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Life of a smooth liquid sheet
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We report on experiments with liquid sheets formed through the impact of a slender jet
on a small disc at high Reynolds number. When the interaction with the surrounding
air is negligible, the sheet spreads out radially and remains smooth. The study
extends over the whole life of the sheet, considering the dynamics of its formation
and destruction and paying special attention to the stationary regime, in which the
transition from sheet to drops occurs.

1. Introduction
In 1833 Savart published experimental results on several open problems involving

liquid jets:
the structure of liquid jets coming out of a circular hole in a thin wall (1833a);
liquid jet impact on a circular solid surface (1833b, c);
the impact of two liquid jets facing one another (1833d ).

Among all the observations and questions opened by this major pioneering work, we
focus here on the impact of two liquid jets facing one another, which is equivalent,
in the non-viscous limit, to the problem presented in figure 1(a). The vertical jet of
diameter D0, impacts with velocity U0 a small horizontal disc of diameter Di, and
the resulting film is forced to spread out radially with ejection angle ψ0 = π/2. In
this configuration, the liquid sheet extends radially to a critical location R, where
it disintegrates into droplets. If the Froude number FrR ≡ gR/U2

0 , based on the
acceleration due to gravity g, is small compared to unity, the effect of this acceleration
on the fluid particle trajectory can be neglected and the liquid sheet remains flat.

Depending on the Weber number, We ≡ ρU2
0D0/σ, based on the liquid density ρ

and surface tension σ, two distinct regimes can be identified:
(i) A smooth regime is observed in the range We < Wec, where Wec is a critical

Weber number of the order of 103. In this regime, the action of the surrounding air
on the dynamics of the sheet can be neglected, and the liquid sheet remains smooth
and planar up to the edge as illustrated in figures 1(b) and 1(c).

(ii) A flapping regime is observed at higher Weber numbers We > Wec, where the
edge of the sheet is moving up and down like a flag flapping in the wind (figure 1d ).

Both regimes were noticed by Savart during his study of the impact of two water
jets of diameter 3 mm facing one another with a jet spacing of 3 cm: “for all the
pressure tested (from few centimeters to 488 cm of water column), a flat and circular
liquid sheet was formed at the meeting point of the two jets in a plane orthogonal
to the jet axis. This liquid sheet was observed to be thicker in its central part than
at the periphery and to terminate in a blurred, rough and noisy region when the
pressure exceeds 120 cm of water. For lower pressures, the liquid sheet is smooth
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Figure 1. Presentation of the experiment: (a) diagram, (b) side view for We = 510, (c) close-up
view of the edge of the sheet for We = 510, (d ) close-up view of the edge of the sheet for We = 3000.

and transparent over the whole diameter”. For the radial extension R in the smooth
regime, Savart summarizes his observations in two points:

the diameter of the smooth liquid sheet is proportional to the pressure;
the diameter of the liquid sheet is proportional to the exit cross-section area, at

least for the smaller pressures.
These observations have motivated a large number of studies. From Bouasse (1923),

we learn that the facing jet impact was studied by Plateau (1873) and Hagen. The
observations of Savart on the smooth regime are also the starting point of the work
of Taylor (1959a–c). According to Taylor, the sheet radius should vary as

R

D0

=
We

16
. (1.1)

This law is fully compatible with Savart’s observations. In an experiment with two
facing jets similar to that by Savart, Huang (1970) has shown that for the water/air
system, this law holds up to a critical Weber number Wec ' 103. For higher Weber
numbers, Huang reports the radius evolving as R/D0 ∼ We−1/3, compatible with the
flag instability described by Squire (1953) for a uniform liquid sheet and extended
to a radially expanding liquid sheet by Weihs (1978). A detailed study of this flag
instability regime observed at high Weber numbers is reported in Villermaux & Clanet
(2002).

We focus here on the smooth regime, where R ≈WeD0/16. The low-gravity domain

defined by gR/U2
0 � 1 can thus be expressed as (D0/a)� 2

√
2, where a ≡√2σ/(ρg),

is the capillary length of the liquid–air interface. The ratio D0/a is usually referred
to as the Bond number, Bo. In the (Bo,We)-plane, the domains corresponding to the
smooth and flapping regimes are presented in figure 2. The minimum Weber number
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Figure 2. Presentation in the (Bo,We)-plane of the smooth regime domain considered in this
study and of the flag instability domain considered in Villermaux & Clanet (2002).

Wemin which bounds the first domain corresponds to the limit of detachment of the
jet from the impactor. This detaching problem is discussed in Clanet (2001). It is also
important to note that the study is conducted only on laminar jets.

In this study, we first analyse the structure of the liquid sheet in terms of its
local velocity and thickness in the stationary regime. The dynamics of its formation
and destruction is then studied, prior to the drop formation mechanism at the
edge. This topological evolution from sheet to drops often occurs in atomization
processes, e.g. Dombrowski & Fraser (1954), Bayvel & Orzechowski (1993), and
remains poorly understood. To improve its understanding, Savart’s configuration
presents the advantages that it is stationary and has a reduced number of control
parameters. In this respect, it can be compared to the rotating cup configuration
studied by Hinze & Milborn (1950) and Fraser, Dombrowski & Routley (1963).

Section 2 describes the experimental set-up used to produce and study the liquid
sheets. The experimental results and the models are respectively presented in § 3 and
§ 4, prior to the conclusion in § 5.

2. Experimental set-up
The experimental set-up is presented in figure 3(a). The Newtonian liquid, char-

acterized by its density ρ, surface tension σ and kinematic viscosity ν, is initially
contained in a pressurized reservoir with a pressure P of the order of 2 to 3 bars.
The experiment is in a closed loop to keep the characteristics of the fluid constant
and also to allow the use of different fluids. When the reservoir is almost empty,
the experiment is stopped and the reservoir is filled up via a peristaltic pump. The
experiments reported have been conducted with water and ethanol, the properties of
which are summarized in table 1, where the last column, a, is the capillary length. At
the reservoir exit, two flow meters (AALBORG), in a parallel set-up allow control
of the flow from 0.2 cm3 s−1 to 70 cm3 s−1 with a graduation resolution of 0.2 cm3 s−1.
This enables an accurate control of the jet velocity U0, defined as the ratio of the
flow rate to the exit section area. Since the Froude number, Frh = gh/U2

0 , based on
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Fluid ρ (kg m−3) ν (m2 s−1) σ (kg s−2) a (m)

Water 1000 10−6 0.073 3.8× 10−3

Ethanol 810 1.5× 10−6 0.025 2.5× 10−3

Table 1. Physical properties of water and ethanol at 22◦C.

D0 (mm) Di (mm) Di/D0 Fluid D0/a

0.8 3.8 4.75 Water 0.21
0.8 3.8 4.75 Ethanol 0.32
2.7 10.8 4 Water 0.71
3.0 7.0 4 Water 0.79
2.7 10.8 4 Ethanol 1.08
5 20.8 4.2 Water 1.31

Table 2. Jet and impactor diameters with water and ethanol.

Injector
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(a)

Valve

(b)

Pressurized
air
(P)

Liquid
(q,m, r)

Flow-
meter

Pump

Di

Di0

hp

ep = 0.4 mm
w0 – p/2

Figure 3. (a) Diagram of the experimental set-up. (b) The impactor, with the forcing device used
to obtain ψ0 = π/2

the distance, h, from the nozzle to the impactor never exceeded 10−2, the contraction
and acceleration of the jet prior to the impact is neglected herein.

The geometrical properties of the remaining two control parameters, D0 and Di,
are presented in table 2. Three different nozzles are used to vary D0 from 0.8 mm
to 5.0 mm. The 0.8 mm jet is obtained with a thin wall hole of diameter D = 1 mm,
which leads to an effective jet diameter D0 ' 0.8D.† The 2.7 mm and 3.0 mm jets were
created with a conical contraction, 25 mm long and 20 mm wide at the base, which
ensures a contraction factor in cross-sectional area of the order of 50. The 5 mm jet
was obtained with a convergent nozzle providing a contraction factor of 100. In all
three cases, the velocity profile at the nozzle exit was close to top hat, and the jet
remained laminar up to Reynolds numbers of the order of Re ≈ 30 000.

The impactor is a ground stainless steel cylinder with a carefully prepared upper
surface of diameter Di0 = 3 mm, 10 mm, 6.2 mm and 20 mm respectively used with the
0.8 mm, 2.7 mm, 3.0 mm and 5 mm jets. The sheet was forced to exit the impact surface
with the ejection angle ψ0 = π/2 by means of a thin copper coaxial cylinder shown on
figure 3(b). The thickness of this jacket is ep = 0.4 mm, so that the impactor diameter

† The theoretical derivation of the contraction coefficient for thin holes D0/D =
√
π/(π+ 2) is

due to Kirchhoff (1876).
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Figure 4. Qualitative presentation of the effect of the Weber number on the liquid sheet size
and shape. The liquid is water and the jet and impactor are characterized by D0 = 2.7 mm and
Di = 10.8 mm. (a) Actual scale, (b) scaled by R.
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Figure 5. Qualitative presentation of the number and location of the indentations at the periphery
of the sheet. The liquid is water and the jet and impactor are characterized by D0 = 2.7 mm and
Di = 10.8 mm. The Weber number on the three images is We = 888, and only the time at which
the picture is taken changes.

seen by the jet is Di = Di0 + 2ep. The jet and impactor properties are summarized in
table 2.

3. Experimental results
The presentation of our experimental results starts with a qualitative description

of the influence of the Weber number on the size of the liquid sheet and the diameter
of the drops. This is followed by a quantitative second stage in which the results are
presented in five subsections: the control of the ejection angle, the evolution of the
liquid sheet radius, the dynamics of its formation and destruction, the shape of the
cusps observed at the periphery of the sheet, and finally to the drop formation and size.

3.1. A qualitative overview

The influence of the Weber number on the size and shape of the liquid sheet is
presented in figure 4. This sequence is obtained with water and the jet and impactor
used are characterized by D0 = 2.7 mm and Di = 10.8 mm. For each picture, the flow
is first established at the desired flow rate and the ejection angle fixed at π/2 using the
lip of controllable height presented in figure 3(b). The camera is positioned above the
sheet, slightly off centre, which is why in some of the images the circular sheet appears
slightly elliptical. The sheet is illuminated symmetrically by two halogen lamps, so
that mainly the edges of the liquid sheet appear on the pictures, the liquid sheet being
transparent.

In figure 4(a) the scale is the same for all the images and it shows, in the vertical
direction, the increase of the sheet radius when the Weber number is increased from
148 to n × 148 with n = {2, 3, 4, 5, 6}. It can be seen that the factor 6 increase in the
Weber number also leads to a factor close to 6 increase in the size of the sheet with
a quasi-linear evolution.

In figure 4(b), the same images are presented on the scale R, so that the size of
the sheet is the same on each picture. This reveals some indentations at the periphery
of the sheet, the number of which seems to increase with the Weber number. An
important remark on these indentations is that, for a given Weber number, their
number is not constant and their locations are not stationary but change with time.
We illustrate these two points in figure 5, where we present, using the same jet and
impactor as in figure 4, three pictures obtained at different times, with the same
Weber number, We = 888. Looking for example at the east pole of each picture, one
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Figure 6. Qualitative presentation of the influence of the Weber number on the drops size: the
liquid is water and the jet and impactor are characterized by D0 = 2.7 mm and Di = 10.8 mm:
(a) We = 148, (b) We = 214, (c) We = 296, (d ) We = 388, (e) We = 497, (f) We = 590,
(g) We = 752, (h) We = 896, (i ) We = 1060, (j) We = 1230.



314 C. Clanet and E. Villermaux

50

40

30

20

10

0

–10

–20
0 100 200 300 400 500 600

hp (lm)

w0 – p /2

Figure 7. Evolution of the ejection angle ψ0 with the height hp of the coaxial cylinder
(D0 = 3 mm, Di = 7 mm, We = 300): �, water; �, ethanol.

observes no indentation in (a), almost two in (b) and one in (c). This illustrates that
the locations of the indentations change with time. Their number is not easy to count
and, depending on the way the observation is done, the number of indentations on
the three pictures can vary from 11 to 15.

The effect of the Weber number on the size of the drops produced by the disinte-
gration of the sheet is presented in figure 6. The scale is the same in all the images
and one can observe that the mean drop diameter decreases as the Weber number
increases. Comparing figure 6(a) to 6(j), we find that an increase of the Weber number
by a factor of 8.3 leads to a mean drop diameter decrease of the order of 2. We
can also see in figure 6 the poly-disperse character of the drop size distribution. This
does not affect the mean drop size definition, but rather provides information on the
nature of the drop formation mechanism.

3.2. Control of the ejection angle, ψ0

The ejection angle presented in figures 1(a) and 3(b) results from the local equilibrium
of the liquid sheet at the edge of the impactor. For a flat impactor, hp = 0, the
sensitivity of this angle to both the diameter ratio Di/D0 and the impact Reynolds
and Weber numbers is reported in Clanet (2001). One conclusion of that paper is
that one cannot attain an angle of ejection ψ0 = π/2 with a flat impactor. We have
thus added the lip of controllable height, hp, presented in figure 3(b), to overcome this
limitation and we concentrate, here, on the influence of the lip on the ejection angle.

The evolution of ψ0(hp) − π/2 is reported in figure 7 for water and ethanol at
We = 300 with D0 = 3 mm and Di = 7 mm. From figure 7, ψ0 − π/2 increases
with hp, starting at negative values for hp = 0. Within the experimental accuracy,
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Figure 8. Average images obtained with water, D0 = 2.7 mm, Di = 10.8 mm. These images are used
to determine the maximal extension, R: (a) We = 96, (b) We = 153, (c) We = 225, (d ) We = 311.

the evolution of ψ0 is the same for water and ethanol, at the same Weber number
We = 300. For both liquids, the flat sheet corresponding to ψ0 − π/2 = 0, is obtained
for hp = h?p ' 140 µm.†

3.3. Evolution of the liquid sheet radius, R

When the liquid sheet is forced to leave the impactor with the ejection angle ψ0 =
π/2, it spreads radially to the location R, where it disintegrates into droplets. The
determination of R with an accuracy of the order of 5% is achieved using averaged
images such as the one presented in figure 8.

The resulting evolution of the non-dimensional sheet diameter 2R/D0 is presented
in figure 9 as a function of the Weber number, for the different jets, impactors
and fluids: up to a critical Weber number Wec ' 1200, the liquid sheet diameter
increases almost linearly with the Weber number and decreases above this limit. The
scattering of our experimental data in the linear region will be shown in § 4 to be
function of the losses on the impactor. These two characteristic trends of the evolution
2R/D0 = f(We), are similar to those observed by Savart (1833d ) and Huang (1970)
in the case of the impact of two facing jets: a more quantitative comparison with
their results is presented in the model section.

3.4. Dynamics of the liquid sheet formation and destruction

3.4.1. Liquid sheet formation

An example of sheet formation, observed with a high-speed video camera (Kodak
HS4540), is presented in figure 10. In this figure, time increases from left to right
and from top to bottom with a time step ∆t = 1/225 s. The experimental procedure
was as follows: the water jet is initially established at the desired flow rate, here
U0 = 2.96 m s−1 (We = 375), and we use a hollow plastic tube to direct its trajectory
away from the impactor. When the setting up of the camera is completed, the plastic
tube is removed and we observe the impact of the jet on the disc. The main drawback
of this procedure is that the leading edge of the jet is initially roughly defined as can
be seen in the first images of the sequence. However, this procedure ensures that the
jet velocity and diameter both remain constant over the whole formation process and
allows a reasonable definition of the edge of the liquid sheet outside the impactor.

In the sequence presented in figure 10, the maximal extension R = 5.7 cm is reached

† Each time we change the impact Weber number, h?p has to be slightly modified so as to keep

ψ0 = π/2. However, the accuracy of our set-up (of the order of 20 µm) does not allow an accurate
measurement of this sensitivity h?p(We).
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Figure 9. Evolution of the critical radius 2R/D0 with the impact Weber number: �, Injector 1
and water; �, D0 = 0.8 mm, Di = 3.8 mm and ethanol; �, D0 = 2.7 mm, Di = 10.8 mm and water;
�, Injector 2 and ethanol •, D0 = 5 mm, Di = 20.8 mm and water.

Figure 10. Dynamics of formation of a liquid sheet obtained with water, D0 = 3 mm, Di = 7 mm and
We = 375. Time increases from left to right and from top to bottom with a time step ∆t = 1/225 s.
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Figure 11. Dynamics of destruction of a liquid sheet obtained with water, D0 = 3 mm, Di = 7 mm
and We = 410. Time increases from left to right and from top to bottom with a time step
∆t = 1/1000 s.

in the last picture, at t = 19∆t ≈ 85 ms. This time is much larger than the transit time
Tt ≡ R/U0 ≈ 19 ms. Although R is reached at t = 85 ms, the mid-point R/2 = 2.85 cm
is reached much sooner, at t = 4.5∆t ≈ 20 ms. Both observations show that the edge
of the sheet is moving relative to a liquid particle in the sheet with a velocity directed
towards the impact point of the jet, a relative velocity which increases with the radial
location of the edge.

3.4.2. Liquid sheet destruction

An example of sheet destruction is presented in figure 11. In this case, a stationary
water sheet is first established at the desired conditions, here U0 = 3.1 m s−1 and
We = 410. Once the setting up of the camera is completed, we use a flat rigid device
to cut and deviate the jet. The liquid sheet is then seen to open.

The first striking observation is that the outer edge of the sheet does not move
during the opening process, so that the study of the sheet destruction reduces to the
dynamics of the hole opening. In this sequence, t = 0 is defined in the top right image,
when the cut part of the jet touches the impactor. The hole then starts to open and
reaches the maximal extension R = 6.5 cm, at t = 14∆t ≈ 14 ms, which is smaller
than the transit time Tt ≡ R/U0 ≈ 21 ms. The mid-point distance R/2 = 3.25 cm, is
reached at t = 7 ms. Both observations show that the edge of the hole moves relative
to the liquid in the remaining part of the sheet with a velocity directed towards the
outer edge of the sheet, a relative velocity which remains almost constant.

3.5. Shape of the cusps observed at the periphery of the sheet

In the stationary regime, the indentations or cusps that appear naturally at the
edge of the liquid sheet in the smooth regime are illustrated in figures 4 and 5.
The evolution of the number of cusps Nc with the Weber number is presented in
figure 12, for the experiments presented in figure 4, obtained with water, D0 = 2.7 mm
and Di = 10.8 mm. We observe that the number of cusps increases with the Weber
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Figure 12. Evolution of the number of cusps with the Weber number: water is used with
D0 = 2.7 mm and Di = 10.8 mm.

number, and on the log-log scale the ‘best fit’ power law is Nc ∼ We0.36. However,
due to the constant fluctuation of Nc, and to the difficulties of observation, one has
to be cautious with this fit and should only consider it as an approximation.

These natural cusps can be forced, for example by cutting the sheet with a 80 µm
tungsten wire coated with silicon oil. An example of a forced cusp observed by Savart
is presented in figure 13. Quantitatively, we present in figure 14 the evolution of the
cusp shape with the radial location of the wire r0, which starts at the edge of the
impactor, r0 = Di/2, and moves to the periphery of the liquid sheet, r0 = R. This
example is obtained with water, D0 = 2.7 mm, Di = 10.8 mm and We ' 1190. In
the figure, all the lengths are non-dimensionalized with the maximal radial extension
R = 13.5 cm, so that the location of the wire r̃0 ≡ r0/R, varies from 0.62 to 0.08. When
the radial extent of the cusp reaches the location R, it disintegrates into droplets.
A rim can be observed at the edge of the liquid sheet (figure 1c) which can be
characterized by its mean diameter, Drim. The evolution of the rim diameter Drim
and the drop diameter d are reported in figure 15 and compared to the injection
diameter D0, for two different Weber numbers We = 1190 and We = 362. The first
observation from figure 15 is that the drop and rim diameters evolve similarly as the
wire location is varied. For We = 362, the drop diameter is twice the rim diameter
and remains almost constant, of the order of D0, for the different wire locations. For
We = 1190, the drop diameter is of the order of D0 for cusp locations close to r0 = 0
and decreases continuously down to d ' 0.65D0 at r̃0 ' 1. The ratio d/Drim of the
drop to rim diameter is 2 for r̃0 ' 0.05 and increases to about 3 for r̃0 ' 1. In both
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Figure 13. Upper view of a forced cusp from Savart Planche 4 (1833d ).
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Figure 14. Evolution of the shape of the cusp with the wire location, D0 = 2.7 mm, Di = 10.8 mm
and We ' 1190: �, r̃0 = 0.62; �, r̃0 = 0.53; �, r̃0 = 0.35; �, r̃0 = 0.27; •, r̃0 = 0.16; e, r̃0 = 0.08.
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Figure 15. Rim and drop size evolution with the position of the wire: �, Drim/D0 for We = 1190;
�, d/D0 for We = 1190; •, Drim/D0 for We = 362; e, d/D0 for We = 362.
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Figure 16. Example of drop size distribution in the natural case: (a) We = 390, d/D0 ' 1.33 and
SD ' 0.33; (b) We = 1190, d/D0 ' 0.79 and SD ' 0.32.

cases, the drop diameter is of the order of D0 and for all r̃0 the diameters obtained
with We = 362 are larger than with We = 1190.

3.6. Drop formation and size

The diameter of the drops in the natural case (without forcing) is not as well defined
as in the forced case. A typical drop size distribution is presented in figure 16 for
a water jet of diameter D0 = 2.7 mm impacting on Di = 10.8 mm. The statistics
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Figure 17. Evolution of the drop diameter d with the Weber number We: (a)�, water, D0 = 0.8 mm,
Di = 3.8 mm; �, water, D0 = 2.7 mm, Di = 10.8 mm; �, water, D0 = 5 mm, Di = 20.8 mm. (b) �,
water, D0 = 2.7 mm, Di = 10.8 mm, �, ethanol, D0 = 2.7 mm, Di = 10.8 mm.

presented on figure 16 are based on a number, N ≈ 150, of drop size measurements
d(i). From these distributions we define the mean diameter d ≡ (1/N)

∑i=N
i=1 d(i),

that corresponds to the statistical definition of D10 (Lefebvre 1989) and a standard

deviation SD ≡
√∑i=N

i=1 (di − d)2/(N − 1). For the two cases presented in figure 16,

we obtain d/D0 = 1.33± 33% for We = 390 and d/D0 = 0.79± 32% for We = 1190.
This standard deviation is of the same order as that reported by Pandit & Davidson
(1990) in the case of drops detaching from a rim in a bursting soap bubble.

The evolution of the mean drop diameter d with the Weber number is reported in
figure 17. The effect of the injection diameter D0 is presented in figure 17(a) and the
effect of surface tension in figure 17(b). The main feature of the evolution is that the
mean drop diameter decreases with the Weber number, first slowly for We < 1200
and more strongly for higher values of the Weber number. Above a certain value
that corresponds to the point where the liquid sheet becomes turbulent, the drop size
seems to reach a limit. According to figure 17(a), in the smooth regime, the mean drop
diameter for a given Weber number is larger with D0 = 2.7 mm than with D0 = 0.8 mm.
This suggests that the mean drop diameter is an increasing function of the jet diameter.
However one also observes in figure 17(a) that the mean drop diameters obtained
with D0 = 2.7 mm and D0 = 5.0 mm are almost the same. The increasing function
thus seems to saturate for jet diameters larger than a few millimetres.

Finally, figure 17(b) shows that for a given Weber number, the mean drop diameter
increases with surface tension.

4. Models
The flow is studied using the nomenclature presented in figure 18: r and z respect-

ively stand for the radial and vertical axes, the origin of the coordinate system being
the impact point of the jet. We denote u(r, z) and w(r, z) the corresponding velocity
components, and h(r) the film thickness at the location r.

4.1. Characteristics of the flow at the edge of the impactor

When a vertical liquid jet of diameter D0 impacts with velocity U0 a horizontal disc
of diameter Di, it spreads radially and its mean velocity and thickness are affected
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Figure 18. Diagram of the structure of the flow at the edge of the disc.

by the growth of the boundary layer on the impactor as presented in figure 18. A
complete analysis of the radial spread of a liquid jet over a horizontal plane has been
performed by Watson (1964). For a disc without a lip, Clanet (2001) shows that for
diameter ratios X ≡ Di/D0 6 0.366Re1/3, the effect of the disc is to alter the initial
momentum flux as follows

Ie

Imax
≈ 1− 1.02√

Re

(
Di

D0

)3/2

, (4.1)

where Re = U0D0/ν is the Reynolds number and Ie ≡ 2πρri
∫ h(ri)

0
u(ri, z)

2 dz with

Imax = πρU2
0D

2
0/4.

The characteristics of the liquid film, velocity Ue, and thickness he at the edge of
the impactor are then deduced from the conservation of mass and momentum flux:

πDiheUe =
π

4
D2

0U0, (4.2)

and

πρDiheU
2
e = Ie, (4.3)

so that
Ue

U0

=
Ie

Imax
,

he

D0

=
D0

4Di

Imax

Ie
. (4.4)

Since Ie/Imax < 1, the velocity in the film is reduced and the thickness increased. Ue

and he are also affected by the lip at the edge of the impactor. To quantify this effect,
we have performed direct flow measurements in the sheet.

4.2. Characteristics of the flow in the sheet

The velocity in the sheet is determined with a high-speed video camera, following
the trajectory of ash dropped on the sheet surface. Two examples of such trajectories
are presented in figure 19: time increases from top to bottom with a constant time
step ∆t. In the first image an ash particle, which appears as a small dark spot on
the sheet, has been dropped at the location indicated by the arrow. After an initial
acceleration phase which extends roughly from the first to the second image, the
particle is convected towards the periphery with a constant velocity Ue = 2.7 m s−1

in figure 19(a) and Ue = 3.6 m s−1 in figure 19(b). The ratio of these velocities with
the corresponding values of U0 = 3.09 m s−1 and U0 = 3.93 m s−1 are 0.87 and 0.91
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Figure 19. Trajectories of ash dropped on water liquid sheets obtained with D0 = 3 mm and
Di = 7 mm: (a) U0 = 3.09 m s−1 and ∆t = 1.33 m s−1; (b) U0 = 3.93 m s−1 and ∆t = 2.22 m s−1.

respectively. As expected from the presence of the lip, these values are slightly smaller
than those predicted by equation (4.4).

The variation of the thickness h(r) is measured with the interferometry set-up
presented in figure 20(a): a cylindrical laser beam of wavelength λ = 532 nm is
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Figure 20. Interferometry technique used to measure the evolution of the film thickness:
(a) general view of the set up, (b) interferometry principle.
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Figure 21. Interferometry pattern obtained with a liquid sheet of water (We = 600, D0 = 3 mm and
R ' 90 mm): (a) interferometry pattern, (b) evolution of the number of fringes N with the distance
from the impact r.

marked with equidistant circles centred on the impact point of the jet, using a
transparent pattern. This marked beam is partly reflected by the upper surface of
the liquid sheet (beam b) and partly refracted towards the lower surface (beam a)
as presented in figure 20(b). The two beams interfere to give c = a + b with the
difference in their paths δ = 2nL2 − L1, where n = 1.33 is the refraction index of
water. Using the Snell–Descartes law n sin θ′ = sin θ, this path difference reduces
to δ = 2nh0 cos θ′, which implies that the distance between two bright fringes will
correspond to a thickness variation:

∆h0 =
λ

2n cos θ′
. (4.5)

In our experiments, the angle θ between the laser beam and the liquid sheet was
maintained constant and equal to θ = 27◦ so that θ′ = 20◦. From equation (4.5),
this corresponds to a thickness variation ∆h0 ' 0.21 µm between two fringes. An
example of the interferometry pattern obtained with water (We = 600, D0 = 3 mm
and R ' 90 mm) is presented in figure 21(a), where the distance between the marked
circles is 5 mm.
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Figure 22. Variation of the film thickness dh/dr as a function of the radial distance r/D0, observed
with water, D0 = 3 mm, Di = 7 mm: �, R = 50 mm, We = 320; �, R = 60 mm, We = 400;
�, R = 90 mm, We = 600; �, R = 110 mm, We = 730.

From these images, we extract the evolution of the number of fringes N(r) with the
distance from the impact r. The evolution corresponding to figure 21(a) is presented
in figure 21(b). The evolution starts at an arbitrary radius r0 that corresponds to
the first visible fringe. From this radius up to the maximal radial extension R, we
obtain the variation of thickness between r and r0, using the relation h(r) − h(r0) =
N(r) ∆h0, or dh/dr = ∆h0dN/dr. The variation of the thickness dh/dr observed
for a water sheet, D0 = 3 mm, Di = 7 mm, is presented in figure 22, for different
Weber numbers ranging from 320 to 730. The striking feature of figure 22 is that
dh/dr is mainly a function of r/D0 with a −2 power law dependence, dh/dr ≈
0.133(r/D0)

−2. This implies that h(r)/D0 ≈ 0.133D0/r + C , where C is a constant.
C can be determined through the conservation of mass, which relates h(r) and
U(r):

h(r)

D0

U(r)

U0

=
1

8

D0

r
. (4.6)

Since U(r)/U0 does not depend on r, equation (4.6) implies that h(r)/D0 =
[ 1

8
U0/Ue]D0/r, so that C is effectively nil. Moreover, if Ue/U0 ≈ 0.9, one expects

that h(r)/D0 = 0.138D0/r, which is close to the value reported in figure 22.

If we neglect the friction with the surrounding air, the conservation of the momen-
tum flux at any radial location is written

h(r)

D0

(
U(r)

U0

)2

=
1

8

D0

r

Ie

Imax
. (4.7)
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Figure 23. (a) Diagram for the dynamics of the rim. (b) Presentation of the formation problem.

Together, with equation (4.6), the characteristics of the flow in the sheet are obtained
as

U

U0

=
Ie

Imax
,

h(r)

D0

=
1

8

D0

r

Imax

Ie
. (4.8)

4.3. Evolution of the liquid sheet radius, R

The argument developed by Taylor (1959c) for a constant thickness sheet with no
initial velocity can be extended to sheets with variable thickness and fed with a
constant velocity Ue, as presented in figure 23(a). For the dynamics of the rim,
characterized by its mass M(t) and velocity U(t), one obtains for the mass and
momentum evolution

dM

dt
= 2πρrh(r)(Ue −U), (4.9)

and

d(MU)

dt
= −4πσr +

dM

dt
Ue, (4.10)

There should be an additional curvature term in equation (4.10) resulting from the
curvature of the rim centreline. This term is of order rrim/r, where rrim is the radius of
the rim. In our applications, this term is much smaller than 4πrσ and is neglected in
the following discussion. The set of equations (4.9) and (4.10) is Galilean invariant:
if U is changed to U ′ +K where K is a contant, the equations for M and U ′ are the
same as for M and U. The velocity Ue is simply changed to Ue − K . If we look for
stationary solutions in the frame of the laboratory, U = 0, equations (4.9) and (4.10)
imply that the only position where the sheet can remain at rest corresponds to the
location r̄, where h(r̄) = 2σ/(ρU2

e ). To examine the stability of this equilibrium, we
perturb the rim location, r = r̄+ δr, and follow the evolution of its velocity, δU. The
linearization of equations (4.9) and (4.10) leads to

δU

δr
=
ρU3

e

4σ

(
dh

dr

)
r̄

. (4.11)

The equilibrium is thus stable if (dh/dr)r̄ < 0 and unstable if the film thickness
increases with the distance. In our case, the film thickness decreases as 1/r, so that the
equilibrium is stable. In this model, there is no mass shedding and the rim increases
in mass without breaking. Regarding its relevance to the stationary liquid sheet,
one observes that the model can only be valid on time scales shorter than the time
required for the rim to destabilize and break. On a longer time scale, we have to
take into account drop shedding. We respectively denote dmd/dt and vd the mass of
liquid emitted per unit of time and the mean drop velocity. Equations (4.9) and (4.10)
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Figure 24. (a) Evaluation of the relative drop velocity as a function of the Weber number.
(b) Comparison between the non-dimensional experimental sheet diameter 2R/D0 and equation
(4.16) in the limit vd/Ue � 1: �, D0 = 0.8 mm, Di = 3.8 mm and water; �, D0 = 0.8 mm,
Di = 3.8 mm and ethanol; �, D0 = 2.7 mm, Di = 10.8 mm and water; �, D0 = 2.7 mm, Di = 10.8 mm
and ethanol; •, D0 = 5 mm, Di = 20.8 mm and water; −−−, equation (4.16).

become
dM

dt
= 2πρrh(r)(Ue −U)− dmd

dt
(4.12)

and
dMU

dt
= −4πσr +

dM

dt
Ue − dmd

dt
vd. (4.13)

An interesting limit for our study is to consider this new system on a long time
scale, where the rim has a constant mass and fixed location. In this limit, dmd/dt is
equal to the mass flow rate, Q ≡ πρD2

0U0/4, and equations (4.12) and (4.13) reduce to

Q

2πr
= ρh(r)Ue (4.14)

and
Q

2πr
=

2σ

Ue − vd . (4.15)

These equations show that the equilibrium occurs at the location where h(r) =
[2σ/(ρU2

e )]/(1 − vd/Ue). Since rh(r) = (U0/Ue)D
2
0/8 (see equation (4.7)), we deduce

that the maximal radial extension R is given by

2R

D0

=
We

8

Ue

U0

(
1− vd

Ue

)
. (4.16)

In the limit vd/Ue � 1 and Ue/U0 = 1, we recover Taylor’s result. The experimental
measurements of the ratio vd/Ue are presented in figure 24(a) as a function of the
Weber number. For larger Weber number, We ≈ 3000, this ratio can reach 0.25.
In the smooth range of interest this ratio is of the order of 0.05 and never exceeds
0.1. We thus neglect the effect of the ejected drops and present in figure 24(b), the
non-dimensional experimental sheet diameter, 2R/D0, versus the ratio (We/8)(Ue/U0).

This comparison reveals a good agreement between the experimental data and
equation (4.16), up to (We/8)(Ue/U0) ' 110, that is We ≈ 1000. Above this value,
the effect of vd/Ue and of the surrounding air can no longer be neglected.



328 C. Clanet and E. Villermaux

103

102

101

100

100 101 102 103 104

C2 We
1
4

2R
D

Figure 25. Presentation of Savart’s experimental results (�), together with Huang’s data (——).

Results of Savart and Huang, already discussed by Taylor (1959a–c), are presented
in figure 25. Note that these authors considered the liquid sheet resulting from the
impact of two facing jets coming out of two thin wall holes of diameter D. The main
differences with our configuration are that:

viscous losses are negligible since there is no impactor;
at the same velocity, the flow rate is doubled due to the two facing jets;
the type of injectors used by Savart and Huang introduce a contraction of the jet

that implies that the jet diameter D0 is related to the geometrical diameter D through
the relation D0 = CD, where C ' 0.79.
The same approach as used to obtain equation (4.16) leads here to the relation

2R

D
=

2C2

8

ρU2
0D

σ

(
1− vd

Ue

)
, (4.17)

where the factor 2 accounts for the two jets and the factor C2 for the contraction
of the jet. Savart’s experimental results are shown in figure 25, where the scaled
sheet radius 2R/D is plotted versus C2We/4. We have also drawn as a continuous
line the experimental law given by Huang (1970): 2R/D ≈ 0.167We for We < 1000
and 2R/D ≈ 1250We−1/3 for We > 1000. The first point to note is the consistency
of both sets of data. The second is the one to one correpondance with the value
extracted from equation (4.17). This linearity holds up to C2We/4, that is up to a
Weber number of the order of 830.



Life of a smooth liquid sheet 329

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5

Uet /R

(a)
1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5

Uet /R

(b)

r
R

Figure 26. Comparison between the experimental trajectories obtained with water, D0 = 3 mm,
Di = 7 mm and the numerical integration of (4.19) and (4.20). The symbols are the experimental
points, the continuous line is the numerical integration and the dotted line represents the approximate
solution described by equation (4.21). (a) We = 138, (b) We = 375.

4.4. Dynamics of the liquid sheet formation and destruction

4.4.1. Liquid sheet formation

We define tbirth as the instant when the liquid jet first touches the impactor and
tstationary the time at which the stationary regime is first achieved. To study the dynamics
of formation we need to determine the edge trajectory r(t), from tbirth to tstationary . An
example of such dynamics is presented in figure 10. This problem is discussed with
the notation presented in figure 23(b), where the liquid sheet is grey and the rim
characterized by its radial location r(t) and its mass M(t). If the rim had followed
the flow, its location would be Uet, where t = 0 is defined to be tbirth. Assuming that
the liquid remains in the rim and is not lost via drops during the formation process,
which is reasonable according to figure 10, the mass conservation is written:

M(t) = M0 + 2π

∫ Uet

r(t)

rh(r) dr = M0 +
π

4
ρD2

0

U0

Ue

(Uet− r), (4.18)

where M0 is the initial mass of the rim, of the order of π/4ρD3
0. The dynamics of

the rim results from the competition between the pushing momentum flux Ie and
the pulling capillary force Fc, so that the momentum evolution is again described
by equation (4.10). Using R and Ue as the characteristic length and velocity, the
non-dimensional form of the above system is

M̃ = M̃0 + t̃− r̃, (4.19)

where all the dimensionless quantities are indicated with a tilde. Also,

d

d̃t
[M̃(1− ˙̃r)] = r̃, (4.20)

where the dot stands for time derivative. This system has to be solved with the initial
conditions r̃(0) = 0, ˙̃r(0) = 1 and M̃(0) = (D0/R)Ue/U0. The numerical integration
of the system (4.19) and (4.20) is compared to the experimental trajectories in
figure 26 for different Weber numbers. The trajectory corresponding to figure 10 is
presented in figure 26(b). Both comparisons reveal a satisfactory agreement between
the experimental trajectory and the numerical integration of the system of equations
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Figure 27. Comparison between the experimental trajectories obtained with water, D0 = 3 mm,
Di = 7 mm and the numerical integration of (4.22) and (4.23). The symbols stand for the experimental
points, the continuous line for the numerical integration and the dotted line for the quasi-steady
approximation. (a) We = 375, (b) We = 492.

(4.19) and (4.20). The nonlinear evolution of the edge location noted in § 3.4.1 is
demonstrated and we obtain from figure 26 that t̃stationary ≈ 4 whereas the time it
takes to reach r̃ = 1/2 is roughly 0.8.

There is an approximate analytical solution of the above system of equations: the
left-hand side of (4.20) can be decomposed in two terms (1− ˙̃r)2 − M̃¨̃r. The first one
represents the momentum variation due to the entrainment of new fluid. The second is
the classical mass times acceleration product. Assuming that most of the momentum
variation is related to the entrainment, equation (4.20) reduces to ˙̃r = 1 −√r̃ which
can be integrated as √

r̃ + ln(1−√r̃) = −t̃/2. (4.21)

This implicit trajectory r̃(̃t) is the dotted line in figure 26. The difference with the
measured trajectory indicates that the effect of the acceleration cannot be neglected.
Note that equation (4.21) also describes the trajectory of antisymmetrical waves
propagating inwards.

4.4.2. Liquid sheet destruction

An example of sheet destruction is presented in figure 11, and one observes that
once the liquid jet is cut, the liquid sheet remains undisturbed until the free end of
the jet touches the impactor and creates a hole, the size of which increases up to the
edge of the stationary sheet. We define tcut as the instant when the free edge of the
jet touches the impactor and tdeath the time when the hole reaches the edge of
the stationary liquid sheet. To study liquid sheet destruction we need to determine
the dynamics of the hole from tcut to tdeath.

Compared to the formation problem, the only difference is that the two forces acting
on the rim of the hole, Ie and Fc, now act in the same direction. The corresponding
system, non-dimensionalized with R and Ue, is

M̃ = M̃0 + r̃ − t̃ (4.22)

and
d

d̃t
[M̃(˙̃r − 1)] = r̃. (4.23)
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Figure 28. Presentation of the polar coordinate system used to establish the
cusp shape equations system.

Equations (4.22) and (4.23) are respectively equivalent to equations (4.19) and (4.20).
They have to be integrated with the initial conditions, r̃(0) = 0, ˙̃r(0) = 1 and
M̃(0) = (D0/R)Ue/U0. The numerical integration of (4.22) and (4.23) is compared
to the experimental trajectories in figure 27, for two different Weber numbers. The
trajectory presented in figure 27(a) corresponds to the sequence presented in figure 11.
Both comparisons reveal a good agreement between the experimental trajectory and
the integration of our model. The quasi-linear evolution with time of the edge location
observed in § 3.4.2 is verified. The characteristic time of destruction of the sheet is
t̃death ≈ 0.65 and the halfway distance r̃ = 1/2 is reached at t̃ ≈ 0.35.

The approximate solution obtained, as in the previous section, by neglecting the
acceleration term in the momentum variation is here

√
r̃ − ln(1 +

√
r̃) = t̃/2. (4.24)

Due to the quasi-linearity of the observed trajectory, this approximate solution is
a good description of the phenomenon. Again equation (4.24) also describes the
trajectory of antisymmetrical waves propagating outwards.

4.5. Shape of the cusps observed at the periphery of the sheet

This section is devoted to the study of the forced cusps presented in figures 13 and 14.
The questions addressed concern their shape and the dynamics of the liquid inside.
As a first step, we follow Taylor’s (1959c) analysis to establish the set of equations
describing the shape of the cusps using the polar coordinate system presented in
figure 28. The apex is defined by θ = 0 and r = r0, Uc(s) is the velocity of the fluid
inside the cusp at the curvilinear location s from the apex, and Sc(s) the cross-section
of the cusp. In a stationary regime, the mass conservation in the cusp takes the form

d(UcSc)

dθ
= 1

8
D2

0U0. (4.25)

To obtain equation (4.25), we have used the mass conservation in the liquid sheet
with u(r) = Ue and the geometrical relation sinψ = r dθ/ds. Using the same relations,
the momentum conservation along the cusp is

d(U2
c Sc)

dθ
= 1

8
D2

0U0Ue cosψ. (4.26)
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Figure 29. (a) Evolution of the shape of the cusp with the apex location, r0: �, r̃0 = 0.1; �,
r̃0 = 0.2; �, r̃0 = 0.4; �, r̃0 = 0.6; •, r̃0 = 0.8; e, r̃0 = 0.9. (b) Comparison between the numerical
integration of the shape and the approximate logarithmic spiral.

In the direction perpendicular to the cusp, the momentum conservation takes the
form

U2
c Sc sinψ

(
1 +

dψ

dθ

)
=

2σ

ρ
r − 1

8
D2

0U0Ue sin2 ψ. (4.27)

In this expression for momentum conservation, we have neglected the surface tension
effect related to the curvature of the cusp. Compared to the free edge effect 2σ ds,
the curvature effect is of the order 1/We2 and our study was conducted for We� 1.
Scaling with Ue and R = (We/16)D0(Ue/U0), the set of equations (4.25), (4.26) and
(4.27), respectively become

ŨcS̃c =
1

8

(
D0

R

)2(
U0

Ue

)
θ, (4.28)

d(θŨc)

dθ
= cosψ, (4.29)

θŨc sinψ

(
1 +

dψ

dθ

)
= r̃ − sin2 ψ, (4.30)

where the tilde denotes non-dimensionalized quantities. The mass conservation (4.28)
results from the integration of equation (4.25), with the initial condition S = 0 at the
apex r = r0, θ = 0.†

The above set of equations must be solved with the initial conditions: at θ = 0,
r̃ = r̃0, ψ = arcsin

√
r̃0, Ũc =

√
1− r̃0. The unknowns are S̃c(θ), Ũc(θ) and r̃(θ). The

angle ψ is not an additional unknown since it is related to r̃ through the geometrical
relation 1/ sin2 ψ = 1 + ((1/r̃)(dr̃/dθ))2. The cross-section of the cusp is obtained
through equation (4.28), whereas the cusp shape r̃(θ) and its velocity Ũc(θ) are
described by the two autonomous equations (4.29) and (4.30). From this, one deduces
that the cusp shape must be a function only of the apex location r̃0: r̃(θ) = F(r̃0).

† A more accurate assumption would be to take the section at the obstacle to be of order of the
local sheet thickness. This correction term is of order (π/32)(D0/r0)2(U0/Ue)(1/θ). Since r > Di and
D0/Di ≈ 0.25, this correction is only sensitive in the first angle degree and vanishes for angles larger
than 1◦. To simplify the discussion, without loss of generality, the condition S = 0 at the apex is
more appropriate.
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Figure 30. Comparison between the measured cusp shape with We = 585, R = 8 cm, Re = 10 700
(lines) and the theoretical shape:�, r̃0 = 0.62;�, r̃0 = 0.53; �, r̃0 = 0.35; �, r̃0 = 0.27; •, r̃0 = 0.16;e, r̃0 = 0.08 and cardioid.

The evolution of the cusp shape with r̃0 is presented in figure 29(a). The main feature
is that the mean curvature of the cusp remains almost constant, of the order of 1, for
all apex locations. We also observe that the cusp forms an angle with the circle at
r̃ = 1, contrary to the cardioid r̃ = 1

2
(1 + sin(θ− θ0)) that characterizes the stationary

waves on the expanding liquid sheet (Taylor 1959b).
When we force a cusp on the liquid sheet as presented in figure 13, little liquid is

shed and it is reasonable to compare the experimental shapes presented in figure 14 to
the theoretical cusp shape described by the above set of equations. This comparison
is given in figure 30. The agreement between the measured profiles and the theoretical
ones is reasonable. In the case r̃0 = 0.08, we report the corresponding standing wave
profile on figure 30 which clearly demonstrates that the cusp shape is not a cardioid.

Looking for an approximate theoretical expression for the shape r̃(θ), we make the
assumption that ψ remains almost constant along the cusp. Using the geometrical
equation (1/r)(dr/dθ) = 1/ tanψ, in the limit ψ ' ψ0 = arcsin

√
r0, we obtain the

logarithmic spiral

r̃(θ) = r̃0 exp

(√
1− r̃0
r̃0

θ

)
. (4.31)

This approximate solution of the cusp shape is compared to the numerical integration
in figure 29(b). This comparison reveals a good agreement between the logarithmic
spiral and the numerically integrated shape in the range r̃0 ∈ [0.4, 1]. For smaller
values of r̃0, the predicted radius is overestimated. This approximate form of the cusp
can be used to evaluate its radius of curvature R̃c ≡ (r̃2 + r̃2

θ)
3/2/(r̃2 +2r̃2

θ− r̃r̃θθ), where
r̃θ = dr̃/dθ and r̃θθ = d2r̃/dθ2. Using equation (4.31), the expression for the radius of
curvature reduces to

R̃c ≈ √r̃0 exp

(√
1− r̃0
r̃0

θ

)
which tends to 1 in the limit r̃0 ≈ 1.

To obtain the transit time of the drops on the cusp and the centrifgal acceleration
they support when travelling from the apex to the cusp extremity r̃ = 1, we study
numerically the evolution with r̃0 of different cusp characteristics. Using the suffix
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Figure 31. Evolution of the characteristics of the cusp at r̃ = 1: (a) as functions of
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Figure 32. Experimental method used to determine the ejection velocity Ũmax.

max to designate quantities at the location where r̃ = 1, we present in figure 31(a), the
evolutions of θmax, Ũmax and s̃max. It appears that they all vary linearly with

√
1− r̃0,

with respective slopes 1.04, 0.96 and 1.05. These evolutions have the interesting
consequence that the travel time t̃max ≡ ∫ smax0

ds̃/Ũc is almost independant of the apex
location and remains equal to 1. The evolution of the ejection angle ψmax is presented
in figure 31(b) and reveals that sin2 ψmax varies linearly with r̃0 when r̃0 ' 1.

To check the validity of the results obtained for the dynamics of the cusps we
have measured the ejection velocity Ũmax with the experimental set-up presented in
figure 32, to make the comparison with the theoretical value:

Ũmax = 0.96
√

1− r̃0. (4.32)

The apex location r̃0 was varied using a 100 µm tungsten wire and for each location
we measured the distance x0 travelled by the drop from the ejection point on the
liquid sheet to a reception box. Knowing the distance h0 from the sheet to the box,
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Figure 33. Comparison between the ejection velocity measured experimentally and the one
calculated: �, We = 454; �, We = 510; �, We = 709; ——, theoretical expression.

we deduce the ejection velocity, assuming a ballistic trajectory for the drops:

Ũmax =

√
gx2

0

2h0U2
e

. (4.33)

The comparison between the measured ejection velocity obtained with this method and
equation (4.32) is presented in figure 33. This comparison reveals a good correlation
between the measurements and the theoretical predictions. The centrifugal acceleration
γ̃c acting on the drops as they travel from the apex to the cusp extremity can thus be
evaluated as

γ̃c ≡ Ũ2
c /R̃c ≈ 1− r̃0√

r̃0
exp

(
−
√

1− r̃0
r̃0

θ

)
.

In the limit r̃0 = 1− ε, we find

γ̃c ≈ ε. (4.34)

For the evolution of the cusp section S̃max at r̃ = 1, equation (4.28) leads to

S̃max =
1

8

(
D0

R

)2(
U0

Ue

)
θmax

Ũmax

. (4.35)

Using the expressions obtained for θmax and Ũmax, the expression for the section
simplifies and in dimensional form is

Smax =
1

8

U0

Ue

D2
0 . (4.36)
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Figure 34. Comparison between the energy taken away by the drops per unit of time and the
initial energy: �, ethanol D0 = 0.8 mm; �, water D0 = 0.8 mm; �, ethanol D0 = 2.7 mm; �, water
D0 = 2.7 mm; •, water D0 = 5 mm.

According to equation (4.36), the diameter of the cusp at r̃ = 1 is proportional to
the injection diameter and is independent of the Weber number. This conclusion is
consistent with the experimental observations reported in figure 15 where Smax '
0.13D2

0. The drop diameter, is about twice the cusp diameter, which is the signature
of a capillary instability. These conclusions do not hold when the drops are emitted
before the edge of the cusp, which often occurs without forcing.

4.6. Drop formation and size

Several results obtained in the detailed study of the forced cusps are used in this
section to analyse the transition from liquid sheet to drops when no forcing is applied
to the liquid sheet.

Using the same method as presented in figure 32 to measure the ejection velocity
of the drops vd, we evaluate the energy Eg taken away by the drops per unit of time
as

Eg ≡ ng
[ π

12
ρd3v2

d + πd2σ
]
, (4.37)

where ng is the number of drops emitted per unit of time, which can be evaluated
with the conservation of mass as ng = 3

2
D2

0U0/d
3. This energy can be compared to the

initial energy per unit of time of the impacting jet Ei ≡ 1
8
πρU3

0D
2
0. This comparison

is presented on figure 34 and reveals that the energy taken away by the drops per
unit of time is of the order of 10% of the initial energy. A large amount of the
initial energy is thus dissipated in the drop formation mechanism. Moreover, the ratio
of the surface to kinetic energy of the drops shows that most of the drops energy



Life of a smooth liquid sheet 337

(a)

h
d

σh

Mγ = M(g + γc)

(b)

σh

Mg

M γc

Figure 35. Sketch of drop detachment: (a) force balance at the point of drop detachment,
(b) detail of the force balance.

is kinetic. These observations are consistent with G. I. Taylor’s “About 98% of the
kinetic energy therefore disappeared in the region where the drops were formed. A
very small fraction of this energy was carried away in the form of surface energy of
the drops, and all the rest must have been lost in turbulence within the drops.” This
conservation law approach is thus not appropriate to find the size of the drops.

From section § 4.5 we know that the travel time along the cusp τt is of the order of
R/U0. This time can be compared to the characteristic time of the Savart–Plateau–

Rayleigh instability τSPR ≈
√
ρD3

0/σ, based on the initial diameter D0, that has
been shown to be the order of magnitude of the rim. This comparison leads to the
following ratio which shows that in the range 100 < We < 1200, drops have time
to form through that instability as they travel from the apex to the extremity of the
cusp:

τt

τSPR
≈ √We� 1. (4.38)

As they move along the cusp, drops attached the liquid sheet of thickness e are given
an acceleration γ = g + γc as indicated in figure 35(b), which that can be expressed
using (4.34):

γ = g

√√√√1 +

[
8ε

(
a

D0

)2
]2

. (4.39)

From figure 33, the highest values of r̃0 = 1−ε which correspond to natural cusps are
r̃0 ∈ [0.85, 0.9] or equivalently ε ∈ [0.1, 0.15]. This experimental observation implies
that for natural cusps, 8ε is of order unity. In this limit equation (4.39) shows
that the acceleration acting on the drops reduces to g when D0 � a and tends to
2σ/(ρD2

0), independent of g, for injection diameters smaller than the capillary length.
The transition between these two regimes is sharp due to the fourth power in the
ratio a/D0. For this reason, only the two distinct limits are discussed below. At the
point of detachment, the body force ∼ ρd3γ equilibrates the capillary attaching force
∼ σh as sketched in figure 35. This physical model leads to the drop size evolution:

d

D0

∼We−1/3 for D0 � a (4.40)

and
d

a
∼We−1/3

a for D0 � a, (4.41)
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Figure 36. Comparison between the evolution predicted by the model and the drop diameter
measured experimentally. (a) D0 > a: �, ethanol D0 = 2.7 mm; �, water D0 = 2.7 mm; �, water
D0 = 5 mm; (b) D0 6 a: �, ethanol D0 = 0.8 mm; �, water D0 = 0.8 mm.

where Wea ≡ ρU2
0a/σ. In the first limit where the injection diameter is smaller than

the capillary length (4.40), the drop diameter is expected to be independent of g and to
scale with D0. In the opposite limit (4.41), the drop diameter predicted by this model
is independent of D0 and depends only on the capillary length of the liquid. This
model is compared to the experimental results on figure 36, where equation (4.40)
is used for the jets on figure 36(a) and equation (4.41) for the jet on figure 36(b).
In the cusp domain considered, 100 < We < 1000, figures 36(a) and 36(b) reveal
a reasonable agreement between the model and the experimental measurements for
the Weber number dependence. For the order of magnitude, figure 36(a) shows that
d ≈ a for D0 > a and d ≈ D0 for D0 6 a. Both results are consistent with the model
presented.

5. Conclusion
This paper is a study of smooth liquid sheets which form when a cylindrical jet

impacts a disc of similar diameter, from the impact of the jet on the disc, to the
stopping of the jet and the destruction of the sheet.

We first focus on the forcing mechanism needed to eject the impacting film horizon-
tally and show that the initial momentum flux is altered by both the viscous stresses
on the disc and by the lip action at the edge of the impactor.

A detailed study of the flow in the stationary liquid sheet is then presented where
we prove that the film thickness evolves as the inverse of the distance from the impact
point, and where the velocity in the film is shown to remain constant and equal to
the velocity at the edge of the impactor.

Using these characteristics of the flow in the sheet, a force balance model is proposed
to account for the maximal radial extension R. This model is shown to be in close
agreement with the experimental results obtained in the range We ∈ [100, 1000]. For
higher Weber numbers, the action of the surrounding air can no longer be neglected
and the sheet does not remains smooth but oscillates like a flag. A detailed study of
this flapping regime is reported in Villermaux & Clanet (2002).

A section is devoted to the dynamics of formation and destruction of the liquid
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sheet. Even though the formation takes longer than the destruction, both phases
develop on the characteristic time R/Ue, where Ue is the velocity of the liquid at the
edge of the impactor.

The final part of the article focuses on the cusps observed in the stationary regime
at the edge of the liquid sheet and on the drop formation mechanism. The study of the
cusps reveals that their shape is close to a logarithmic spiral, the curvature of which
is of the order of 1/R. For the formation process of the drops, one observes that
the drops form on the rim through a Savart–Plateau–Rayleigh instability, and then
grow and propagate on the cusp prior to their detachment. During their propagation
they are attached at the liquid film by capillary action and they are subject to both
gravitational and the centrifugal acceleration. When the acceleration effect overcomes
the attachment capillary force, the drops detach with a diameter that scales with D0

in the limit D0 6 a and with a in the limit D0 > a. The thickness of the film that
characterizes the strength of the attaching force imposes to the mean drop diameter, a
We−1/3 dependence. The general conclusion that can be applied to other atomization
processes resulting from the transition from liquid sheet to drop is that the drop
diameter results from a local equilibrium between the local accelerations and the
local attaching forces.

We thank H. A. Stone and the three referees for their constructive criticisms of the
original version of this article. We also thank Jacky Minelli and Serge Layat for the
skillful technical assistance they provided on the experimental set-up.
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Becquerel, A. C. 1841 Funérailles de M. Savart. Arch. l’Acad. Sci. Paris, 1–10.

Bogy, D. B. 1979 Drop formation in a circular liquid jet. Annu. Rev. Fluid. Mech. 11, 207–228.

Bouasse, H. 1923 Jets, Tubes et Canaux. Librairie Delagrave, 15 rue Soufflot, Paris.
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