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Bursting thin liquid films
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The breakup of a free thin liquid film subjected to an impulsive acceleration is investi-
gated. A soap film is stretched on a frame at the exit of a shock tube. As the shock
impacts the film, the film accelerates within a very short time and detaches from the
frame at a constant velocity function of the shock strength. The liquid thickness modu-
lations amplify and eventually the film is perforated with a number of holes, sub-
sequently growing in radius and connecting to each other. The initially connex film is
left in the form of a web of liquid ligaments which break into droplets. Both the hole
density and formation time depend on the film velocity. We analyse these observations
with an impulsive Rayleigh–Taylor instability incorporating liquid surface tension. It
is shown to account for both the mode selection and its associated time of growth,
providing a criterion for the film bursting time and hole density.

1. Introduction
Rayleigh (1883) was the first to analyse the stability of a density interface between

two superposed semi-infinite media subjected to a constant acceleration normal to
the interface. Taylor (1950) then investigated the stability of a fluid layer of a given
density sandwiched between two fluids of a different density. They concluded that
these situations are always unstable with, since surface tension was not taken into
account in both of these studies, the same dispersion equation. The growth rate
depends solely on the density contrast between the phases, the acceleration and
the wavenumber. If the density transition is sharp at the interface, there is no mode
selection. In particular, the instability growth rate is independent of the layer thickness
in the case studied by Taylor, and Rayleigh shows how a continuous transition of the
density over a finite thickness at the interface results in a saturation of the growth
rate at large wavenumber only. Surface tension does induce mode selection on the
capillary lengthscale, as shown in Chandrasekhar (1961).

Soon after the works of Taylor (1950) and Lewis (1950), Keller & Kolodner (1954)
extended Taylor’s analysis to incorporate surface tension. Although not discussed in
detail by these authors, a new phenomenon arises in that case from the coupling bet-
ween the two interfaces of the layer which, when the layer is much thinner than the ca-
pillary length, induces a considerable slowing down of the amplification rate and a shift
of the selected mode towards larger lengthscales (figure 1b). We first recall the main
results of this ‘thin layer limit’ before discussing how it can be explored experimentally.

A liquid sheet of uniform thickness h is sandwiched between two infinite gas phases
and is subjected to a constant acceleration a perpendicular to its surfaces (see e.g.
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Figure 1. (a) Sketch of the destabilization of a liquid sheet when accelerated in a direction
perpendicular to its surfaces. (b) Dispersion relation (1.1) for three different critical wave-
numbers, k̃c = 0.1, 0.2 and 0.3.

figure 1a). The initial modulations of the interface positions are proportional to the
Fourier modes η1 = η01exp(ikx − iωt) for the upper interface and η2 = η02exp(ikx −
iωt + iφ) for the lower. The initial amplitudes η01 and η02 are positive real, and the
phase shift φ is a priori free. Lengths and time are made non-dimensional by h and
tc =

√
ρh3/σ , the capillary time based on the liquid density and surface tension, res-

pectively. Neglecting the density of the gas phase in front of the liquid, the inviscid,
dimensionless (with tilde variables) dispersion equation is (Keller & Kolodner 1954)

ω̃2 = k̃3 coth(k̃)
{
1 ± [1 − (1 − (k̃c/k̃)4) tanh2(k̃)]1/2

}
, (1.1)

where k̃c =
√

ρah2/σ is the capillary wavenumber. Equation (1.1) with the minus sign
presents an unstable range of wavenumbers for 0 < k < kc where the shape of the
amplification factor Im{ω̃} = ω̃im depends on k̃c (figure 1b). The dispersion relation

coincides with that of the peristaltic mode ω̃ = k̃2/
√

2 of free films for kc → 0 in that
case. However, the initial amplitudes and phase of the amplified perturbations are
linked by η01/η02 ∼ (1 − k̃) cos(φ). There is, in contrast with free films, no discrete
phase selection in this problem.

When k̃c � 1 (i.e. thick layer, large acceleration), one recovers the classical dispersion
relation characteristic of an infinite medium ω̃2 = k̃3{1 − (k̃c/k̃)2}. The maximum
growth rate ωim ∼ (ρa3/σ )1/4 and the selected wavenumber km = kc/

√
3 ∼

√
ρa/σ are

independent of h.
When k̃c � 1 (i.e. thin layer, weak acceleration), the dispersion relation 1.1 flattens

and shrinks in the {ω̃, k̃}-plane. In this limit, when k̃ is of order k̃c, one has ω̃2 = k̃4/

2{1 − (k̃c/k̃)4}, and when k̃ → 0 one has ω̃2 = − k̃2
c k̃. The wavenumber which connects

these two extremes kp = k2
ch/2 defines the inner border of a plateau whose associated

growth rate is ωim ∼ (ρa2h/σ )1/2. Close to this border is the most amplified wave-
number km = 6−1/6k4/3

c h1/3 (which results from the maximization of ω̃2 = k̃4/2 − k̃4
c/2 +

k̃8
c/8k̃2, valid for k̃c → 0 and k̃ → 0). Both km and ωim go to zero for a vanishingly thin

layer. This is why gently blowing on a soap film does not break it: then the film under-
goes a very slow destabilization. A strong acceleration imparted to the film does, how-
ever, lead to its destabilization. This is realized by imposing a pressure difference
between the two sides of a soap film stretched on a frame positioned at the exit of a
shock tube. The film accelerates violently within a short time on the passage of the
shock, giving it an impulsive acceleration of the type studied by Markstein (1957),
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Figure 2. Set-up showing the different views and illumination procedures, (a) front view and
back lighting, (b) side view and back lighting, (c) front view and lighting by reflection.

Richtmyer (1960), Meshkov (1969) and more recently by Rightley, Vorobieff &
Benjamin (1997) and Niederhaus & Jacobs (2003) for gases or miscible liquids. The
present study involving liquid–gas interfaces presents a natural (i.e. not solely induced
by the initial conditions) mode selection mechanism owing to the involvement of
surface tension.

2. Experimental set-up
Experiments were performed in a 3 m long shock tube with a 8 × 8 cm2 square

section (figure 2). A high pressure chamber is connected to the tube by an aluminium
diaphragm. The thickness of the diaphragm sets its rupture pressure and so the shock
strength. The use of one or several layers of 12 µm thick aluminium paper allowed
the shock Mach numbers M = uc/us to be varied from 1.03 to 1.21. The velocity
of the shock wave uc is measured by the delay between the signals of two pressure
transducers and the sound velocity us is determined at atmospheric pressure and
ambient temperature. The liquid film is stretched on a square frame from a solution
of water plus glycerol (10% in volume) and an industrial detergent below the critical
miscellar concentration. The frame is then fixed at the exit of the open shock tube.
The surface tension of the solution is measured by stalactometry and is 0.03 kg s−2.
Since the frame is placed vertically, it drains under the action of gravity, producing a
thickness field slowly thickening downwards in time. The thickness field was measured
at a given time by pinching a hole in the film and following the recession of the rim
position by capillary forces (Taylor 1959; Culick 1960; Keller 1983). The thickness
varies from 1.7 to 2.7 µm on the 4 cm high visualization window. The dynamics of
the film on the passage of the shock was recorded by a Phantom v6 high-speed
video camera. The light source is a HMI projector (LTM of 575 W) which could be
operated either in transmission through the film, or by reflection.

3. Observations and results
3.1. Film velocity

Figure 3 shows a side view of the soap film at different instants of time after it has
interacted with the shock. The film is initially weakly curved because the diaphragm
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Figure 3. Side views of the soap film position (marked by an arrow) on the passage of the
shock wave, M = 1.07. Time increases from left to right by steps of �t = 0.2 ms.
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Figure 4. (a) Trajectory of the film, M =1.06. (b) Dependence of the experimental film
velocity on M (�) and terminal velocity u predicted in (3.1) (—).

inflates somewhat before breaking, therefore slightly displacing the air in the tube.
After the passage of the shock, the film is torn off the frame and moves in the
direction of the shock propagation at constant velocity (figure 4a). The film has
reached its constant velocity within a time period shorter than the inverse of the
camera sampling rate, 1.6 × 10−5 s. This time is, as will be seen below, much smaller
than the time of the film instability growth.

The liquid film is pushed forward when the shock impacts it. The relation between
the pressure P1 behind the wave front and the pressure P0 of the air initially at rest
in front of the shock is P1/P0 = (2γM2 − γ + 1)/(γ + 1) (Landau & Lifchitz 1989).
Since the acoustic impedance of water is much larger than that of air, the shock is
nearly completely reflected at the liquid surface (Henderson 1989) and the pressure
P2 behind the reflected wave is then P2 = 2P1 − P0. As the film moves, it forms a
compression wave in front of it of pressure P4, and a rarefaction wave behind it of
pressure P3. While the film velocity U (t) remains much smaller than the sound speed
in air us (which is, by far, the case here), these pressures are P3 ≈ P2(1 − γU (t)/us) and
P4 ≈ P0(1 + γU (t)/us). The film velocity U (t) follows from momentum conservation
ρhdU (t)/dt = P3 − P4:

U (t) = u

(
1 − e−t/τ

2(M2 − 1)

)
(3.1)

where τ = ρhus(γ + 1)/P0γ (2γM2 − γ +1) is the characteristic time for the film to
reach the final velocity u = us2(M2 − 1)/(2γM2 − γ +1) (figure 4b). The inertia of the
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liquid only appears in the transient, and the final velocity is solely determined by the
shock strength and the compressibility properties of the gas. For the present conditions
(γ = 1.4, P0 = 105 Pa, us = 340 m s−1, h = 2 µm), τ is smaller than 10−5 s.

3.2. Instability development

Figure 5(a) shows bursting sequences for three different Mach numbers when the
film is illuminated from behind. The film is perforated by holes which, once formed,
expand by capillary recession and then merge, leaving the initially connex liquid film
in the form of a web of liquid ligaments which subsequently break into droplets.
The number of holes n(t) increases in time, then saturates and reaches a maximum
N before decreasing because of the mutual interaction between the holes which
annihilate when they merge. Both the hole density and the perforation rate are an
increasing function of the Mach number, as can be seen on figure 5(b). The rate of
increase of the hole number n(t) defines a characteristic formation time tn as the
inverse of the perforation rate before saturation, shown on figure 6(b). This back
lighting configuration does not permit determination of the instant of interaction of
the shock with the film and therefore the curves on figure 5(b) have different origins
of time. Observation of the same sequence of events by light reflection (figure 6a)
allows determination of the time of impact of the film by the shock wave. The origin
of time is determined when the reflected image of the light source on the film is first
deformed. From this second set of experiments, we extract the time of the first film
perforation t1. This time is larger than the inverse of the perforation rate tn by two
orders of magnitude and decreases more slowly with M , as can be seen on figure 6(b).

4. Film dynamics and bursting
Before reaching a constant velocity, the film is accelerated during a time period

smaller by two to three orders of magnitude than its destabilization period (figures 4
and 5). After the shock has hit the film surface, the pressure wave propagates across
the liquid width at the sound speed us	 and travels between the two interfaces in a
time given by h/us	 ≈ 2 × 10−6/1500 ∼ 10−9 s, much smaller than the time needed for
the film to reach a constant translation velocity u, which is of order τ ≈ 10−5 s, itself
much smaller that the development time of the instability, of order 10−3 s. The time
during which the impulse is communicated to the film is thus very short compared
to the instability time, but also very short compared to the acceleration time of the
film. When describing the dynamics of the perturbations, it is therefore legitimate
to assume a piecewise constant acceleration, and use Keller & Kolodner dispersion
relation (1.1) with a(t) suitably adapted in each of the time intervals as

a(t) = u�(t) (4.1)

where �(t) is a step function equal to 1/τ for t < τ and equal to 0 for t > τ . We write
the thickness modulation η̃ as

η̃(x̃, t̃) = η̃0f (t̃) eik̃x̃ (4.2)

with the initial conditions for the shape function f (t)

f (t̃ = 0) = 1 and
df

dt̃
(t̃ = 0) = 0. (4.3)
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Figure 5. (a) Light transmission views of bursting liquid films for three Mach numbers. From
top to bottom, M = 1.03, 1.07, 1.21. Time increases from left to right with a time step �t =
0.05 ms. (b) Time evolution of the number of holes n(t) for the three Mach numbers.

When the acceleration is time dependent, the dynamics of the perturbations
linearized around the base state, f (t), is exactly governed by

d2f

dt̃2
= −k̃3 coth(k̃)

{
1 −

[
1 −

(
1 −

(
k̃c(t̃)

k̃

)4)
tanh2(k̃)

]1/2
}

f (t̃) (4.4)

where k̃c(t̃) = We1/4�(t̃)1/2, and We= ρhu2/σ is the Weber number based on the film
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Figure 6. (a) Visualization by light reflection of the temporal film destabilization for M = 1.07.
(b) Characteristic times of the instability: �, time corresponding to the inverse of the perforation
rate (tn); �, time of the first perforation (t1).

velocity u and initial thickness h. At short times (i.e. for t̃ < τ̃ ), k̃c assumes a very
large value and the expansion of equation (4.4) for k̃ � k̃c is

d2f

dt̃2
=

(
k̃k̃2

c − k̃2
)
f (t̃) + O

(
k̃3

k̃2
c

)
. (4.5)

The early time dynamics of the film thus coincides with that of an harmonic
oscillator excited with an impulsive force proportional to 1/τ and to the film velocity
u. For t̃ < τ̃ , we seek a solution to

d2f

dt̃2
+ ω̃2

1f (t̃) =
k̃We1/2

τ̃
with ω̃1 = k̃ (4.6)

of the form

f (t̃) = c1 + c2 cos ω̃1 t̃ + c3 sin ω̃1 t̃ . (4.7)

Putting (4.7) into (4.6) and using the initial conditions (4.3), we obtain

f (t̃) = cos ω̃1 t̃ +
k̃We1/2

τ̃ ω̃2
1

(1 − cos ω̃1 t̃) for t̃ < τ̃ . (4.8)

For times larger than τ̃ , the acceleration is zero and therefore k̃c = 0. The expansion
of equation (4.4) at small k is

d2f

dt̃2
= − k̃4

2
f (t̃) + O(k̃6), (4.9)

which is now the equation of a free harmonic oscillator with frequency ω̃2 = k̃2/
√

2
characteristic of the peristaltic mode of the film (see § 1). We seek a solution of the
form

f (t̃) = c4 + c5 cos ω̃2(t̃ − τ̃ ) + c6 sin ω̃2(t̃ − τ̃ ). (4.10)

Owing to the continuity of f and of df/dt̃ at t̃ = τ̃ , and expressing the impulsive
character of the acceleration by letting τ̃ → 0, we finally obtain

f (t̃) = cos ω̃2 t̃ +
k̃We1/2

ω̃2

sin ω̃2 t̃ with ω̃2 =
k̃2

√
2

(4.11)
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Figure 7. (a) Evolution with time of thickness modulation for three wavenumbers and for
We = 110. The continuous line represents the result of (4.12), the discontinuous lines are
the numerical solutions of (4.4) where the Dirac function is approximated by a decreasing
exponential function (dashes) and a step function (dots). (b) Evolution of f with time and
wavenumber, We = 110.

which describes the overall dynamics of the shape factor f . The shock excites all
the wavenumbers initially, which subsequently reach the limit cycle of the varicose
oscillations defined by equation (4.11) as shown on figure 7(a). The time it takes to
reach the limit cycle decreases for increasing k̃ so that the most amplified wavenumber
decreases as time progresses, as shown on figure 7(b). For k̃2 t̃ � 1, relation (4.11)
expands as

f (t̃) = 1 + We1/2k̃t̃ − 1
4
k̃4 t̃2 + O(k̃t̃3), (4.12)

whose maximum at time t̃ such that ∂f/∂t̃ = 0 corresponds to the most amplified
wavenumber k̃m(t̃) given by

k̃m(t̃) = We1/6 t̃−1/3, (4.13)

itself giving the maximal value fm(t̃) of the thickness modulations

fm(t̃) = 1 + 3
4
We2/3 t̃2/3. (4.14)

The bursting time t̃b of the film will most likely be set when the thickness
modulations are of the order of the film thickness, imposing a perforation condition
η̃0f (t̃b) ≈ 1 which leads to

t̃b ∼ η̃
−3/2
0 We−1, (4.15)

for an initial modulation η̃0. The same condition also provides the associated
wavenumber k̃b at the burst time t̃b

k̃b ∼ η̃2
0We1/2. (4.16)

The thickness modulations are distributed around a most probable value. Although
we do not know this distribution in detail, it is clear that the number of holes n(t̃) at a
given time will correspond to the amplitudes on the film which have already reached
the perforation criterion η̃0f (t̃) = 1 at time t̃ . If P (η̃0) is the amplitude distribution,
the relative number of perforations will be given by

n(t̃)

N
=

∫ 1

η̃(t̃)

P (η̃0) dη̃0 (4.17)
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Figure 8. (a) Characteristic times of instability development as a function of the Weber
number We: �, t̃n; �, t̃1. The film thickness is 2 µm. (b) Experimental selected wavenumber km

as a function of We.

where N is the total number of possible holes. The instability development brings the
film interfaces closer to each other at a velocity given by dfm/dt̃ which scales as

dfm

dt̃


t̃b

∼ We2/3 t̃
−1/3
b ∼ We ∼ t̃−1

b . (4.18)

Around its most probable value, the distribution P (η̃0) is flat, so that the inverse of
the measured perforation rate t̃n corresponds to t̃b, consistently with the observations
reported on figure 8. Note that this time is representative of the modulations which
have undergone the amplification and mode selection mechanism described above,
and is distinct from the time of the very first perforation of the film t̃1. That time
relates to huge, isolated thickness modulations which perforate the film with no mode
selection and, according to (4.12), scales as We−1/2, as shown on figure 8.

A measure of the most amplified wavenumber k̃m(̃tb) at the average burst time is
provided by the maximal number of holes N recorded on the film. If the hole density
is uniform on the film surface, one expects k̃m ∼ N1/2 ∼ We1/2, a trend consistent with
that displayed on figure 8(b). Finally, using (4.15) and (4.16), the absolute value of
the average thickness modulations is found to be η0 = 0.01 µm for a film thickness
h = 2 µm. This order of magnitude compares well with that measured by Krichevski &
Stavans (1994) for thickness modulations solely due to thermal agitation in a com-
parable system.

5. Conclusion
When the thickness of an accelerated liquid film is smaller that the capillary length-

scale (i.e. when kch � 1), the coupling of the two interfaces by the Laplace pressure
rigidifies the film considerably. This is why a soap film can be inflated appreciably
while keeping its interfaces locally parallel. Therefore, strong accelerations are required
to initiate film destabilization in the sense of Rayleigh–Taylor. The present study uses
the interaction of a shock wave with the film to achieve destabilization. The film
modulates its thickness and is eventually perforated by several holes, subsequently
growing in radius and connecting to each other. The initially connex liquid film results
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in a web of liquid ligaments which fragment into droplets. The film bursting time
and hole density follow from a linear stability analysis with impulsive acceleration.
The relatively thick films (>1 µm) studied here have lead us to neglect van der Waals
forces, as well as viscous corrections in the instability dynamics. These findings may
have a more general interest in atomization processes involving liquid sheets. Such
sheets often undergo a flapping motion (Villermaux & Clanet 2002) conferring on the
liquid transverse accelerations which might, therefore, modulate the liquid thickness
and thus initiate the breakup. This, together with the droplet size distribution coming
from the disintegration of the web of ligaments after the holes have merged, is left
for future research.
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