
RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 64, 025202~R!
Chaotic self-trapping of a weakly irreversible double Bose condensate
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We analyze the dynamics of a weakly open Bose-Einstein condensate trapped in a double-well potential.
Close to the self-trapping bifurcation, numerical simulations of the weakly irreversible one-dimensional Gross
Pitaevskii equation reveal chaotic behaviors. A two-mode model is used to derive amplitude equations describ-
ing the complex dynamic of the condensate.
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Seventy years after its prediction, Bose-Einstein cond
sation has been observed in trapped gases of rubidium@1#,
sodium @2#, and lithium @3#. The mean-field theory~Gross-
Pitaevskii equation! has been quite successful in reproduci
quantitatively many experimental observations@4#.

We consider a weakly open thin cigar shaped Bo
Einstein condensate in a double-well potential described
the weakly dissipative version of the Gross-Pitaevskii~GP!
equation,

i ] tc~x,t !5„Vext~x!2¹21cnluc~x,t !u2
…c~x,t !

1 i e„ã2b̃2uc~x,t !u21g̃¹2
…c~x,t !, ~1!

wherec(x,t) is the condensate wave function, andVext(x)
5ax21b„exp(2cx2)21…, is the trapping potential. The coe
ficient cnl measures the interaction between the atoms of
condensate. The magnitude of the irreversible effects, wh
will be described later, is represented bye.

A numerical simulation of Eq.~1! using finite differences
discretization in space and a Crank-Nicholson scheme
time, shows that the condensate exhibits Lorenz-like cha
behavior@5# ~see Fig. 1!. This paper aims to explain such
behavior.

In the case of a condensate with attractive atoms, the s
trapping instability is the result of the competition betwe
the focusing of the wave function of the ground state at
center of the trap and the repulsive effect of the energy b
rier. In the case of a condensate with repulsive atoms, a s
lar competition occurs for the first excited state, the bla
soliton @6,7#, which, in the absence of barrier, is also loca
ized at the center of the trap. The self-trapping bifurcation
a reversible pitchfork bifurcation that leads to two stab
nonsymmetric states.

This bifurcation was first predicted in the frame of a dra
tic truncation of the GP equation, the two-mode mod
@8–10#. In order to check the prediction of this model,
detailed numerical analysis of the stationary solutio
C(x,t)5 f (x)exp(2ivt) of the reversible Gross-Pitaevsk
equation@e50 in Eq. ~1!# has been performed. The stabili
of the stationary solutions~Fig. 2! confirms the existence o
a pitchfork bifurcation.

*Also at l’Institut Universitaire de France, 103 boulevard Sai
Michel, 75005 Paris, France.
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Although there is no rigourous reduction of the GP mod
to the two-mode model@8,9#, such a model has been ver
useful in particular to predict the self-trapping bifurcation.
this letter we will use it as a toy model to investigate an
lytically the fate of the self-trapping instability in weakl
open condensate. The two-mode model reads

i ] tC15UuC1u2C12KC2 , ~2a!

i ] tC25UuC2u2C22KC1 , ~2b!

whereC1,2 represent the ground-state amplitudes in the t
wells,U measures the atomic interaction (U,0 in the attrac-
tive case andU.0 in the repulsive case!, andK the tunnel-
ing coupling parameter.

These equations admit two simple solutions of intere
The in-phase solution

C1
15C2

15Ar exp~ i ~2Ur1K !t !

corresponds to the ground state. The antiphase solution

-

FIG. 1. Numerical solutions of Eq.~1!: cnl521, a51, b56,
c510, a56, b58, g53, ande50.01. ~a! Plot of the successive
minima of the ‘‘mass’’* uCu2dx. ~b! Density plot ofuCu2 showing
the characteristic time and length scale of the chaotic oscillatio
~c! Plot of the center of inertiaX5*xuCu2dx as a function of time.
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C1
252C2

25Ar exp„i ~2Ur2K !t…

corresponds to the dark soliton state.xi andf i , i 51,2 are
the amplitudes and phase perturbations of the in-phase
antiphase solutions

C15~11x1!exp~ if1!Ar exp„i ~2Ur1jK !t…, ~3a!

C25j~11x2!exp~ if2!Ar exp„i ~2Ur1jK !t…, ~3b!

wherej51 ~resp.j521) for the in-phase solution~respec-
tively antiphase solution!. The use of the new variabless
5x11x2 , d5x22x1, andf5f22f1 simplifies Eqs.~2! to

] ts52jKd sinf, ~4a!

] td52jK sinf1jKs sinf, ~4b!

] tf52Urd~21s!1jKS 21s2d

21s1d
2

21s1d

21s2d D cosf.

~4c!

The invariance of these equations under the transforma
j→2j, U→2U, d→d, allows us to restrict our analy
sis to the attractive case (U521) without loss of generality.
The linearization of Eqs.~4! reads

] ts50, ~5a!

] td52jKf, ~5b!

FIG. 2. Stationary numerical solutions of Eq.~1! with e50. ~a!
cnl521, the ground state and its nonsymmetric bifurcated st
~b! cnl51, the black soliton and its nonsymmetric bifurcated sta
The dashed line represents the potential (a51, b512, c510). The
solid curve represents the symmetric unstable solution, the c
marked with ‘‘o’’ represents one of the two stable nonsymme
solution.
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] tf52~r2jK !d. ~5c!

The antiphase solution (j521) is always stable in that cas
and the in-phase solution (j51) loses its stability whenK
,Kc5r. Close to the instability, the variables scale with t
small parameterl54Kc(K2Kc), which measures the dis
tance from the instability threshold. The scalings are the
lowing: ] t;O(l1/2), s;O(l), d;O(l1/2), andf;O(l).
In the limit wherel→0, Eqs.~4! asymptotically reduce to

ü2~l1w!u1u350, ~6a!

ẇ50, ~6b!

where d51/A2Kcu, f51/2A2Kc
2v, and s51/4Kc

2w
21/8Kc

2u2.
These equations catch the universal features of the s

trapping transition~See Fig. 3!. The instability can be
achieved either by decreasing the coupling parameterK or by
increasing the total number of atoms in the trap. This ins
bility was depicted in@10#, where the authors used ellipti
functions to describe symmetric and nonsymmetric osci
tions in the two-mode model. Equations~6! can be deduced
directly from the GP model@11#.

Inelastic collisions cause the decay of the condens
@12–15#. Once the condensate is formed, there is a flux
particles from the nonequilibrium above-condensate cloud
the condensate that tends to maintain a fixed number of c
densed atoms: this is the pumping process. These effects
be included in the GP equation giving Eq.~1! @16#. The term
g̃¹2C represents diffusion. The corresponding modifi
two-mode model becomes

i ] tC15UuC1u2C12KC21 i eI 1 , ~7a!

i ] tC25UuC2u2C22KC11 i eI 2 , ~7b!

where

I 1,25aC1,22b2uC1,2u2C1,21gC2,1, ~8!

wherea represents the feeding rate of the condensate
b2uC1,2u2, its decay rate induced by the inelastic two bo
collisions, andg describes the irreversible small couplin
between the condensates due to inhomogeneous effects
diffusion. The irreversible terms in the two-mode model c
be computed from Eq.~1!, using an ansatz based on tw
ground states of the isolated traps@9#. Though these effects

e.
.

ve

FIG. 3. Phase space (u,v) of Eqs. ~6! with w050. ~a! l5
20.2, ~b! l50.5.
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are small, they will dramatically affect the dynamic close
the self-trapping instability. Eqs.~5! become

] ts52Kd sinf1eDs , ~9a!

] td52K sinf1Ks sinf1eDd , ~9b!

] tf52rd~21s!1KS 21s2d

21s1d
2

21s1d

21s2d D cosf1eDf ,

~9c!

where the dissipative terms are

Ds5~11x1!@a2b2r~11x1!2#1~11x2!

3@a2b2r~11x2!2#1g~21x11x2!cosf,

~10a!

Dd5~11x1!@a2b2r~11x1!2#2~11x2!

3@a2b2r~11x2!2#1g~x22x1!cosf, ~10b!

Df52gS 11x1

11x2
1

11x2

11x1
D sinf, ~10c!

andx15 1
2 (s2d) andx25 1

2 (s1d).
We can adjust the order of magnitude of the bifurcat

parameterl to the amplitude of the small irreversible effect
Close to the self-trapping instability, using the sam

asymptotic as in the reversible case, withe;O(l
1
2 ), we then

derive a new set of equations:

ü2~l81w!u1nu̇1u350, ~11a!

ẇ52mw2hu2, ~11b!

where l854Kc(Kc2K)12e2g(a2g23b2r), d
51/A2Kcu, f51/2A2Kc

2v1ea1/A2Kc
2u, s51/4Kc

2w
21/8Kc

2u2, and Kc5a1g/b2. Irreversible effects are cap
tured by the parametersm, n, and h. The parametern
5e(2a16g) measures the damping of the oscillations
the center of inertia of the condensate,m52e(a1g) mea-
sures the loss of atoms due to the inelastic two body co
sions, andh5e(4a16g) measures the ‘‘stimulated’’ los
of atoms induced by the symmetry breaking. This last te
gives rise to the complex behavior, since it couples the eq
tions of the dynamic. These equations can be deduced
rectly from the irreversible GP model@Eq. ~1!# without the
intermediate step of the two-mode model. The coefficie
(l8, m, n, and h) are then numerical quantities that a
computed from the eigenfunctions of the linearized GP eq
tions @11#.

As shown in@17#, Eqs.~11! are equivalent to the Loren
equations. They possesses complicated dynamical solu
that are likely to be observed in condensates. A typical so
tion of the weakly irreversible two-mode model is shown
Fig. 4~a!.

The chaotic alternation between self-trapped states of
posite sign is a typical behavior of the Lorenz model. T
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plot of the successive maxima of the total number of co
densed atoms reveals the chaotic structure of the Loren
tractor @Fig. 4~b! and Fig. 1#.

The origin of the chaotic behaviors can be understo
qualitatively. The dissipation and the forcing affect drama
cally the dynamics near the self-trapping instability. First t
stationary self-trapped state is selected among all the s
tions of the conservative dynamical system. Second, w
the number of atoms becomes larger than a critical value,
self-trapped state can lose its stability because the den
becomes so high in a given well that the dissipation lead
the drop in the number of atoms in the condensate. T
effect tends to stabilize the symmetrical state where the n
ber of condensed atoms grows again. But because of
inertia, the center of mass of the condensate can move to
other well. This dynamical process can continue forever, g
ing rise to oscillations of the center of inertia of the conde
sate in a potential well separated by an abrupt change to
other well.

Despite their weaker thermodynamical stability, trapp
gases with attractive interactions appear to be one of
candidate for such an investigation, since in this case
ground state itself experiences the self-trapping instabil
The number of atoms in the trap is supposed to be sm
enough for the quantum tunneling and the temperature
fects to be neglected@18#. Once the condensate is formed,
laser sheet with a very low intensity is applied in order
separate the condensate into two parts. As the intensity o
laser increases~the tunneling parameter of the two-mod
model K decreases!, the self trapping instability leads to
steady state characterized by different populations of ato
between the two condensates (s5” 0). As the intensity de-
creases further, a time-dependent regime that eventu
leads to regular or chaotic alternation between the two
trapped states will appear. In the case of a trapped gas
repulsive interactions, the similar scenario should be
served when the initial state is a black soliton@6,7#. The
variation of the nonlinearity as proposed in@19# is another
accurate experimental protocol that can be used in orde
observe the chaotic behaviors described in this letter.

The value of the dissipative coefficients appearing in E
~1! are really difficult to estimate. The values of dissipati
strongly depend on the temperature@20# of the condensate
but are smaller than one. For the simulation of Fig. 1,
took ea/Aa ~whereAa is the frequency of the trap! equal to

FIG. 4. ~a! Projection in the plane (s2d) of a typical chaotic
solution of Eqs. ~9! for parametersU521, K51.175, e
50.05, a51, b251, b350, g50.2; ~b! Plot of the suc-
cessive maxima ofs.
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0.06, which gives a time scale for losses close to the t
scale observed in classical experiments@21#. The intensity
and the width of the laser sheet is easily tunable in exp
ment and it would be easy to adjust it in order to approa
the self-trapping bifurcation. For the realistic value of Fig.
the characteristic length and time scales can be seen on
1~b!.

We have demonstrated that an open Bose condensate
experience a transition to chaos. Although most of our an
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sis is based on the approximate two-mode model, our c
clusions are independent of this model. The nature of
irreversible effects~two-body or three-body recombination!
is not crucial in our analysis, since they only contribute
actual values of the macroscopic friction parameters of
Lorenz equations.

Numerical simulations have been performed thanks to
NLKit software developed at the INLN.
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