditional scattering probability distribution for 6,,,
given the incident angle, i.e. p(6ou|6;n), which has been investi-
gated close to straight walls 4! and to pillars®Z. In order to use
our results for simulations and for comparison with existing liter-
ature, we assume 6;, € [0, 7/2] and if 6;, > 7/2, we redefine 6;, to
be its complement to 7. The resulting plot for the 2094 contact
events in all chambers is shown on Fig. [I0k. It appears that the
values of 6;, and 6,,, are not independent; for a given value of
6;, we mostly observe two peaks for 6,,,, the highest below 7/2
and the second one above it. From this point on, we will use this
measured angle distribution in the chambers in order to obtain
an accurate spatial distribution of swimmers in our simulations.

4.2 Time at the wall

The second important feature of the experimental distribution of
CR in the microfluidic chambers is the increased concentration of
swimmers close to the boundaries. This concentration has been
described in past work in the case of a curved surface based on
purely steric interactions and noise4? and it has been experimen-
tally measured4!, but both studies considered only steric (not hy-
drodynamic) interactions. We will first consider algae in contact
with the wall and measure the time they spend swimming along
it.

A contact event occurs when the swimmer is on, or very close
to, the surface. As when measuring scattering angles, we de-
fine the surface to be a region of thickness 20 pm near the three
theoretical circular walls (Fig. ) and measure the distribu-
tion of residence times in the experiments, with results shown
in Fig.[11] (b). The average duration of residence near the wall is
1 s. We observe no significant change for the duration of contact
between chambers, except some longer contacts for the 1040 pum
one (up to 35 s) due to dust near the boundary that locally
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Fig. 11 (a) Definition of the ‘surface’ and ‘corners’ to quantity residence
times in the experimental chamber of radius R =520 um.The right surface
region is depicted in green and the small scale bar of 20 um shows its
size. L. is the corner extension. (b) Probability density function for the
duration of surface contact events in the three chambers; the dashed
line shows an exponential fit with characteristic time 1 s. (c) Probability
density function of the time spent by the cells in a corner, together with
an exponential fit with a characteristic time scale of 2.5 s for the middle
R =520 um chamber.

trapped cells for long periods. During this contact, the cells move
along the surface for an average of 31 yum (21 um in the 260 um
chamber, 38 yum in the 520 um chamber and 45 gm in the 1040 um
one). Interestingly, the contact with a wall is not a memory-less
event, as steric interactions do take time to cause reorientation of
the algaetl. Nevertheless, the exponential fit shown in Fig. is
able to capture the experimental distribution. Any further study
of contact interactions with surfaces would require including the
detailed shape of the swimmer># and the interactions between
the walls and the flagella#l, both of which are beyond the preci-
sion of our experiments.

4.3 Slowing down when approaching the wall

We next address long-range interactions between the microorgan-
isms and the walls (i.e. that don’t have a steric origin). We mea-
sure the velocity of the CR cells as a function of their distance to



the nearest wall. To do so, we approximate the channel surface
by three mathematical circles of radius R, and measure the dis-
tance of the swimmer to the closest circle centre (Fig. ). We
include only algae that interact strongly a single boundary at a
time. Note that this method introduces some uncertainty in the
distance measured since the channel walls in the experiments are
not perfectly regular, leading to an error of order +5 um; depend-
ing on the local shape of the surface, we can thus occasionally find
some cells swimming as close as 1 um from the theoretical bound-
ary. Furthermore, we only take into account trajectories for which
the speed in the middle of the chamber, denoted by vceper, is at
least 2/3 of the average speed in the middle for all trajectories in
a given chamber (keeping 25 out of 30 trajectories). This method
eliminates CR cells that could have deficient swimming. The aver-
age swimming speed close to the centre of our chambers is found
tobe 111433 ums~! for the 260 um chamber, 114+31 um.s~! for
the 520 um chamber and 123427 um.s~! for the 1040 um one.

With this methodology, we plot the Fig.[12]the swimming speed
of the cells normalised by their speed far from the walls, veenser-
We observe an almost perfect collapse of the plots not only for in-
dividual experiments but also for all three chambers. It is notable
that the swimming speed undergoes a sharp decrease when the
cells approaches walls. The decrease starts approximately 40 um
away from the closest surface and is therefore not caused by steric
interaction.

In order to understand the decrease in speed of the swimmer
when approaching the wall, we perform numerical simulations
using COMSOL Multiphysics®, with notation shown in Fig. [I3p.
We consider a sphere of diameter D in a confined domain of thick-
ness H (so no-slip surfaces are located at z = £H/2) in the pres-
ence of a third no-slip wall at x = 0. The centre of the sphere is
located at a distance x = d from the left wall. The computational
domain is closed with three rigid surfaces located far from the
sphere at x = 25D and y = +25D that do not affect the flow. We
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Fig. 12 Average swimming speed of the Chlamydomonas cells as a func-
tion of their distance to the nearest wall (in microns), rescaled by the
speed in the centre of the chamber, for the three chambers. The error
bars show the standard deviation, which is of similar size for individ-
ual trajectories (individual cells experience significant speed variations,
sometimes for several seconds). The dashed line shows the speed of a
forced sphere of diameter 10 um confined between to walls separated by
a distance 20 um when approaching the third wall perpendicularly, as
obtained from numerical simulations.

non-dimensionalise the geometry with the radius of the sphere,
D/2.

We consider two setups; in the first one the sphere is moving
towards the wall at x = 0 and in the second one parallel to it. In
both cases the sphere has a unit velocity. The problem is solved
using the Fluid Module of COMSOL, with tetrahedral mesh of
about 966k elements. An example of a velocity magnitude profile
for a sphere swimming towards the wall is illustrated in Fig. [I3p.
We use the simulations to compute the drag force on a sphere,
denoted by F;, with the notation i =, || used to denote motion
orthogonal and parallel to the surface at x = 0, respectively. To
simulate the effect of an organism pushing with constant force,
rather than having constant velocity, we may invoke the linearity
of Stokes flows and rescale at each point the force on the sphere
to be that in the centre of the domain, F.eper, SO that the speed of
the sphere is given by U; = Feeprer /F; with i =1, || (see Fig. .

Modelling a CR sphere as a sphere dragged by a constant force
turns out to lead to a good agreement with our measurements of
swimming speed vs distance to wall, as demonstrated in Fig.
showing both the correct range of hydrodynamic interactions be-
tween the surface and the swimmer and the magnitude of the
decrease. We note that the velocity drop in the simulations is
smaller when the sphere is moving parallel to the walls; this is
also in good agreement with our experiments with the confined
algae, as we show in Fig. by plotting the swimming speed
only for a range of orientations « relative respect to the nearest
surface (see details in figure caption).

A real swimming cell is, of course, not subject to a constant
force, but is instead free-swimming. Our modelling approach fo-
cuses therefore only on the hydrodynamic interaction between
the confined cell body and the walls, ignoring any effects arising
from the smaller flagella. The good agreement between numer-
ics and experiments allows us to confirm, as posterori, that these
wall-body interactions govern the long-range interactions in the
experiments.

Experimentally, we note an asymmetry between the speed of al-
gae swimming away from the wall and towards the wall, the latter
being smaller. This feature cannot be reproduced from the sphere
model, in which the two cases are identical (a consequence of re-
versibility of Stokes flows). Recent experiments>2>> have shown
that the flow field around a confined Chlamydomonas is dipolar
(two-dimensional source dipole). Furthermore, the impact of the
dipolar flow field created by the algae body increases with con-
finement relative respect to the propulsive forces from the flag-
ella>. It was noted in Ref.2 that when fitting the experimental
flow of a confined Chlamydomonas to a dipolar model, the source
dipole should be positioned in front of the algae rather than in
the middle of the cell body. This additional parameter leads to
a shift in the distance from the wall at which the velocity decay
occurs for forward and leaving algae. We measure this shift to be
~ 5um in our experiments, consistently with a characteristic CR
size.
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Fig. 13 Computational model for the drop in swimming speed for con-
fined algae swimming close to a wall at x=0. (a): Sketches defining
the angle relative to the wall, a € [0; 7], the parallel Uy and perpendicular
velocities U and the parameters in the numerical simulations. (b) Ex-
ample of computed velocity magnitude in the chamber in the orthogonal
case (i.e. motion toward the wall at x =0), with D =H/2 and a distance
x =60 pm from the wall. (c) Comparison between the experimental
swimming velocities (in the R =520 um chamber) and those obtained
numerically (dashed lines) as a function of the distance to the wall x for or-
thogonal motion (orientation angles in the range oo < /8 or o > w—1/8)
and parallel motion (angles in the range 7/2—7/8 < o < n/2+x/8). In
the numerical simulations, we take D =10 um and H =20 pum.

4.4 Trapping in a corner
When a Chlamydomonas cell reaches a corner of the chamber, we
observe experimentally that it stays trapped there longer than at a
single wall. This is expected due to the geometry of the chamber
and the results from our geometrical model. We plot the distribu-
tion of trapping times for the cells in Fig. [ITk. Since the corners
of the PDMS chamber are truncated rather than acute, they are
not really biologically relevant to the case of foam structures and
there is need to focus on the details of the cell behaviour in a
corner.

Assuming that escaping the corner are events that occur con-
tinuously and independent from one another at a fixed rate, we
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expect the probability density function of the residency time in
a corner to be an exponential law. We find a good fit, shown
in Fig. [I1k, for this exponential distribution with characteristic
times in the three chambers given by 750 = 1.5 s, 7500 = 2.5 s,
and Tyg49 = 3.5 s. The longer residency times in larger chambers
is due to the local corner geometry and in particular the increas-
ing sharpness of the corner. The corner size L. is approximately
22 um for the chamber with R =260 um, 17 um for R =520 um and
16 um for R = 1040 um.

4.5 Final model for the cell probability density function
Using our analysis of the different aspects of the swimming be-
haviour of CR in a microfluidic chamber, we can modify the model
to reproduce the probability density function for the position of
swimming algae in a microfluidic chamber. We use methods sim-
ilar to the ones described in the geometrical model of Section [3]
but we fit the model parameters with the measured quantities
from the experiments, thereby incorporating the parameter dis-
tributions directly from the data. Instead of a binary trapped vs
escaped fate for the swimming trajectories, our modified simu-
lations lead now to a spatial probability density function for the
swimmers in the chamber.

4.5.1 Scattering in model

We first use a distribution of scattering angles 6,,, drawn from ex-
periments. We use Fig. to draw the scattering angle after each
contact event. Using the knowledge of 6;, in a 0.1 rad interval, we
draw 6,,, using the corresponding experimental distribution. Ne-
glecting the correlation between incidence and scattering angle
does not affect the final value of the probability density function.

4.5.2 Sliding in model

We next incorporate sliding during contact events by moving the
point from which the swimmers leaves the wall from 6 to a new
value of 6 4+ 66. For each bouncing event, we first draw the scat-
tering angle 6,,, when the swimmer reaches the surface at 6. A
value 60 is then drawn randomly from an exponential distribu-
tion with mean 0.35 rad to match the sliding measured from ex-
periments in the R = 260 um chamber. The swimmer then leaves
the wall at 6 + 60 with angle 6,,, measured relative to the tangent
to the circle. The speed of the swimmer during this displacement
is fixed to 45 ums~!, and its distance to the wall is drawn uni-
formly in the interval [0,10 um]. Taking into account the sliding
along the wall increases naturally the trapping probability, with a
simple geometrical explanation: the displacement along the wall
is equivalent to taking a smaller scattering angle 6,,, upon leav-
ing from the impact point at 6. Geometrically, it corresponds thus
to a shift of the distribution of scattering angles towards lower
values 0,,,. Ignoring sliding but taking instead the angular dis-
tribution from Ref.4l, which has lower scattering angles, would
thus result in a similar probability density function.

4.5.3 Slowing down near walls in model

We next include the change in the swimming velocity of the cells
they approach a wall, using the fit of Fig.[I2]with a minimum ve-
locity taken to be 45 ums~!. While this effect does change slightly
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Fig. 14 Probability density function of a swimmer from the final model,
with parameters taken from experiments in the R =260 mum chamber.
Top: top view; Bottom: side view. Insets: experimental probability
density function from the R =260 um chamber, for comparison

the presence probability for the swimmers, it turns out to be neg-
ligible compared to the corner accumulation in our simulations.
This demonstrates that in the experiments the mechanism for sur-
face accumulation is primarily the combination of steric interac-
tions with swimming along the surface during contact events, as
opposed to long-range hydrodynamic effects, in agreement with
previous studies#1H42]

4.5.4 Leaving corners in model

Finally, and as opposed to what was done in Section [3] the sim-
ulations now allow cells to leave a corner after being trapped in
it for a given time. This time is exponentially drawn with experi-
mental characteristic times, that vary with the size of the chamber
and the sharpness of the corners (see Fig ). In order to match
the corner size in experiments, we take the corners in our model
to be 0.3R long (see Fig.[3).

4.5.5 Predictions of new model

With all these modifications included, we can now compare di-
rectly the experimental pdf with that resulting from our model.
We illustrate in Fig. the prediction for the distribution from

our simulations based on the parameters measured for the inter-
mediate chamber, i.e. with R =260 um. The agreement between
the results of the model and the experiments is excellent.

In the simulations, the swimmers end up spending 29% of their
time trapped, which matches well with the 32% measured ex-
perimentally (see Fig. [Bp). Carrying out the same simulations
with parameters from the other two chambers, we obtain trap-
ping 22% and 14% of the time in the 520 pm and 1040 pm cham-
bers, respectively, both of which compare well with the figures
of 29% and 14% from our experiments. Remarkably, although
the model does not of course reproduce exactly the trajectories
for cells swimming in the microfluidic chamber, which would be
noisy@@, the modelling illustrated in Fig. successfully identi-
fies the main ingredients governing the spatial distribution of the
microswimmers in the chamber.

Interactions between a single wall and a swimmer are encoded
in scattering angle distribution, sliding along the wall, and long-
range hydrodynamics. These are local properties, which are inde-
pendent of the chamber geometry beside confining height and
in particular of chamber size. Their distribution could there-
fore be used directly in another chamber geometry with the
same swimming algae. On the contrary, trapping time in cor-
ner is found to be exponentially distributed with characteristic
time depending on the cusp steepness. Quantitatively extending
our model to different geometries therefore requires calibration
of the corner trapping time or fitting with our three measure-
ments. Beside, other microoswimmers, including other strains
of Chlamydomonas with different filament length, or bacteria and
self-propelled particles, are expected to have different steric in-
teractions with the wall®l. This results in different behaviours
when bouncing and swimming along walls. Adapting our model
requires measuring the distributions of the elements we have
shown dominate the swimmers spatial distribution and incorpo-
rating them in our geometric analysis.

5 Conclusions

In this paper, motivated by the fate of algal cells in foams, we
investigate the spatial distribution of motile CR cells in microflu-
idic chambers shaped as cross-sections of Plateau borders. We
observe that the cells are more likely to be found in the corners of
the channel, where they spend about a third of their time. To ex-
plain this tendency to swim in the chambers corners, we first de-
velop a geometrical (billiard) model with reflection laws adapted
to the case of swimming microorganisms. Namely, we consider
trajectories of model cells bouncing on walls with constant scat-
tering angles to mimic steric interactions with a boundary. The
cells swim otherwise in straight lines inside a domain bounded by
three disks, to represent the cross section of foam Plateau borders.
We find that most trajectories end up converging towards a cusp
of the domain. We quantify corner accumulation by analysing
the phase space diagram of all possible trajectories, which are
fully characterised by their initial position and constant scatter-
ing angle. In particular, we show that small scattering angles
lead to corner accumulation, while the trapping time increases
at large scattering angles. We also discover some periodic trajec-
tories, which are suppressed when including noise in the choice
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of the scattering angle. Our model shows therefore that corner
accumulation has a geometrical origin. In particular, cusps cre-
ate attracting trapping regions for particles bouncing on the walls
of closed system with acute angles. This is a generic result rele-
vant to many different geometries, which is therefore likely to be
relevant-te significant in many complex environment beyond the
microfluidic chambers presented here. Corner angles and cusps
are thus likely to cause an accumulation of micro-swimmers re-
gardless of the details of hydrodynamic or steric interactions with
their environment.

We next develop a more detailed model based on data from
experiments to explain and reproduce quantitatively the location
of the CR cells in the chambers. From our geometrical model,
we know that the value of the scattering angle, and more gener-
ally wall interactions, controls the location of the swimmers. We
define and measure experimentally three main elements in a con-
tact event: the incident angle 6;,, the scattering angle 6,,,, and
the distance during which CR swims along the wall without leav-
ing it for more than 1 s. While the value of 6;, stems from the
geometry of the system, 6,,, is found to have a complex distribu-
tion, which we use as an empirical law for our simulations. We
observe that 6;, and 0,,, are slightly correlated but the scattering
distribution is very noisy and this correlation does not affect the
result of our simulations. The time spent by the cell swimming
along the wall does explain the boundary accumulation that we
observe experimentally, and enhances corner accumulation. Ge-
ometrically, sliding along the walls is equivalent to a shift of the
scattering angle distribution towards lower 6,,,. We also observe
that the walls have a long-range hydrodynamic influence on the
CR cells, which slow down when swimming close to a wall. This
can be reproduced accurately by taking into account the hydrody-
namic drag acting on the body of the confined algal cells in the 2D
chambers. The swimming elements we incorporate in our model,
notably the scattering angles and sliding distribution that describe
cell-wall interactions, are local and robust to change in confined
chamber geometry. Including finally the distribution of time the
swimmers spend trapped in the corners allows us to obtain a com-
plete model that quantitatively reproduces the probability density
function of CR cells in the microfluidic chambers. This is the only
quantitative element of our model that is geometry-dependent:
steeper corners lead to longer trapping times, and a new calibra-
tion or fitting from our own measurements is needed to extend
the model quantitative predictions.

We quantify the swimming behaviour of Chlamydomonas algae
through local swimming properties, and expect our full quanti-
tative model to be valid for other confined geometries. Using
different strains of Chlamydomonas or different swimmers would
require measuring

This work was initially motivated by an experimental study of
motile Chlamydomonas algae remaining trapped in a foam drain-
ing under gravity®, We have shown here that the local geometry
of the channels in the foam is likely to play a decisive role in the
spatial distribution of motile CR and therefore in their trapping.
Indeed, if the motile cells spend a large fraction of their time stuck
in the cusps of the Plateau Borders, this will slow down their es-
cape and effectively retain them in the foam.
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To address fully the problem of trapping of planktonic microor-
ganisms in foams, the third dimension of the Plateau borders
should of course be taken into account. The first natural exten-
sion of our geometric approach to an elongated channel would
be to incorporate a new swimming component in the third di-
rection. The 2D model would then be a projection of the 3D
one. Scattering angle distribution and wall sliding properties
might be affected, and would need to be experimentally mea-
sured close to an unconfined wall. However, the results would
be qualitatively identical and quantitatively similar to those pre-
sented above. Crucially, corner accumulation is a robust feature of
the three-circle geometry regardless of local details of swimmer-
wall interactions. Such 3D kinematics, including rebounds on
the top and bottom walls, would likely be valid to describe algae
swimming in thicker chambers.

However, we expect new elements that are absent in 2D, pre-
dominantly flow and gravity, to play a substantial role in a
3D Plateau border. Gravity is known to bias the movement of
Chlamydomonas algae through gyrotaxis, encouraging them to
swim upwards. At the same time, it leads to a slow sedimentation
of the algae which are slightly heavier than water. In this case,
the orientation of the channel would have an additional influence
on the accumulation of swimmers, and introduces discrepancies
in accumulation in horizontal or vertical borders as well as an
asymmetry between the corners. A similar effect could be intro-
duced from other cues, including phototaxis (light). Additienat

Besides, for a foam draining under gravity, motile swimmers
will interact with the bulk flow through both advection and re-
orientation due to shear. The effect of the flow will vary strongly
in the different regions of the channel cross section. In the cen-
tral area, shear coupled to gyrotaxis could concentrate swimmers
in the center. However, the liquid velocity and hence the shear
rate in the Plateau borders is very low in the corners compared
to the central region. This adds a twofold contribution to corner
accumulation: advection is slower, and algae already retained in
the corners have less chances to escape by shearing.
pect a competition between the geometrical effects of swimming
highlighted in our paper and the interactions with the flow. In
contrast, for non-motile cells or non-Brownian tracers, the dom-
inant effect will be passive advection with the draining flow, as
seen experimentally44,

Our present study could be extended to incorporate these el-
ements and investigate which increases the retention of algae in
the draining foam.

The method we develop in our paper, combining a purely ge-
ometrical billiard model with non-elastic bouncing with experi-

We ex-



mental data to reproduce accurately scattering and wall motion,
could be applicable to other geometries and organisms. Since
microswimmers often inhabit complex environments, e.g. soil or
porous media and biological tissues, the local features of their
habitats are expected to influence their ability to move, escape
local asperities and access resources. Singular features such as
corners are expected to be important for cell motility and, in par-
ticular, cusps since their create local traps for swimming cells. We
hope that our experimentally-driven approach to microorganism
billiards will be used to complement existing models of swimmers
in complex media, such as active Brownian particles and models
with full hydrodynamic interactions, helping uncover the impact
of local geometry on the dynamics of swimming cells.
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