
Eur. Phys. J. B 6, 529–536 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

An analytical estimate of the period for the delayed logistic
application and the Lotka-Volterra system

C. Clanet1,a and E. Villermaux2
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Abstract. We first introduce a simple and new method for the quantitative analysis of some nonlinear
oscillating systems. It is shown that if the dynamics of the system reduces to piecewise exponential growth
and exponential damping phases, then the amplitude and period of the motion can be computed with
accuracy in the nonlinear regime without invoking linear stability arguments or perturbative expansions.
This method is then successfully applied to the delayed logistic application and to the Lotka-Volterra prey-
predator model. For both of these systems, we provide an accurate analytical expression for the period of
the oscillations in the nonlinear regime.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory)

1 Introduction

This paper is concerned with the quantitative estimation
of the temporal features of nonlinear oscillating systems.
Among these, we particularly focus our attention on two
paradigms for oscillations controlled by nonlinear effects,
namely the delayed logistic application and the Lotka-
Volterra prey-predator model.

Considering the evolution of a single population able to
reproduce itself, Verhulst [16] was the first to realize that
the growth of a population in a bounded domain could
not continue indefinitely at the same rate and that some
nonlinear damping should occur; he formalized this idea
in the since then celebrated logistic equation which in-
corporates the first order nonlinear correction to the pure
exponential growth of the population size x(t):

dx

dt
= x[1− x]. (1)

This model has its equivalent in the context of hydrody-
namic instabilities for the square of the amplitude distur-
bances in a flow [7].

It was further realized that the nonlinear damping in
(1) could for some reasons incorporate historical terms and
that the growth of the population size x(t) at time t could
be a function of the population size at previous instants of
time x(t − t′). The relative influence of the different time
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lags t′ is weighted by a memory function f(t′) such that

dx

dt
= x(t)

[
1−

∫ t

0

x(t− t′)f(t′) dt′
]
. (2)

In practice, the function f(t′) is peaked around a certain
time lag τ , and in the limit where f(t′) is a pure delay (i.e.
f(t′) = δ(t′ − τ) where δ(t) is the Dirac delta function),
equation (2) reduces to the delayed logistic equation

dx

dt
= x[1− x(t − τ)], (3)

which displays nonlinear oscillations for τ > π/2.
Equation (3) is sometimes referred to as the Hutchinson
equation, Cherwell-Wright equation, or NLDS (Non Lin-
ear Delayed Saturation) model, depending on the com-
munity. This formulation is particularly widespread in the
population dynamics community because the origin of the
time delay τ receives there a clear physiological interpre-
tation. It is usually attributed to an incubation period
[15] when diseases leading to death affect the population
growth, or may also represent a maturity time of the indi-
viduals in the population (see [13] and references therein).
More generally, time lags come into play in various evo-
lution equations (where they are usually included on a
heuristic basis) when the dynamics of the system is ruled
by two very different timescales: a short timescale char-
acteristic of the growth rate and a long time character-
istic of the feedback. Several examples can be found in
different area including physiology [2,11], economics [5],
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astrophysics [20], combustion [6,12], optics [8], geophysics
[1] or hydrodynamics [17,18]; all of them display nonlin-
ear oscillations on which more or less chaotic fluctuations
are superimposed. The work of Joulin [6] is particularly
relevant in the sense that equation (3) is derived by an
asymptotic expansion from the local equations of hydro-
dynamics to describe the oscillations of the standoff dis-
tance of a premixed planar flame front held downstream
of a flat porous burner. The delay is here shown to be
due to the slow, diffusive transport of heat from the flame
front to the burner.

The effect of the interaction between different species
has also been addressed. The simplest prey-predator
model was first proposed by Lotka [9] in the context of
competing chemical reactions with coupled second order
kinetics, and then systematically investigated by Volterra
[19], invoking the situation of two species in a closed space,
one of them serving of food for the other (“Deux espèces
dont l’une dévore l’autre” following the title of one of the
chapters of his 1931 book). If x(t) and y(t) represent the
populations of two species coexisting in a closed area, one
of them (x) living on an infinite substrate and being the
food of the other (y), this model writes, with appropriate
amplitude and time rescalings as:

dx

dt
= δ x[1− y] and

dy

dt
= −

1

δ
y[1− x] (4)

where δ is a constant. This system displays nonlinear os-
cillations (see for example [13]), the amplitude and phase
shift between x(t) and y(t) being given by the initial con-
ditions x(0), y(0) and δ.

Although systems (3, 4) are widely commented on and
referenced in the literature, including review monographs
directly devoted to the subject [10,13,14], attempts to es-
timate the period of oscillation far beyond the vicinity of
the onset of the oscillations have been made very recently
only.

Taking advantage of the “exponential oscillation” like
behavior of (3) far from the oscillation threshold (τ >
π/2), Villermaux and Hopfinger [18] derived an accurate
expression for the oscillation period for a variant of the
logistic equation, namely the NLDS model, which reduces
to the logistic equation when the fluctuating quantity is
positive. This expression proved to be particularly useful
for extrapolation purposes in situations where τ can be
computed a-priori from the physics of the problem. The
period was found to be always larger than the delay τ ,
with a correction involving a rapidly varying function of
τ , explaining why perturbative methods around the os-
cillation threshold failed at giving a correct estimate (see
[3,13]). The derivation has been extended by Villermaux
[17] for two coupled delayed logistic equations allowing to
make, again, a direct comparison with a physical experi-
ment, and original predictions.

The purpose of this work is to improve the ‘one pa-
rameter free’ derivation of reference [18] with a simple
and general method. This method is presented in Sec-
tion 2 and then applied to the delayed logistic application
(Sect. 3) and to the Lotka-Volterra system (Sect. 4).
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Fig. 1. Example of an exponential oscillating signal.

2 The relaxation oscillation method (ROM)

For the delayed logistic application and the Lotka-Volterra
system, the ascending and descending part of the oscilla-
tions can be approximated by exponentials, in the nonlin-
ear regime. The first step of the method is to study a pure
exponential oscillating function a(t):

a(t) =

a1e
t/τ1 for 0 < t < T1

a2e
−t/τ2 for T1 < t < T1 + T2.

(5)

This function is presented in Figure 1 1. According to (5),
a(t) increases from the minimum a1 to the maximum a2

with a characteristic time τ1, in the ascending phase. This
growth is T1 long and t1 after having reached a1, a(t)
reaches its mean value a. In the descending part, a(t) de-
creases from a2 to a1 with a characteristic time τ2. This
decrease is T2 long and t2 after the amplitude a(t) had
reached a2, it reaches a. The quantities of interest for the
nonlinear oscillations are the maxima a1, a2 and the pe-
riod T = T1 + T2. Using the exponential character of the
oscillations equations (6–8) express these quantities as a
function of the mean values a, a1 and a2 and as a function
of the characteristic times τ1 and τ2. Equation (6) relates
the extrema to the mean value:

a2 − a1

ln (a2/a1)
= a. (6)

Considering the portion of a(t) above and below a, we
define an upper and lower mean, referred to as a2, and a1

respectively. These mean values are related to the extrema

1 Even if the function a(t) is continue, its first derivative
shows discontinuities at the maxima (a1 and a2). It follows
that a(t) cannot be the exact solution of an oscillating system
described by a set of differential equations. This does not pre-
vent it to be, in some cases, a good approximation of such a
system.
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by the same type of equation as (6):

a− a1

ln (a/a1)
= a1 and

a2 − a

ln (a2/a)
= a2. (7)

Equations (6, 7) are used to compute the extrema and the
sub periods T1 and T2:

T1

τ1
=

T2

τ2
= ln (a2/a1). (8)

Finally, the period of the signal, T , is determined from the
extrema and from the characteristic times:

T = (τ1 + τ2) ln (a2/a1). (9)

In the following, we will also use the expressions of the
intermediate times t1 and t2 which separate respectively
a1 and a2 from a.

t1

τ1
=
T2 − t2
τ2

= ln

(
a

a1

)

t2

τ2
=
T1 − t1
τ1

= ln
(a2

a

)
· (10)

3 The delayed logistic application

In a dimensionless form, the delayed logistic application
(3) can be written:

d ln(x)

dt
= 1− x(t− τ). (11)

The minimum set of parameters which controls the evolu-
tion of x(t), includes τ and the knowledge of x during the
period t ∈ [0, τ ]. Equation (11) can then be used to obtain
the evolution of x at later times t > τ . In the following,
we use the condition x(t) = β for 0 < t < τ where the
constant β is set to 0.99 and can be considered as a small
perturbation of the steady state x = 1. The maximal am-
plitudes and the period at the limit cycle in the nonlinear
regime are not sensitive to the choice of the initial condi-
tions; they only depend on the delay τ . According to the
linear stability analysis, the steady state x(t) = 1 is stable
for τ < π/2 and exhibit limit cycles above the bifurcation
value τc = π/2. Near the bifurcation, the period of the
oscillations is 2π [13]. The distance from the linear regime
is measured by ∆τ = τ − τc.

A typical evolution of x(t) and x(t − τ) is shown on
a semi-logarithmic scale in Figure 2 for ∆τ = 1 (τ ≈
2.57). The oscillations are strongly nonlinear and exhibit
a “quasi exponential” behavior in the ascending and de-
scending phases, which legitimate the method proposed.
According to (11), the maxima x1 and x2 are reached when
x(t − τ) = 1. The ascending phase of x , corresponds
to the region where x(t − τ) < 1, and the descending
phase, corresponds to the domain where x(t−τ) > 1. The
threshold value x = 1 is the average of x over a period.
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Fig. 2. Solution of the delayed logistic application obtained
with ∆τ = 1; (�): x(t); (•): x(t− τ ).

Indeed, if x(t) oscillates and remains strictly positive,
ln(x(t)) also oscillates with the same period. The aver-
age of the derivatives over a period is by definition null,
dx

dt
=
d ln(x)

dt
= 0, which implies, using (11):

1− x(t− τ) = 0 implying x(t− τ) = x = 1. (12)

The mean value of x(t−τ) during the ascending phase of x
is thus x1 and its mean value during the descending phase
of x is x2. In the nonlinear regime, the delayed logistic
application can thus be approximated by:

x(t) =


dx

dt
= +

x

τ1
with

1

τ1
≡ (1− x1) (GP)

dx

dt
= −

x

τ2
with

1

τ2
≡ (x2 − 1) (DP).

(13)

Where (GP) and (DP) respectively stand for Growth
Phase and Decaying Phase. From equation (6), we get
the relation between the maxima:

x1 − ln(x1) = x2 − ln(x2) or F (x1) = F (x2). (14)

Where the function F (x) = x− ln(x) is a key function in
this paper and is discussed in Appendix. Using (13, 14)
with (8), the period T of the oscillations, can be expressed
as a function of the maxima:

T = T1 + T2

with

T1 =
F (x2)(x2 − x1)

F (x2)− 1

T2 =
ln(x2)(x2 − x1)

F (x2)− 1
· (15)
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Fig. 3. Comparison of the period, Tni, obtained by numerical
integration (—) with the expression eτ + τ obtained with the
ROM method (–•–).

According to equation (11), it takes a time t = τ , to go
from the mean value x = 1, to the maxima x = x1, or x =
x2. With the notations of Section 2, τ = T1− t1 = T2− t2.
This equation, together with (7, 8, 13), leads to a relation
between the maxima x1, x2 and the delay τ :

− ln(x2) ln(x1)

F (x1)− 1
= τ. (16)

In the nonlinear regime, this expression can be simplified
using the limits x1 � x2 and x2 � 1. The first limit
reduces equation (14) to − ln(x1) ≈ x2 − ln(x2). The sec-
ond leads to F (x2) ≈ x2 (see Appendix). Equation (16)
thus gives the evolution of the maximum as function of
the delay: x2 ≈ eτ .

From the relations (15), one deduces:

T1 ≈ e
τ , T2 ≈ τ and T ≈ eτ + τ. (17)

Equation (17) is the central result of this section. It ex-
presses the period of the delayed logistic application when
the motion is strongly nonlinear. Figure 3 presents the
variation with ∆τ of the period, Tni, obtained by numeri-
cal integration and compares it to the expression obtained
in equation (17). In the range 10−4 < ∆τ < 4, Table 1 also
presents the comparison between the period obtained by a
numerical integration (Tni) of the system (11) and the es-
timation obtained with (17). The agreement between Tni
and the ROM estimation is within 10% for 0 < ∆τ < 3.

4 The Lotka-Volterra system

In a dimensionless form, the Lotka-Volterra system can be
written: 

d ln(x)

dt
= +δ(1− y)

d ln(y)

dt
= −

1

δ
(1− x).

(18)

Table 1. Comparison between the period obtained with the
ROM method (eτ + τ ) and the period obtained by numerical
integration (Tni).

∆τ τ Tni eτ + τ Error (%)

1.00e-04 1.57 6.28 6.38 1.7
0.00129 1.57 6.28 6.39 1.8
0.0116 1.58 6.30 6.45 2.3
0.104 1.67 6.58 7.01 6.6
0.447 2.02 8.89 9.54 7.3
1.34 2.91 19.3 21.2 10.2
1.93 3.50 33.5 36.5 8.9
2.78 4.35 75.2 81.6 8.5
4.00 5.57 231 268 16.1
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Fig. 4. Evolution of preys (x, –•–) and predators (y, –�–) for
δ = 2 and H = 1.4Hmin.

This system is conservative in the sense that it admits a
first integral:

H = F (x) + δ2F (y) where

F (ξ) = ξ − ln(ξ) and H = const. (19)

The quantity H is thus conserved along the different tra-
jectories in the (x, y) plane. The function F is always pos-
itive and admits a minimum F (1) = 1 (See Appendix).
This implies that H is always larger than Hmin = 1 + δ2.
According to equation (19) any trajectory is defined by
two parameters, δ and H. The first one expresses the
asymmetry between the two populations and the second
reflects the initial condition (H = F (x0) + δ2F (y0)) giv-
ing an information on the strength of the nonlinearity (the
larger H −Hmin the stronger the nonlinearity).

An example of solution is presented in Figure 4 with
the parameters δ = 2 and H = 1.4Hmin = 7. Considering
the evolution of preys x, we get from (18) that the maxima
x1 and x2, are reached for y = 1 (in the same way, if
x = 1 then y = y1 or y = y2). The decrease of x and
its growth, correspond respectively to y > 1 and y < 1.
Symmetrically, y grows for x < 1 and decays for x > 1.

The critical value, 1, is the average of the two popu-
lations over a cycle. This can be shown, using equations
(18, 19) . The trajectories described by equations (19) are
closed loops around the singularity x = y = 1 [19] and
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the populations x and y never relax to 0 (except for the
trivial fixed point {x0 = 0, y0 = 0}). Then ln(x) and ln(y)
oscillate with the same period as x and y and the average
of their derivative over a period is 0. From equations (18)
we have:

δ(1− y) = 0

(x− 1)/δ = 0

 or equivalently y = x = 1. (20)

In other words, the mean value of y during the ascending
phase of x is y1. From (18), we get that in the ascending

phase,
dx

dt
≈ δx(1− y1), which describes an exponential.

Using the same scheme for the descending phase of x and
for the evolution of y, we get the approximate form of the
Lotka-Volterra system:

x(t) =


dx

dt
= +

x

τx1
with

1

τx1
≡ δ(1− y1) (GP)

dx

dt
= −

x

τx2
with

1

τx2
≡ δ(y2 − 1) (DP)

(21)

y(t) =


dy

dt
= +

y

τy1
with

1

τy1
≡

(x2 − 1)

δ
(GP)

dy

dt
= −

y

τy2
with

1

τy2
≡

(1− x1)

δ
(DP).

(22)

Considering first the population of preys, the maximal am-
plitude x2 is related to the constantH via the first integral
(19): F (x2) + δ2 = H which leads to the solution:

x2 = F−1
>1 (1 +∆H) with

∆H = H −Hmin = H − (1 + δ2). (23)

The functions F−1
>1 (α) and F−1

<1 (α) stand respectively for
the solution x > 1 and x < 1 of the equation F (x)−α = 0
(see Appendix).

According to Section 2, the maxima x1 and x2 are
related through equation (6) which can be written (using
x = 1):

F (x1) = F (x2). (24)

Obviously, the same equation applies for y:

F (y1) = F (y2). (25)

Using the notations of Section 2, in the ascending phase
of y, it takes t2x for y(t) to go from y = 1, to y = y2. This
can also be written y2 = 1 × et2x(x2−1)/δ. Using equation
(7) for x2 and equation (10) for t2x we get:

F (y2)− 1 =
1

δ2
(F (x2)− 1). (26)

It is worth noticing that equations (24–26) which have
been obtained with the ROM method also constitute the
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Fig. 5. Variation of the period of oscillation T as a function of
∆H/Hmin for δ = 1 (numerical integration — equation (28) -
0th order +, equation (28) - 1st order ×, equation (28) - 2nd
order •).

exact solutions of the Lotka-Volterra system, according to
the first integral (19). Since the maximal amplitudes can
be obtained exactly from equation (19), the main inter-
est of the ROM method for the Lotka-Volterra system is
thus to provide a precise estimation of the period of the
oscillations.

Using equation (25) in the expression of the period (9),
we get T = (τy1 + τy2)(y2 − y1). The characteristic times
given by (22) reduce this expression to:

T = δ
(x2 − x1)(y2 − y1)

F (x2)− 1
· (27)

The expressions of the maxima (Eqs. (23–26)), reduce the
expression of the period T , to a function of δ and H:

T =
δ

∆H
F(1 +∆H)F(1 +∆H/δ2)

where F(x) = F−1
>1 (x)− F−1

<1 (x). (28)

This expression of the period is compared in Figures 5 and
6 to the value obtained by numerical integration of the
system (4). Figure 5 presents the function T (∆H/Hmin)
for δ = 1 and Figure 6 presents the function T (δ) for
∆H/Hmin = 0.5 .

We first focus on Figure 5 and discuss the difference
between the numerical integration and the value of T
obtained with equation (28), using different methods to
evaluate F−1

>1 and F−1
<1 . The parameter ∆H/Hmin used

to present the evolution of the period, enables the sep-
aration between the linear and nonlinear domains: for
∆H/Hmin < 1, the period of the oscillations remains close
to the linear limit 2π whereas its value increases strongly
for ∆H/Hmin > 1.

The zero, first and second approximations presented
in Figure 5 stand for the different order approximation
of F−1

>1 and F−1
<1 presented in Appendix. For the whole

range of ∆H/Hmin, the second order approximation re-
mains close to the numerical solution. The maximum er-
ror is made in the linear domain (27%), where, however,
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Fig. 6. Variation of the period of oscillation T as a function of
δ = 1 for ∆H/Hmin = 0.5 (numerical integration — equation
(28) - 0th order +, equation (28) - 1st order ×, equation (28)
- 2nd order •).

the ROM method is not supposed to apply 2. The er-
ror is reduced to 20% as soon as ∆H/Hmin > 0.5,
reaches 10% for ∆H/Hmin > 1.7 and is less than 1%
for ∆H/Hmin > 8. Considering the first order approxi-
mation, the error is of the order of 20% for ∆H/Hmin ≈ 1
and is reduced to 1% as soon as ∆H/Hmin ≈ 2. The er-
ror made with the zero order approximation was always
larger than 20% for the whole range of ∆H/Hmin. Using
the first order approximation, the period can be written
explicitly as function of δ and ∆H:

Ta1 ≈

(
H

δ
+

δ

∆H

)[
1+

ln(1+∆H)

∆H
+

ln(1+∆H/δ2)

∆H/δ2

]
.

(29)

A direct comparison of this formula with the calculated
period is displayed in Table 2: all the errors reported, con-
cern the special case δ = 1. The study of the influence
of δ for a fixed value of ∆H/Hmin is presented in Fig-
ure 6. The period T reaches a minimum value for δ = 1,
where the error of the different approximations is maxi-
mum. This means that all the errors reported above for the
case δ = 1 will be reduced for any other value of δ. Accord-
ing to Figure 6, the maximum error of the second order
approximation is 20% for δ = 1 and is reduced to 10% for
δ > 4 or δ < 0.25. The zero order approximation always
underestimates the period whereas the first order always
overestimates it. For the special case ∆H/Hmin = 0.5 the
error made with the first order approximation goes down
to 20% for δ > 10 or δ < 0.1. The estimation of the pe-
riod with the second order approximation for any value of
δ is better than 20% for ∆H/Hmin > 0.5 and better than
10% for ∆H/Hmin > 1.7. The accuracy of equation (29)
is better than 20% for all δ, as soon as ∆H/Hmin > 1.

2 In the linear regime, x(t) and y(t) are closer to a sinusoidal
shape than to an exponential.

Table 2. Comparison between the period obtained with the
ROM method and the period obtained by numerical integra-
tion (Tni).

∆H/H Tni Ta1 Error (%)

0.12689 6.5520 17.234 163.03

0.45203 7.2620 9.7233 33.893

0.62101 7.6440 9.3089 21.780

0.85317 8.1740 9.3013 13.792

1.1721 8.9180 9.6845 8.5955

1.6103 9.9520 10.477 5.2763

2.2122 11.380 11.734 3.1084

3.0392 13.328 13.551 1.6717

4.1753 15.966 16.076 0.68985

5.7361 19.520 19.525 0.024057

5 Conclusion

We have considered the oscillations of the delayed logis-
tic application and the Lotka-Volterra system in the non-
linear regime. In that domain, we have shown that the
approximation of the evolution by piecewise exponential
growth and exponential damping phases provides an ana-
lytical expression for the period of the oscillations which
remains accurate even far in the nonlinear domain (ROM
method).

It is to be emphasized that the ROM method does not
invoke any linear stability arguments or perturbative ex-
pansions. It is clear that the spirit of this method is not
limited to systems liable of an exponential fitting proce-
dure. Provided an appropriate fitting function is found and
that it is sufficiently simple to be analytically tractable,
any system can, in principle, take advantage of the method
we have presented here.

Appendix: Study of the function
F(x) = x− ln(x)

The problem addressed here, is the determination of ap-
proximate solutions to the nonlinear equation:

x− ln(x)− α = 0. (A.1)

A.1 General study of F(x)

For x real, F (x) is defined in the interval ]0,∞[. Its deriva-
tive f ′(x) = 1− 1/x shows that F (x) decays from +∞ to
1 for 0 < x < 1 and grows from 1 to +∞ for 1 < x <
+∞. At the minimum, F (1) = 1. F (x) is presented in
Figure 7. Equation (A.1) thus does not have any real
solution for α < 1, has one solution for α = 1
(i.e. x = 1) and admits two solutions for α > 1.
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Fig. 7. Representation of F (x) = x− ln(x) on a log-log scale.

In the case α > 1, one of the solutions is smaller than
one and the other is greater than one.

A.2 Approximate solution of the nonlinear equation
x− ln(x)− α = 0 for x� 1

In the limit x � 1, it is worth writing equation (A.1) in
the new form:

x

(
1−

ln(x)

x

)
= α. (A.2)

Using the fact that lim
x→∞

ln(x)

x
= 0, we get a first approx-

imation of the solution, namely x0 = α. This approxi-
mation can be improved, using x1 = x0(1 + ε) where ε is
considered to be small compared to 1. We can then expand
ln(x1) in ε and get new approximations. At the first order
in ε, ln(x1) = ln(x0) + ε and using the first approximation
x0 = α, we obtain a new estimation of the root:

x1 = x0

(
1 +

ln(x0)

x0 − 1

)
where x0 = α. (A.3)

At the next order in ε, ln(x2) = ln(x0) + ε−
ε2

2
, this

method leads to:

x2 = x0

(
1 + (x0 − 1)

[√
1 +

2 ln(x0)

(x0 − 1)2
− 1

])
where x0 = α.

(A.4)

These approximations satisfy the limits lim
x→∞

x2 = x1 and

lim
x→∞

x1 = x0. We can compare these approximations to

the one obtained by a numerical integration of (A.1) using
a Newton’s method. To make this comparison, we define
the error function as:

Errori(α) = 100
|xi(α) − xNewton(α)|

xNewton(α)
· (A.5)

0.01

0.1

1

10

100

1 10α

Error (%)

Fig. 8. Errori as a function of α for x > 1 (Error0 –♦–, Error1

–�–, Error2 –◦–).

This error function measures in percentile, the discrep-
ancy observed between the numerical solution and the ap-
proximations of different orders (i). The functions Error0,
Error1 and Error2 are plotted in Figure 8 for α ∈ [1, 10].
We observe that the maximum error obtained with the sec-
ond order approximation is 2.8%, eventhough the value of
α goes down to 1. This accuracy is sufficient for our study.

A.3 Approximate solution of the nonlinear equation
x− ln(x)− α = 0 for x� 1

In this limit, we define a new variable z = 1/x so that
z � 1. In terms of z, equation (A.1) takes the form:

ln(z)

(
1 +

1

z ln(z)

)
= α. (A.6)

Using the fact that lim
z→∞

1

z ln(z)
= 0 we obtain the first

approximation of the solution z0 = eα. We then pose z1 =

z0(1 + ε) and develop in power of ε the two functions
1

z1
and ln(z1). At the first order in ε, we get:

z1 = z0

(
1−

1

z0 − 1

)
where z0 = eα. (A.7)

In the same way, the second order approximation is:

z2 = z0

(
1 +

z0 − 1

2− z0

[√
1−

2(2− z0)

(z0 − 1)2
− 1

])
where

z0 = eα.
(A.8)

These approximations satisfy the limits lim
z→∞

z2 = z1 and

lim
z→∞

z1 = z0. In terms of x, we obviously obtain the three

approximations x0 = 1/z0, x1 = 1/z1 and x2 = 1/z2.
Using the same error functions as the one defined in the
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Fig. 9. Errori as a function of α for x < 1 (Error0 –♦–, Error1

–�–, Error2 –◦–).

preceding section, we measure the accuracy of these dif-
ferent approximations by comparing them to the numer-
ical solution. This comparison is presented in Figure 9:
The maximum error is obtained for α = 1, as expected.
It reaches 63% for x0, 12% for x1 and 22% for x2. Con-
sidering the second order approximation, this error is re-
duced very quickly to 10% for α = 1.018 and to 1% for
α = 1.13. Considering the first order approximation, the
error is always smaller than 12% but decays less rapidly
as α increases (it reaches 1% for α = 2.05).

To conclude this Appendix, we point out that the ap-
proximate solutions obtained for the nonlinear equation
x − ln(x) = α in the two domains ]0, 1[ and ]1,∞[ can
be used up to x = 1. In other words, we found accurate
approximations of this nonlinear equation for the whole
domain x ∈]0,∞[.
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