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The dynamics of a damped pendulum driven by a constant torque is studied experimentally and
theoretically. We use this simple device to demonstrate some generic dynamical behavior including
the loss of equilibrium or saddle node bifurcation with or without hysteresis and the homoclinic
bifurcation. A qualitative analysis is developed to emphasize the role of two dimensionless
parameters corresponding to damping and forcing. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

Bifurcation theory allows a classification of the qualitative
changes that occur in dynamical systems. A loss of equilib-
rium is the simplest bifurcation and occurs in many physical
systems. A drop of water hanging at the end of a faucet is an
example of such a bifurcation. We can make a small drop
that hangs under the action of its weight, the action of the
pressure of the surrounding fluid �water in the faucet and
air�, and the action of surface tension at the interface be-
tween water and air. The volume of the drop can be increased
until a critical volume is reached. It is impossible to form a
drop with a volume higher than this critical one.1

In this paper, we focus on a mechanical example proposed
by Andronov et al.2 consisting of a damped pendulum forced
by a constant torque. This system has been studied previ-
ously as a model of the pull-out torques of synchronous
motors3 and as a model of a single point Josephson junction.4

It can be easily built and the physics involved in this device
is very simple. The system has rich dynamical behavior and
exhibits much more than a loss of equilibrium. Fundamental
concepts such as hysteresis, bistability between equilibrium
and periodic solutions, and homoclinic bifurcation will be
explored.

The aim of the paper is to study the dynamics of the pen-
dulum. Our main objective is to experimentally demonstrate
bifurcations and complex dynamical behavior. We explore
the two-dimensional parameter space and show that the dif-
ferent bifurcations separate three different regimes.

The paper is organized as follows. In Sec. II we introduce
the experimental setup and the equation of motion. We show
that the system is characterized by two dimensionless param-
eters. In Sec. III, we report the observed behavior with an
emphasis on the bifurcations experienced by the pendulum.
In Sec. IV we present a dynamical analog of the pendulum
and an intuitive description of the dynamics. These three
sections form a basic and intuitive introduction to qualitative
dynamics, based on experiments and can be followed with-
out any specific mathematical knowledge. In the more ad-
vanced Sec. V we use an analytical approach to present more
quantitative results on the dynamics, in particular in the vi-
cinity of the bifurcations. This section could form a basis for
a problem accompanying an intermediate-level course on

nonlinear dynamics.
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II. EXPERIMENTAL SETUP AND EQUATION OF
MOTION

A. Experimental setup

A planar pendulum is forced by a constant torque �see Fig.
1�. The pendulum is linked to the drive shaft of a DC motor
�with gearhead� through a magnetic coupler. This element is
made of two coaxial disks �radius 4 cm� facing each other.
One of the disks �M-disk� is attached to the drive shaft and
has a few �8 in our case� neodym-iron-bore strong permanent
magnets glued to its surface. The other disk �P-disk� is made
of an aluminum alloy and is attached to the pendulum. The
distance between the magnets and the P-disk can be changed
between 0 and 1 cm. When the drive shaft rotates, eddy
currents associated with an opposing Lorentz force5 are in-
duced in the P-disk. The rotation of the motor induces a

magnetic viscous torque on the pendulum, T=���̇−�m�,
where �̇ is the angular velocity of the pendulum and �m is
the rotational speed of the motor. The viscous torque per unit
of angular velocity, �, depends on the strength of the mag-
nets and the distance between the magnets and the P-disk.
Moreover, the shaft of the pendulum is attached to the frame
by ball bearings. The latter add a frictional torque which is
more difficult to model. In the regime that we study, we
assume that the frictional torque of the ball bearings is neg-
ligible compared to the torque caused by magnetic effects.

We use a voltage regulated power supply for the 7 W DC
motor. The rotational speed of the motor is constant within
3% and can be easily modified by changing the applied volt-
age. The whole setup can be rotated about an axis perpen-
dicular to the plane formed by the earth’s gravitational field
and the axis of rotation of the pendulum. Then the effective
gravitational field is g=g0 cos �, where g0=9.8 ms−2 is the
earth’s gravitational field and � is the tilt angle between the
rotation axis of the pendulum and the horizontal direction.
During the experiment, we vary �m and g.

We have deliberately chosen to describe qualitative ex-
periments. We use a stopwatch to measure the period of os-
cillations of the pendulum and the rotational speed and a
protractor to measure the angle of deviation at equilibrium.
This measure gives the order of magnitude of different vari-
ables to help readers reproduce this experiment.

B. Equation of motion

The equation for the angular momentum of the pendulum

is
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I�̈ + mg� sin � = ���m − �̇� − �a�̇ , �1�

where I represents the moment of inertia of the pendulum, m
is the mass of the pendulum, � is the distance between the
center of gravity of the pendulum and its axis of rotation, and
� is the viscous torque per unit of rotational speed due to the
magnetic coupling. The parameter �a measures the frictional
torque per unit angular velocity exerted on the pendulum by
the surrounding air and the ball bearings. In this discussion
�a will be neglected. The time is measured in units of the
free oscillating period and the dimensionless time �
= �mg� / I�1/2t will be used. The equation of motion reads

�� + ��� + sin � = � , �2�

where � denotes the derivative with respect to �, and

� =
�

�mg�I
, � =

��m

mg�
. �3�

The equilibria �e are solutions of

sin � = � . �4�

III. EXPERIMENTS

A. Orders of magnitude

The parameter � can be measured using

� =
�

mg�
�mg�

I
=

a

2�

2�

T0
, �5�

where a is the slope of sin �e= f��m�, where �m is mea-
sured in revolutions per second, and T0 is the period of
oscillations of the undamped pendulum �in its linear re-
gime�. The period is measured with a stopwatch and is
approximately 1.0 s when �=0° and 1.4 s when �=60°.
From Fig. 2 we can determine the slope a for two series of

Fig. 1. Sketch and photograph of the experimental setup. The pendulum
rotates about the axis �. The coupling between the pendulum and the motor
is due to magnetic forces �there is no contact� between the aluminum disk
�P-disk� attached to the pendulum and the disk with the magnets �M-disk�
attached to the rotor of the motor.
measurements. The angular velocities are measured with a
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stopwatch and the angle of tilt is measured with a protrac-
tor.

When the axis of the pendulum is horizontal, �=0, we
find a0=0.75 �rps�−1 and �0=0.8. For �=60°, we find a60

=1.5 �rps�−1 and �60=1.1. We can verify that the ratio
�60/�0 is approximately equal to �cos 0/cos 60�1/2=�2 as
given by Eq. �5� with g=g0 cos �. Thus changing the angle �
provides a way to change the effective value of the dissipa-
tion �. Another way would be to change the distance be-
tween the M-disk and the P-disk.

B. Dynamical experiments

Scenario 1: �=0. When the motor does not rotate, the
pendulum hangs at �=0. When the motor rotates slowly, the
equilibrium state of the pendulum is tilted. When the rota-
tional speed increases, the equilibrium approaches �=� /2,
and at a critical velocity of the motor, �c, the pendulum
starts to rotate with a finite period of revolution. This transi-
tion to the rotating state corresponds to the loss of equilib-
rium.

If we return to a given velocity �m	�c then the pendu-
lum has a stable equilibrium at �s. We can perturb the pen-
dulum, that is, we can release it without an initial velocity
from an angle �i. If the perturbation is in the direction oppo-
site to the motor rotation ��i	�s�, the pendulum returns
smoothly to its equilibrium. If we perturb the pendulum in
the direction of the rotation, and if the angle of perturbation
is small ��i	�−�s�, the pendulum returns to equilibrium
against the torque because gravity dominates. But if the ini-
tial angle is large enough ��i
�−�s�, the pendulum does not
go against the torque but moves in the direction of the
torque.

If �m is sufficiently large �but less than �c�, the pendulum
starts to rotate and rapidly reaches a periodic regime. If we
stop the pendulum by hand and put it close to its equilibrium
state, it will stay in equilibrium. There is bistability between
the rotating periodic regime and the stationary equilibrium.
When we diminish �m, the rotation of the pendulum slows,
or in other words, the period of rotation increases. At a criti-
cal �m, the pendulum stops. Before the pendulum stops, it
tries to reach an angle higher than � /2 and then returns to its
stable equilibrium. In this regime, if we perturb the pendu-
lum, it returns to stable equilibrium, and there is no more

Fig. 2. Measurements of the sine of the angle of equilibrium vs the motor
angular velocity for two different tilt angles of the pendulum.
rotating behavior.
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If we increase �m without perturbing the pendulum, the
angle of equilibrium increases and reaches � /2 when �m
=�c. For �m slightly greater than �c, the pendulum rotates
quickly. There is a discontinuity in the behavior of the pen-
dulum: It jumps to a periodic regime. If we decrease the
speed of the motor, the pendulum continues rotating, even if
the speed is less than �c. The loss of equilibrium is a tran-
sition with hysteresis.

Scenario 2: �=60°. In this case the dimensionless dissi-
pation � is higher. If the angular velocity is �m	�c, the
equilibrium is tilted. If the pendulum is slightly perturbed by
hand, it returns to equilibrium �Fig. 3�b��. If the perturbation
is strong enough, the pendulum carries out one rotation and
then stops at stable equilibrium �Fig. 3�c��. This behavior is
called excitability: A perturbation higher than a given thresh-
old is necessary to “fire” the system. But there is no periodic
behavior in this regime when �m	�c. The equilibrium
reaches the value � /2 for �m=�c and for a higher angular
velocity, there is no equilibrium. The pendulum rotates but
the regime is very different from the one we found for a
weaker dissipation: The period is very long and the pendu-
lum spends a long time near �=� /2. In the rotating state, if
�m is decreased, as soon as �m	�c, the rotating state dis-
appears and the pendulum stays at equilibrium.

IV. A POTENTIAL APPROACH

We now discuss the dynamics with a qualitative analog of
the pendulum. The aim of this section is to give an intuitive
understanding of the dynamics. We write the equation of
motion in the form

�� + ��� = −
�V���

��
with V��� = − �� − cos � . �6�

We will describe the motion of a ball in the potential V���.
The ball is acted on by its �normalized� weight and a viscous
drag. The ball stays in contact with the potential. The motion
of the ball is different from the motion of the pendulum
because the kinetic energy has a different form.8 However,
the qualitative behavior is the same, and, in particular, the
equilibria are the same. We will discuss the motion of the
pendulum and give a qualitative picture of the motion of the
ball.

A. Periodic behavior and bistability

We start by considering the case of a nonforced conserva-
tive pendulum. The potential is simply V���=−cos �. Stable
equilibrium is at �=0 and unstable equilibrium is at �=�

Fig. 3. Perturbation of the pendulum in for strong damping �scenario 2 in
the text�. The torque acts counterclockwise. �a� Stable equilibrium. �b� After
a small perturbation, the pendulum returns directly to its stable equilibrium.
�c� After a larger perturbation, the pendulum performs one revolution before
returning to equilibrium.
�see Figs. 4�a� and 4�b��. When we perturb the stable solu-
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tion, the pendulum oscillates about its stable equilibrium. If
we perturb it strongly, it will oscillate about the nearest
stable equilibrium solution. With a sufficiently strong initial
impulse, the pendulum will rotate indefinitely. There is a
separatrix between those two types of behavior: The trajec-
tory joining two successive unstable points, which is called
an homoclinic trajectory. This trajectory is a limit case: If we
release the pendulum from the unstable point or infinitely
close to the unstable point, it takes an infinite time to escape
from the vicinity of this point. Then it falls in the potential
well and goes up again in an infinitely long time to the next
unstable equilibrium.

When the external torque is slightly increased without dis-
sipation �this case is not realistic in the experiment� �see
Figs. 4�c� and 4�d��, the two equilibria move but still exist.
We call �s the stable equilibrium and �u the unstable one. We
call �b the value of � at which the potential V has exactly the
value V��u�. If we slightly perturb the system in stable equi-
librium and start the pendulum with an angle between �b and
�u and with no initial velocity, the pendulum oscillates about
the stable solution. If the pendulum is released with an angle
smaller than �b �see Fig. 4�d��, it will overshoot the next
potential maximum and will accelerate forever. The first in-
tegral of Eq. �6� gives the speed increase between two suc-

cessive unstable equilibria �̇2
2− �̇1

2=2�V��2�−V��1��=4��.
There is still a homoclinic trajectory serving as a separatrix
between the oscillations and the rotations: It is the trajectory
of the pendulum released from an angle infinitely close to
but smaller than �u.

With weak dissipation, oscillations about �s are slightly
damped. If we release the pendulum at �b, the ball will not
reach �u. But if the dissipation is not too large, there is a
point close to �b, call it ��, such that if we release the pen-
dulum at ��, it will go asymptotically to �u. The point ��
must be consistent with an energetic balance between the
energy dissipated because of damping and the change in po-
tential energy. We multiply Eq. �6� by �� and integrate be-
tween �=0 and �=� and find

��
0

�

����2dt = − V��u� + V���� . �7�

We have used the initial and final conditions ����=0=0 and

Fig. 4. Motion of a ball in a potential V��� without dissipation. Without
forcing ��=0�, the ball �a� oscillates about the stable equilibrium or �b�
moves indefinitely “from well to well.” With a weak forcing ��=0.3� the
ball �c� oscillates about the stable equilibrium or �d� falls indefinitely.
����=�=0. Equation �7� gives the energy balance, but unfor-
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tunately cannot be solved to find �� because we do not know
the explicit form of ����.

If the pendulum is released with an angle between �u
−2� and ��, it will reach �u with a nonzero velocity and then
will continue to rotate. It will accelerate until it reaches �as-
ymptotically� a periodic regime. For this periodic regime
�p���, the energy lost by damping during one period must be
equal to the gain in potential energy and thus

��
0

T

��p��
2d� = 2�� , �8�

where T is the period of the rotations. If we move the pen-
dulum very fast, it will slow down until it reaches �asymp-
totically� the periodic regime.

For sufficiently large damping, a pendulum started at �u
−2� will not reach the next unstable equilibrium, and there
are no more oscillations. There is critical damping �0��� for
which ��=�u−2�. The trajectory that connects two succes-
sive unstable points is an homoclinic orbit. The condition of
existence of this orbit is given by

��
−�

�

��h��
2d� = 2�� , �9�

where �h��� represents the homoclinic orbit. The integral is
taken between −� and +� because the trajectory escapes
asymptotically from �u−2� and reaches asymptotically �u.
Below the value �=�0���, the pendulum can rotate and
above this value the pendulum will stop at a stable equilib-
rium. This qualitative change in the behavior is a homoclinic
bifurcation, first studied by Andronov.2

B. Hysteresis

When the torque is large ��
1�, there is no equilibrium
�see Fig. 5�d��. In the reversible case, the pendulum rotates

Fig. 5. Motion of a ball in a potential V��� with dissipation. With weak
forcing �=0.3 and weak damping �	�0, the ball can either �a� converge to
the stable equilibrium or �b� converge to a periodic regime for which loss in
energy due to damping is balanced by gain in potential energy, depending on
the initial condition. �c� With weak forcing �=0.3 and strong damping �

�0 the only stable state is the stable equilibrium. �d� With strong forcing
�
1, the ball falls indefinitely and reaches �asymptotically� a periodic
regime.
and accelerates for ever. If there is some dissipation, the
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pendulum will reach a periodic regime. An interesting point
is that at the onset of the loss of equilibrium, the behavior
can be completely different depending on the damping rate.

If the damping is large �scenario 2�, then the periodic re-
gime will be similar to the behavior before the disappearance
of equilibrium. The pendulum will slow down when it ap-
proaches �=� /2 and stay there a long time, and then it will
perform one rotation before returning close to �=� /2. When
� decreases to a value below 1, the pendulum stops at its
stable position close to � /2. There is no hysteresis in this
regime.

When the damping is weak �scenario 1�, the pendulum
starts to rotate and accelerates until it reaches the periodic
regime. This regime has a finite period. Actually the pendu-
lum jumps to one periodic trajectory that already existed.
When we decrease the forcing torque, even if the critical
torque �=1 is crossed, the pendulum keeps on rotating. If we
keep on decreasing the torque, the pendulum slows down
close to the unstable equilibrium. There is a critical torque
for which the pendulum does not cross the unstable equilib-
rium and returns to the stable one.

C. Summary

There are two boundaries in parameter space �� ,�� �see
Fig. 6�. One of them is �=1 and corresponds to the disap-
pearance of equilibria. The other one separates the domain
where a periodic trajectory exists and the region where it
does not exist. The shape of this curve �=�0��� has been
obtained by a numerical experiment. There exist three areas
in the parameter space that are separated by these bound-
aries. In region A the only stable solution is the stationary
solution. In region B there are two stable solutions, a station-
ary solution and a periodic rotation. In region C the only
stable solution is a periodic rotation.

V. BEHAVIOR NEAR THE BIFURCATIONS

A. Loss of equilibrium

The boundary of the area �in the parameter space� where
equilibria exist �regions B and C in Fig. 6� is easily obtained
and is given by �=1. For �
1 there is no equilibrium. We
are interested in the behavior for ��1. In particular, we
observed experimentally that for � slightly above 1 and for
high �, the period of oscillations is large and diverges as �
=1 is approached. One objective of the following analysis is

Fig. 6. The two-dimensional parameter space obtained by numerical inves-
tigations. Region �a�: The only stable solution is the stationary solution;
region �b�: The stationary solution and the periodic rotation are both stable;
region �c�: The only stable solution is the periodic rotation.
to characterize this divergence.
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We first derive an amplitude equation for the behavior of
the pendulum close to the loss of equilibrium. We make the
ansatz �=1+ where  is small. In the regime 	0, it is
natural to write the angle as �=� /2+�1+¯. The order of
magnitude of the correction of the angle is �1	��� because
of the parabolic form of the curve sin �−1 near �=� /2.We
substitute this ansatz in Eq. �2� and obtain to leading order

�1� + ��1� =  +
1

2
�1

2. �10�

For 	0, the two equilibria are �1= ±�−2. Equation �10�
gives the time scale of the variation of the angle. If � is
not small, the time scale of the variation of �1 is given by
��1�	, leading to a slow time scale ����. The inertial
term can then be dropped. Note that for the case �=0, the
time scale is ��1/4�.

This asymptotic analysis offers a description of the system
only near the point �=� /2. Thus the periodic orbit for �

1 cannot be fully described by this approach. However,
when the dissipation is strong enough, that is, when the pen-
dulum does not jump to an existing limit cycle, the pendulum
spends a very long time close to the point �=� /2 and the
time scale of the period of the rotating motion scales as
��−1/2.

In the limit of a system dominated by viscosity �� large�,
it is possible to describe the behavior analytically. If we drop
the inertial term ��, the equation of motion reduces to

�� =
1

�
�� − sin �� . �11�

If we note that for �
1,

� d�

� − sin �
=

2
��2 − 1

arctan
� tan��/2� − 1
��2 − 1

� , �12�

we obtain the periodic solution

���� = 2 arctan
��2 − 1

�2 tan���2 − 1

2�
� +

1

�
� . �13�

The origin of time has been set arbitrarily. A plot of the
speed of the pendulum as a function of � �see Fig. 7� reveals
that the pendulum spends a long time near �=� /2 �the pla-
teau in the curve�. The oscillation period of this solution is

T =
2��

��2 − 1
�

2��

�2
, �14�

thus confirming that for � close to 1, the period scales as
−1/2

Fig. 7. Plot of the velocity ����� in the high dissipation limit, see Eq. �13�,
with �=1.05 and �=5.
 .

1126 Am. J. Phys., Vol. 73, No. 12, December 2005
B. Loss of rotations

1. Boundary �=�0���

In Fig. 6 we plot the boundary �=�0��� of the region
where rotations exist. A point on this curve corresponds to
parameters where a homoclinic trajectory connecting two
successive unstable points exists. It is, in general, impossible
to determine the curve �0 analytically. However, there is a
known situation for which this orbit exists: The pendulum
without damping and without forcing. In this case, the first
integral corresponding to the energy level of the homoclinic
trajectory is

1
2 ����2 − cos � = 1. �15�

If we slightly perturb the system and add weak forcing and
weak damping, we can study the persistence of this solution.
We assume that � and � are both order . We perturb the
solution �h and write

� = �h��� + �1��� + ¯ . �16�

In Eq. �2� we use the classical procedure to obtain an ener-
getic balance, that is, we multiply by �� and integrate be-
tween �i and � f and find

1
2 ��� f��

2 − ��i��
2� + ��

�i

�f

����2dt − �cos � f − cos �i�

= ��� f − �i� . �17�

We look for a solution with �i=−� , � f =� , �i=−� , � f =�,
and � f�=�i�=0. At order  and in the limit ��i→−� ,� f →��,
Eq. �17� reads

2�� = ��
�i

�f

��h��
2ds = ��

�i

�f

�h�d� = 8� . �18�

The integral has been evaluated by using Eq. �15�. This
equation gives the linear shape of the curve ���� close to the
point �=0,�=0.

2. Divergence of the period near the homoclinic
bifurcation

When �=�0, the orbit is �h���. Close to the homoclinic
bifurcation, that is, when �→�0

−, the periodic orbit �p has a
diverging period. For this orbit, the balance of energy of Eq.
�8� can be written as

��
−T/2

T/2

��p��
2d� = 2�� . �19�

The time T /2 is defined by ��T /2�=�u �unstable equilib-
rium�.

To determine the period of quasi-homoclinic rotations, we
use the following reasoning. The left-hand side of Eq. �19�
represents the energy lost by viscous damping as the pendu-
lum moves between �u−2� and �u. Equation �19� tells us
that this energy remains constant and is equal to 2��. Thus,
when � decreases slightly, �=�0�1−�, the integral on the
left-hand side of Eq. �19� must increase. Moreover for large
periods, the pattern between −T /2 and T /2 is to the first
approximation �h �Fig. 8�. What changes is the period T and
in particular, the time spent in the neighborhood of the un-

stable equilibrium. With these assumptions, the energy bal-
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ance of Eq. �19� offers a way to calculate the variation of the
period with �. In Eq. �19� we replace �p by �h and write

�
−T/2

T/2

��h��
2d� = − �

−�

−T/2

��h��
2d� + �

−�

�

��h��
2d�

− �
T/2

�

��h��
2d� . �20�

The second term of the right-hand side is equal to 2�� /�0
�see Eq. �9��. In Eq. �19�, to leading order, we have with �
=�0�1−�

�0�1 − �
− �
−�

−T/2

��h��
2d� +

2��

�0
− �

T/2

�

��h��
2d��

� 2�� , �21�

or

2�� � − �0�
−�

−T/2

��h��
2d� − �0�

T/2

�

��h��
2d� . �22�

To compute the integrals in Eq. �22�, we need to charac-
terize the behavior of �h near the unstable point. This behav-
ior is dominated by the linear part of Eq. �2�. We use the
ansatz �=�u+� and write the linearized equation for � as

�� + ��� + �cos �u�� = 0, �23�

where cos �u=−�1−�2�1/2 is negative. The two characteris-
tic exponents that measure the convergence �divergence�
to �from� the unstable point are a−�a+� given by

a± =
�

2
�− 1 ±�1 −

4 cos �u

�2  . �24�

We note that a−	0 and a+
0 and �a−�
 �a+�. Thus we have

Fig. 8. Plot of the velocity ����� obtained by numerical integration of Eq.
�2� close to the homoclinic curve with �=0.8 for two values of �. Note that
the main difference is the time spent near �����=0.
the following scaling
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�h 	 C−ea+� as � → − � , �25a�

�h 	 C+ea−� as � → � , �25b�

where C− and C+ are unknown constants.
We can now use these approximations of �h to calculate

the integrals in Eq. �22�. The energy balance is

2�� � − �0C−
2e−a+T + �0C+

2ea−T. �26�

As T goes to +�, the second term of the right-hand side
dominates �because �a−�
 �a+��, and thus as  goes to zero,
the period of rotation diverges as

T 	
1

a−
log  . �27�

The method used to obtain Eq. �27� can be generalized and
the period of a limit cycle approaching an homoclinic bifur-
cation is generically given by Eq. �27�.6

VI. SUMMARY AND REMARKS

We have studied both experimentally and theoretically a
simple mechanical device: A pendulum forced by a constant
torque. The dynamics depends on two parameters: One mea-
sures the damping and the other the forcing. The experiment
as well as the qualitative analysis reveals the existence of
two bifurcations: A local bifurcation, the loss of equilibrium,
and a global bifurcation, the homoclinic bifurcation.

For low forcing, the pendulum has two equilibria, one
stable and one unstable. For a given forcing ��=1�, the loss
of equilibrium occurs. If the damping is weak, the bifurca-
tion is subcritical and the pendulum rotates with a finite pe-
riod. If the damping is strong, the bifurcation is supercritical,
and the period of rotations just above threshold scales as
1 /�, where  is the distance from threshold.

For a given torque and sufficiently weak damping, stable
periodic rotations coexist with equilibria. These periodic ro-
tations arise through an homoclinic bifurcation at �=�0���.
The exact position of the curve �0��� in parameter space
cannot be determined analytically. The periodic orbit arising
through this bifurcation has a period that diverges as
T	−ln .

The qualitative analysis developed here applies to various
other physical situations. A typical example is the equilib-

Fig. 9. The equilibrium of a nonsliding solid on an inclined plane. Below a
critical tilt angle, there are two equilibria and above it there are no equilib-
rium. The critical angle depends on the shape of the solid.
rium of a nonsliding solid on an inclined plane �Fig. 9�. A
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model of sandpiles7 also exhibits the bifurcations described
in our simple experiment. The two bifurcations there corre-
spond to the static angle where the sandpile flows and the
dynamical angle �our homoclinic bifurcation�, where a finite
perturbation leads to avalanches.
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