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Abstract
The dynamics of Bose–Einstein condensates in a double-well magnetic
trap is studied using the Gross–Pitaevskii equation (GPE) and a two-mode
approximation. The self-trapping instability occurs when a sufficiently high
potential barrier is formed in the centre of the trap. Close to the instability
threshold, the GPE is reduced to a simple amplitude equation. In the case
where weakly dissipative effects are taken into account, the condensate exhibits
aperiodic oscillations which can be described by the Lorenz thermal convection
model.

1. Introduction

At low enough temperatures, Bose–Einstein condensates (BECs) of trapped gases [1–3] can
be described by the Gross–Pitaevskii equation (GPE) [4]:

i h̄∂t� = − h̄2 �∇2

2m
� + g|�|2� + V (�r)�, (1)

where �(�r, t) is the condensate wavefunction, g = 4πh̄2a/m and m is the atomic mass. The
role of interactions between atoms is accounted for by the s-wave scattering length a which
can be positive (for repulsive species: Na, Rb, H) or negative (for attractive species: Li). It
is possible to vary a (and to reverse its sign) during an experiment by using magnetic-field-
induced Feshbach resonance [5].

In what follows, we will consider a thin cigar-shaped condensate. If the radial confinement
is strong enough, we can neglect the transversal dynamic and the condensate can be described
by a one-dimensional version of the GPE. In one dimension, the GPE can be rescaled to the
non-dimensional form

i∂t� = −∂2
xx� + g|�|2� + V (x)�, (2)

where x is measured in units of the healing length ξ = (4πan)−1/2, t is rescaled by the trapping
frequency ωt = 4πh̄an/m and � is normalized by the square root of the density, n. This
equation will be referred to as the nonlinear Schrödinger equation (NLSE) although it includes
the additional potential term.
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Figure 1. Sketch of the effect of nonlinearity on the ground state and the black soliton.

Stationary solutions of the NLSE are written as �s = us(x)e−iωs t . The shape of a
condensate formed in a harmonic magnetic trap is the ground state of the NLSE. When nonlinear
effects can be neglected (g = 0), the ground state is Gaussian. For a fixed number of atoms
in the condensate, a negative scattering length tends to increase the density and decrease the
spatial extension of the condensate. A positive scattering length has the opposite effect. In
addition to the ground state, we will also consider the first excited state [6] (also called a black
soliton or kink). This corresponds to the stationary solution with a single node. The effect
of nonlinearity due to interactions is to decrease the characteristic size of the ground state
(respectively, the first excited state) in the case of attractive interactions (respectively repulsive
interactions). In what follows, this effect will be referred to as nonlinear localization (figure 1).

A widely tunable double-well potential has been realized experimentally by focusing a
far-off-resonant laser sheet into the centre of the magnetic trap [7]. The laser power and
the width of the sheet are widely tunable. The barrier, which tends to repel atoms from the
centre of the trap, competes with the nonlinear localization. This competition gives rise to the
self-trapping instability [8–10].

The NLSE describes ideal BECs that conserve mass and energy. Condensates, as
observed experimentally, are weakly dissipative and decay over time [11]. In what follows,
when irreversible effects are considered, we will also assume the existence of a process that
continuously brings the atom into the condensed state1. Although there is no completely
established theory of such dissipative effects, we will consider a weakly dissipative version of
the Gross–Pitaevskii model in order to describe the dynamics of BECs near the self-trapping
instability.

The goal of this paper is to describe the self-trapping instability in the reversible case
and when small irreversible effects are taken into account. Reduced-dimensional amplitude
equations and direct numerical simulations of the NLSE are used to explore the dynamics. In
particular, it is shown that the quasi-reversible dynamic of the BECs near self-trapping can be
described by the Lorenz equations [12].

This paper is organized as follows: for pedagogical reasons, in the first part we discuss
the two-mode model while the full analysis of the GPE is performed in the second part. In
both parts reversible and weakly irreversible dynamics are discussed.

2. The two-mode model

2.1. Weakly interacting Bose–Einstein condensate

The two-mode model for a BEC [9, 13] in a well separated two-well trap reads

iȦ1 = g|A1|2A1 − κA2, (3)

1 Although we are not aware of the existence of such a process in actual experiments, it will be an important step for
the realization of an atom laser.
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Figure 2. Sketch of a BEC in a double-well trap.

iȦ2 = g|A2|2A2 − κA1. (4)

Ai is the amplitude of the linear ground state in each well (figure 2), |Ai |2 measures the
number of atoms in each well and the nonlinear eigenfrequencies g|Ai |2 represent the effect of
atomic interactions in the BEC. The parameter g can be positive (repulsive species) or negative
(attractive species). The tunnelling term κAj describes the weak interaction between the two
wells.

The two-mode model is accurate in describing a BEC with a weak interatomic interaction,
i.e. with a low number of atoms or a low scattering length and a strong potential barrier such
that the interaction between the atoms in each well is weak [14]. It is a natural nonlinear
extension of the two-mode model that describes the ammonia maser [15]. We propose, in
appendix A, a simple derivation of this model.

The parameter g can be rescaled to +1 for repulsive species or −1 for attractive species.

2.2. Stationary solutions of the two-mode model

The first step is to compute the stationary solutions of the two-mode model. We write

A1 = ρ1e−iϕ1 , A2 = ρ2e−iϕ2 , (5)

where ρi are positive real numbers and ϕi are real numbers. Using the variables m = ρ2
1 + ρ2

2 ,
δ = ρ2

2 − ρ2
1 and ϕ = ϕ2 − ϕ1 we have the equations

ṁ = 0, (6)

δ̇ = −2κ
√
m2 − δ2 sin ϕ, (7)

ϕ̇ = gδ + κ
2δ√

m2 − δ2
cosϕ. (8)

The quantitym is conserved. This follows from the conservation of mass of the condensate.
From equation (7), it follows that the stationary solutions are either in phase (ϕ = 0) or

out of phase (ϕ = π). There are two obvious stationary solutions with δ = 0 and either ϕ = 0
or π . Both solutions exist for any values of g and m. They are the nonlinear continuations of
the classical linear in-phase and out-of-phase solutions.

However, the interesting feature of the nonlinear two-mode model is that there exists
trapped asymmetric solutions for which δ �= 0. It follows from equation (8) that

g
√
m2 − δ2 + 2κξ = 0, (9)

where ξ = cosϕ = ±1.
Equation (9) shows that trapped solutions exist only when g and ξ have opposite signs.

That means that the trapped solution is in phase for the attractive condensate (g < 0) and out
of phase for the repulsive condensate (g > 0).

Trapped solutions are a result of the competition between nonlinearity and dispersion
induced by tunnelling. They exist if

|g|m > 2κ. (10)
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Figure 3. Bifurcation diagram of the two-mode model of an attractive condensate whenm increases.

The existence of such non-symmetric states comes from the quasi-classical approximation
that underlies the derivation of the NLSE [16]. They actually represent long-lived metastable
states such as have been observed in the vibration of dihalomethane molecules [8], for example.

A small amount of energy given initially to one of the oscillators will tunnel to the other one
through resonant interaction. Self-trapping occurs because larger intensities lead to nonlinear
oscillations far from resonance. A simple classical interpretation is the following: equations (3)
and (4) can be seen as the amplitude equations of the small oscillations of two weakly coupled
nonlinear oscillators (appendix A).

2.3. The self-trapping instability

As shown in [10] the existence of the trapped solution is the result of a symmetry breaking
bifurcation (pitchfork bifurcation) of the in-phase solution (respectively the out of phase
solution) for the attractive (respectively repulsive) condensate. The bifurcation diagram
presented in figure 3 shows the equilibrium position as a function of the bifurcation parameter.

In order to capture the dynamic of the condensate near self-trapping, the two-mode model
is reduced to simpler amplitude equations using standard asymptotic techniques. We will focus
on the instability of the in-phase solution (ϕ = 0) that occurs when the condensate is attractive,
i.e. g < 0. We rescale δ′ = −gδ and m′ = −gm such that g no longer appears in equation (8)
and is replaced by −1. The ′ will be omitted.

Let us introduce m0 as a reference mass of the condensate and write m = m0 + σ .
The in-phase solution is then ϕ = 0, δ = 0, σ = 0 and its stability is given by the

linearized equation of the matrix

d

dt

(
σ

δ

ϕ

)
=
( 0 0 0

0 0 −2κm0

0 −1 + 2κ/m0 0

)(
σ

δ

ϕ

)
. (11)

The instability occurs when the two non-trivial eigenvalues of this matrix vanish, i.e. for
κ = κc = m0/2 and the in-phase solution loses its stability when κ < κc since decreasing κ

increases the potential barrier.
We introduce the small parameter µ = (κc − κ)/κc which measures the distance from the

instability threshold.
As usual, close to a bifurcation pitchfork, the variables scale as σ ∼ O(µ), δ ∼ O(

√|µ|)
and φ ∼ O(µ) and they depend on a slow timescale d/dt ∼ O(

√|µ|). At leading order we
get
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Figure 4. Phase space for equations (7) and (8) for κ = 1.15, m = 2.2 (left) and m = 2.4 (right) .

σ̇ = 0, (12)

δ̈ = µm2
0δ + m0σδ − 1

2δ
3, (13)

or, with Q = m0σ , X = δ/
√

2 and µ̃ = µm2
0

Q̇ = 0, (14)

Ẍ = µ̃X + QX − X3. (15)

These two equations describe the reversible self-trapping bifurcation. When the parameter
µ grows, i.e. when the potential barrier increases, the instability threshold is reached and the
phase plane of the dynamical system exhibits non-symmetric oscillations. Increasing the mass
of the condensate can also lead to the same instability. On the phase plane of equations (7)
and (8) (figure 4), for µ > 0, we can identify the equilibrium points (or stationary solutions),
the non-symmetric oscillations and large symmetric oscillations. These two types of behaviour
are separated by a double homoclinic loop which acts as a separatrix between symmetric and
non-symmetric oscillations. The oscillations have been described in terms of the Jacobian
elliptic function [13].

2.4. Quasi-reversible two-mode model

Irreversible effects (like two- and three-body recombinations, interactions with the thermal
cloud, . . .) eject atoms from the condensate. In order to compensate these dissipative
effects, we also have to consider the existence of a pump. The two-mode model can be
generalized by adding small terms which explicitly break time-reversal of the initial equations
(t → −t, Ai → Āi, i = 1, 2). Thus

iȦ1 = g|A1|2A1 − κA2 + iλ(αA1 − β2|A1|2A1 + γA2), (16)

iȦ2 = g|A2|2A2 − κA1 + iλ(αA1 − β2|A1|2A1 + γA2). (17)

λ > 0 is a small parameter which measures the irreversible effects, α > 0 models the injection
process, β2 > 0 measures the losses due to two-body recombinations2 and γ > 0 measures
losses that follow from diffusion and inhomogeneous dissipation processes.

The main issue under discussion is how these small irreversible terms modify the dynamics
close to the self-trapping bifurcation. From equations (16) and (17), we can deduce the
equations for the mass m, the population imbalance δ and the phase difference ϕ

ṁ = 2λ

(
αm − β

m2 + δ2

2
+ γ

√
m2 − δ2 cosϕ

)
, (18)

δ̇ = −2κ
√
m2 − δ2 sin ϕ + 2λ(αδ − βmδ), (19)

ϕ̇ = −δ + 2κ
δ√

m2 − δ2
cosϕ − λγ

(
2m√

m2 − δ2
sin ϕ

)
. (20)

2 A term β3|A|4A, taking into account three-body recombination, could be included without introducing fundamental
differences in our analysis.
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Figure 5. Projection of the phase space for equations (18)–(20). m0 = 2.4, g = −1, ε = 0.05,
α = 1, β = 1, γ = 0.2. (a) For κ = 1.18 Lorenz attractor, and in (b) the mapping of the successive
maxima of σ . (c) κ = 1.16 non-symmetric limit cycle, (d) κ = 1.15 symmetric limit cycle.

Equation (18) sets the reference mass. Therefore, we choose m0 = 2(α + γ )/β. The in-phase
solution then reads m = m0, δ = 0 and ϕ = 0. In what follows we will assume (λ ∼ O(

√|µ|))
in order to keep the irreversible effects in the amplitude equation. With the same variables as
in equations (14) and (15) we get

Q̇ = −νQQ − ηX2, (21)

Ẍ = (µ − µ̂)X − X3 + QX − νXẊ, (22)

where µ̂ = 4λ2γ (α + 2γ ), νQ = 2λ(α + γ ), νX = 2λ(α + 3γ ), η = λ(4α + 6γ ).
The stimulated loss ηX2 in equation (21) is at the origin of the most striking difference

between the reversible and the quasi-reversible cases. Whenever the condensate is located non-
symmetrically in the trap, it is more focused that when it is in the centre of the trap. Therefore
the losses due to two-body recombinations are stronger and so the mass of the condensate
decreases. Since equations (21) and (22) are fully three dimensional, the coupling term induces
very rich dynamics. As shown, for example, in [17], equations (21) and (22) are equivalent to
the Lorenz equations that were first obtained in the context of thermal convection [12].

Different behaviours are possible depending on the values of the various parameters. Some
typical behaviour of the original equations (18)–(20) are shown in figure 5.

3. The nonlinear Schrödinger equation

3.1. Stationary solutions of the nonlinear Schrödinger equation

In this part, we use the one-dimensional NLSE (2) to study the dynamics of the condensate
when damping and finite-temperature effects are neglected. First we study the stationary
solutions of the NLSE. To find a stationary solution, we have to fix the mass of the condensate
M = ∫ +∞

−∞ |�|2 dx = 1. The potential that takes into account the combination of the magnetic
trap and of the laser sheet can be written as [7]
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Figure 6. Some stationary solutions of the NLSE (equation (2)). (a) The ground state for g = −1
and b = 6. (b) The symmetric unstable ground state (dotted curve) and one of the two non-
symmetric stable solution (plain curve) for g = −1 and b = 12. (c) The kink state for g = 1 and
b = 6. (d) The symmetric unstable kink state (dotted curve) and one of the two non-symmetric
stable solutions (plain curve) for g = 1 and b = 12.

V (x) = x2 + be−cx2
. (23)

We numerically solve the nonlinear eigenvalue problem and find ωs and us such that

ωsus = V (x)us − ∂2
xxus + gu3

s , (24)

where �s(x, t) = us(x)e−iωst . A Crank–Nicholson scheme in time [18] is used. Some
stationary solutions for the ground state and the dark soliton state are shown in figure 6.

Once more, it is interesting to look for non-symmetric solutions. For a large enough barrier
height such stationary solutions can be found. Some examples of non-symmetric solutions are
shown in figure 6. They arise from the self-trapping instability.

3.2. The self-trapping instability

The discussion given in the section 2 as well as the existence of non-symmetric solutions
suggests the occurrence of a pitchfork bifurcation for the stationary solution. The self-trapping
instability can be started by the potential bump increase and there exists a critical value bc of
parameter b for which the symmetric solution loses stability. We performed a numerical
stability analysis of the solution us when b varies. It reveals that:

• when b is small, the ground state and the kink state are both stable,
• if g is negative, when b increases, the ground state becomes unstable for b = bc (bc = 9.14

for the values of figure 7); the kink state remains stable;
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Figure 7. The motion of the eigenvalues of L when b increases for the first mode when
g = −1, c = 10 (up) and for the second mode when g = 1, c = 10 (down).

• if g is positive, when b increases, the kink state becomes unstable for b = bc (bc = 9.96
for the values presented in figure 7); the ground state remains stable.

The linear operator associated with the linear evolution of a perturbation of us is L =
−ωs − ∂2

xx + V (x) + gu2
s + 2gu2

s cj, where cj denotes the conjugation of a complex number.
The spectrum of L is plotted in figure 7 and clearly exhibits a reversible static bifurcation (the
eigenfrequencies pass through zero). As we will see later, the symmetry of the eigenmodes is
the signature of a pitchfork bifurcation.

We define the bifurcation parameter as

εµ = b − bc, (25)

where ε is a small parameter that measures the distance from the instability threshold and µ is
a parameter a priori of order 1 that can be positive or negative.

To catch the dynamic close to the self-trapping we perturb the static solution and write

ψ(x, t) = (us(x) + u(x, t))e−iωste−iϕ(x,t), (26)

where u(x, t) and ϕ(x, t) are small and vary slowly in time. More precisely, we will use the
standard scaling associated with a reversible pitchfork bifurcation

u(x, t) = √
εu(1)(x, τ ) + εu(2)(x, τ ) + ε3/2u(3)(x, τ ) + · · · , (27)

ϕ(x, t) = √
εϕ(1)(x, τ ) + εϕ(2)(x, τ ) + ε3/2ϕ(3)(x, τ ) + · · · , (28)

V (x) = V |0(x) + εµV |1(x), (29)

where τ = √
εt is the slow timescale and V |0(x) = x2 + bce−cx2

.
At order ε0, we get the equation for the stationary solution

ωsus = −∂2
xxus + gu3

s + V |0us. (30)

where us is either even (ground state) or odd (kink state).
At order

√
ε, we have the eigenvalue problem

0 = Lϕu(1) with Lϕ = −ωs − ∂2
xx + 3gu2

s + V |0, (31)

0 = Luϕ(1) with Lu = 2∂xus∂x + us∂
2
xx. (32)
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Figure 8. The eigenvectors v for the bifurcation of the ground state (g = −1, b = 9.14,
c = 10) (left) and the kink state (g = 1, b = 9.96, c = 10) (right).

The linear operator Lu has an obvious zero eigenvalue associated with the eigenvector
ϕ(1) = 1 (or any constant). This neutral mode arises from the phase invariance of the NLSE
(� → �ei1).

Equation (31) determines the value of bc. The operator Lϕ has a zero eigenvalue for
b = bc, where bc is the value of b at the onset of instability. Thus, for the particular value bc,
there is a double-zero eigenvalue and there exists a vector v such that

Lϕv = 0. (33)

v has the parity opposite3 to us (we note v�us). Two examples of eigenvectors v are plotted in
figure 8. It is also worth noting that Lϕ is self-adjoint for the inner product 〈a, b〉 = ∫ +∞

−∞ ab dx.
The first terms of the asymptotic development can be given as

ϕ(1) = α(τ) and u(1) = A(τ)v(x). (34)

We can continue the asymptotic expansion to catch the weakly nonlinear dynamic close to the
self-trapping bifurcation.

At order ε, we have two equations for u(2) and ϕ(2):

usα̇ = Lϕu(2) + µV |1us + 3gus(A
2v2), (35)

Ȧv = Luϕ(2) (36)

denotes the derivative with respect to τ . We can solve these equations for u(2) and ϕ(2) and the
solutions are

u(2)(τ, x) = β(τ)w(x) − µs(x) − A2(τ )r(x), (37)

ϕ(2)(τ, x) = Ȧ(τ )ρ(x), (38)

where Lϕw = us, β = ∂τα, Lϕs = V |1us, Lϕr = 3gusv
2. w, s and r exist because

〈v, us〉 = 0 and 〈v, usv
2〉 = 0 and 〈v, V |1us〉 = 0. (39)

Moreover, the parities are w � us, s � us and r � us. The function ρ(x) that verifies Luρ = v

can be explicitly computed and is given by ∂xρ = u−2
s

∫ x

−∞ usv d x. ∂xρ is even.
At order ε3/2, we have

usρÄ + Aβv = Lϕu(3) + µV |1Ag + 6gus(Av)(βw − µs − A2r) + g(Av)3 (40)

wβ̇ − 2rAȦ = Luϕ(3) + 2AȦ∂xv∂xρ + AȦv∂2
xxρ. (41)

3 Actually v can be considered as an extension of the translational mode ∂xus. v verifies Lϕ(v − ∂xus) = us∂xV |1.
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To find u(3), we have to write the solvability condition

Ä〈v, usρ〉 + µA〈v,−V |1v + 6gusvs〉 + Aβ(〈v, v − 6guswv〉)
+ A3(−g〈v, v3〉 + 6g〈v, usrv〉) = 0. (42)

The problem associated with ϕ(3) can be written formally as Luϕ(3) = ζ , where

ζ = wβ̇ − 2rAȦ − 2AȦ∂xv∂xρ − AȦv∂2
xxρ. (43)

The solution of this equation is given by ∂xϕ(3) = u−2
s

∫ x

−∞ usζ dx. A necessary condition to

bound the energy is then
∫ +∞
−∞ usζ dx = 0 which is written

β̇〈us, w〉 + AȦ〈us,−2r − 2∂xv∂xρ − v∂2
xxρ〉 = 0. (44)

Equations (44) and (42) have the same form as equations (14) and (15). Equation (44)
states that there is a conserved quantity while equation (42) describes a reversible pitchfork
bifurcation. We finally make a change of variables (in appendix B) to get the classical equations
describing a reversible pitchfork bifurcation with a conserved quantity

∂τQ = 0, (45)

∂2
ττX = µ̃X + QX − X3. (46)

To understand the meaning of equations (45) and (46), it is necessary to have a physical
meaning for the two variables Q and X. As shown in appendix C, equation (45) states the
conservation of mass. Consequently, Q is simply the perturbation of the mass. Equation (46)
is related to the conservation of energy (in a less direct way). We will therefore interpret X as
the perturbation of the position of the centre of mass of the condensate.

3.3. The description of weakly open condensates

Inside the condensate, recombination occurs through two- and three-body collisions [11]. This
is a mechanism of loss of atoms in the condensate. Losses in condensates are not homogeneous.
They are preferably located at the edge of the condensate. In order to feed the condensate a
pumping process is needed taking atoms from the uncondensed part and injecting them into
the condensate. This leads to a permanent non-reversible dynamics induced by the coupling
between condensed atoms and their environment.

We still use a mean field description and introduce phenomenologically irreversible terms
into the NLSE. The equation that we will use reads

i∂t� = −∂2
xx� + g|�|2� + V (x)� + i(νi� − νl|�|2� + νd∂

2
xx�), (47)

where νi measures the rate of injection, νl measures the effect of two-body recombination
and νd takes into account the non-homogeneity of the dissipative processes as well as thermal
diffusion. All these coefficients will be small because the characteristic times of dissipation
remain weak compared to the frequency of the trap.

These irreversible effects set the mass of the condensate. For a given set νi , νl and
νd , a stationary solution � = use−iωst can be found (us is not real). One property of this
stationary solution is that the mass of the condensate should not evolve in time. The equation
∂t
∫ +∞
−∞ |�|2 dx = 0 leads to

νi

∫ +∞

−∞
|�|2 dx − νl

∫ +∞

−∞
|�|4 dx − νd

∫ +∞

−∞
∂x�∂x� dx = 0. (48)
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3.4. Quasi-reversible self-trapping

We now study how the irreversible effects can modify the dynamics of the self-trapping
bifurcation. We still use the same asymptotic approach, assuming that the dissipative terms
νi , νl and νd are of order

√
ε. In this limit, one describes the dynamics when dissipation and

injection compete with the physical effects that lead to the bifurcation.
We use the ansatz

u(x, t) = √
εA(τ)v(x) + εu(2)(x, τ ) + ε3/2u(3)(x, τ ) + · · · (49)

ϕ(x, t) = √
εα(τ) +

√
εϕ̂(1)(x, τ ) + εϕ(2)(x, τ ) + ε3/2ϕ(3)(x, τ ) + · · · . (50)

The term ϕ̂(1) is a perturbation due to irreversible effects.
At order 1, we have the same equation for us as equation (30):

ωsus = −∂2
xxus + 3gu3

s + V |0us. (51)

As stressed before, this equation possesses a one-parameter family of solutions (ωs, us). In the
reversible case, we fixed the mass in order to select one of the solutions. In the quasi-reversible
case the mass will be fixed by the irreversible effects at order

√
ε.

At order
√
ε, we have

0 = ALϕv, (52)

0 = αLu1 + Luϕ̂(1) + νius − νlu
3
s + νd∂

2
xxus. (53)

Equation (52) is just the definition of v but equation (53) has a solution if and only if

νi〈us, us〉 − νl〈us, u
3
s 〉 − νd〈us, ∂

2
xxus〉 = 0, (54)

which is the leading order in equation (48). The amplitude of the condensate is selected by the
irreversible processes and (ωs, us) is completely determined by equations (51) and (54). The
quasi-reversible terms induce a perturbation of phase and we have

Luϕ̂(1) = −νius + νlu
3
s − νd∂

2
xxus, (55)

and ϕ̂(1) is given by ∂xϕ̂(1) = (1/u2
s )
∫ x

−∞ us(−νius + νlu
3
s − νd∂

2
xxus) dξ and ϕ̂(1) is even.

At order ε, we have the same equations as equations (35) and (36) with additional terms

us∂τα = Lϕu(2) + µV |1us + 3gus(A
2v2) + us(∂xϕ̂(1))

2 + νdLuϕ̂(1), (56)

∂τAv = Luϕ(2) + 2A∂xv∂xϕ̂(1) + Av∂2
xxϕ̂(1) + νiAv − νl3u

2
sAv + νdA∂2

xxv. (57)

We can solve these equations for u(2) and ϕ(2). The solution of equation (56) exists because

〈v, us(∂xϕ̂(1))
2〉 = 0, 〈v,Luϕ̂(1)〉 = 0 (58)

and the solution of equation (57) exists because

〈us, ∂xv∂xϕ̂(1) + v∂2
xxϕ̂(1)〉 = 0, 〈us, u

2
sv〉 = 0, 〈us, ∂

2
xxv〉 = 0. (59)

The solutions are

u(2)(τ, x) = β(τ)w(x) − µu1(x) − A2(τ )r(x) − û(2), (60)

ϕ(2)(τ, x) = ∂τA(τ)ρ(x) − Aϕ̂(2), (61)

where Lϕû(2) = us(∂xϕ̂(1))+νdLuϕ̂(1) and Luϕ̂(2) = 2∂xv∂xϕ̂(1) +v∂2
xxϕ̂(1) +νiAv−νl3u2

sAv+
νdA∂2

xxv. Moreover, the parity are û(2) � us and ϕ̂(2) is odd.
At order ε3/2, we have

usρ∂
2
ττA − us∂τAϕ̂(2) + Aβv = Lϕu(3) + µV |1Av + g(Av)3 + Av(∂xϕ̂(1))

2

+ 6gus(Av)(βw − µu1 − A2r − û(2)), (62)

w∂τβ − 2rA∂τA = Luϕ(3) + 2A∂τA∂xv∂xρ + A∂τAv∂2
xxρ

+ 2∂x(βw − µu1 − A2r − û(2))∂xϕ̂(1) + 2A2∂xv∂xϕ̂(2)

+ A2v∂2
xxϕ̂(2) + (βw − µu1 − A2r − û(2))∂

2
xxϕ̂(2). (63)
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To find u(3) and ϕ(3), we have to write two solvability conditions. The one associated with
ϕ(3) is

∂τβ〈us, w〉 + A∂τA〈us,−2r − 2∂xv∂xρ − v∂2
xxρ〉

= A2〈us, 2∂xv∂xϕ̂(2) − 2∂xr∂xϕ̂(1) + v∂2
xxϕ̂(2) − r∂2

xxϕ̂(1)〉
+ 〈us,−2µ∂xu1∂xϕ̂(1) − µu1∂

2
xxϕ̂(1) − 2∂xû(2)∂xϕ̂(1) − û(2)∂

2
xxϕ̂(1)〉

+ β〈us, 2∂xw∂xϕ̂(1) + w∂2
xxϕ(1)〉. (64)

This solvability condition includes more terms than equation (44). All the additional terms are
due to the irreversible process.

The other solvability condition reads

∂2
ττA〈v, usρ〉 + ∂τA〈v,−usϕ̂(2)〉 + A〈v,−µV |1v + 6µgusvu1 − v(∂xϕ̂(1))

2 + 6gusvû(2))〉
+ Aβ〈v, v − 6guswv〉 + A3〈v,−gv3 + 6gusrv〉 = 0. (65)

With the change of variables given in appendix B, equations (64) and (65) can be written
as

∂2
ξξX = (µ̃ + µ̂)X − X3 + QX − νX∂ξX (66)

∂ξQ = νQ(Q0 − Q) − ηX2. (67)

These equations are the normal form describing the quasi-reversible bifurcation. It includes
the reversible case (µ̂ = 0, νX = 0, νQ = 0, η = 0). The dissipative coefficients νX, νQ and
η are positive.

We have performed numerical simulations of the original weakly non-reversible NLSE
equation (47) and we show some typical results in figure 9. The system clearly exhibits Lorenz-
like behaviour, with chaotic alternation of the centre of mass of the condensate between the left
and right wells. For different parameter values (but in the same range), non-symmetric limit
cycles, symmetric limit cycles, stable non-symmetric stationary solutions can be observed.

The behaviour is richer than in the reversible case and this is principally due to the coupling
term −ηX2 of equation (67). When the symmetry breaking occurs, the condensate moves to
one side. The coupling term −ηX2 then leads to a decrease in the mass of the condensate
which renders the symmetric state as stable again.

4. Discussion

There are two candidates for manifesting the self-trapping bifurcation: the ground state of
an attractive condensate and the dark soliton of a repulsive condensate. Despite its weaker
stability [19], the attractive condensate would be a good candidate in which to observe the
self-trapping bifurcation because the self-trapping then occurs on the ground state. A careful
numerical study of the tri-dimensional GPE would be useful to determine whether the self-
trapping bifurcation can occur before the collapse of the attractive condensate. In the limit of
a thin cigar-shaped trap, this is obviously the case since there the collapse does not occur. The
variation of the scattering length from positive to negative value would also be a very good
way to observe the self-trapping bifurcation [5].

The intensity of the laser sheet which is related to µ in the equations is easily tunable. It is
possible to approach the self-trapping bifurcation and then to experimentally study the weakly
nonlinear behaviour described by the amplitude equations.

Although a complete and coherent theoretical description of irreversible effects in BECs
is not yet available, within the assumption of quasi-reversibility (i.e. in the limit where the
dissipative and forcing effects are supposed to be of the same order than the distance from the
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Figure 9. Numerical solutions of equation (47): g = −1, b = 6, c = 10, α = 6, β = 8, γ = 3
and ε = 0.01. (a) The plot of the successive maxima of the mass

∫ |�|2 dx. (b) A density plot of
|�|2 and (c) is the phase space (X = ∫

x|�|2 dx).

instability threshold) the amplitude equation takes the same form whatever the microscopic
modelling of the irreversible effects is. Irreversibility will always act as a damping of the
mass (νQ), a damping of the motion of the centre of mass (νX) and stimulated mass losses
(η) will always occur. Only the numerical values of these parameters will be affected by the
modelling. In our simulations, we used realistic values of the dissipative coefficients based on
experimental observations [11]. As presented in [11], the values of the dissipative coefficient
are strongly dependent on temperature. In any case, these coefficients remain small, such that
the quasi-reversible approach is accurate for BECs.

The self-trapping bifurcation is a general feature of the competition between a potential
bump and the nonlinearity. For example, when considering a repulsive BEC in a periodic
trap, some solution with opposite phase in successive wells (which is an extension of the dark
soliton) are found to be unstable [20].

5. Summary

We have discussed the dynamics of BECs in a double-well trap. The two-mode model has
been used to describe the symmetry breaking self-trapping bifurcation in the reversible and the
quasi-reversible cases. In this latter case we showed that the BEC can experience a transition
to chaotic behaviours described by the Lorenz equations. We also used the one-dimensional
NLSE to describe the self-trapping. In that case numerical experiments as well as the reduction
to amplitude equations show that Lorenz-like chaotic behaviours can be observed.
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Appendix A. The weakly interacting limit: the two-mode model

In this appendix we construct a low-dimensional model to describe the dynamics of a weakly
interacting condensate in a double-well trap.

A.1. The linear Schrödinger equation in a double-well trap

We first recall some result on the linear Schrödinger equation

i∂t� = −∂2
xx� + V (x)�. (A.1)

We will only consider the case where the potential is twice differentiable and the property
V (±∞) = +∞ holds.

The stationary solutions are� = Ae−i6ntun(x). The eigenmodes un(x) and the associated
eigenvalues 6n of the operator L = −∂2

xx + V (x) are separated (this a consequence of the
Sturm–Liouville theorem). In a harmonic potential V (x) = x2, the eigenvalues are regularly
spaced. In a double-well potential (for example, we will consider a potential of the form
V (x) = x2 + be−cx2

) the eigenvalues will not be regularly spaced, the eigenvalues move and
they gather by pairs. For example the eigenvalue associated with the ground state gets closer
to the one associated with the first excited state (figure A.1).

The two lowest eigenvalues come closer to each other than the other modes. This behaviour
suggests that some of the dynamic of the linear and the weakly NLSE could be understood
with a low-dimensional model describing the interaction between these two modes.

A.2. The one-mode model

Let consider g ∼ ε to be a small parameter. A simple perturbation of the first mode reads

� = [Au1(x) + εp1(x)]e
−iω1t , (A.2)

where u1 is the fundamental mode (or any other mode) of the linear Schrödinger equation and
A is the slowly varying amplitude. u1 is chosen to be normalized, i.e.

∫ +∞
−∞ u2

1 dx = 1. At order
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ε0 the equation is just ω1u1 = Llu1, where Ll = −∂2
xx +V (x) is the linear operator associated

with the linear Schrödinger equation. At order ε the equation is

i∂τAu1 + ω1p1 = Llp1 + g|A|2Au3
1, (A.3)

where the dots and the solvability condition to have p1 finite is

i∂τA = g̃|A|2A, (A.4)

where g̃ = g
∫ +∞
−∞ u4

1 dx. This equation is the classical description of a (weakly) nonlinear
oscillator which simply states that the frequency of oscillations is a function of the amplitude
of oscillations.

A.3. The two-mode model

We use the same procedure to derive the two-mode model. We consider two modes whose
frequencies are very close. Let ω1 and ω2 be the frequencies of u1 and u2 and we assume
ω1 + ω2 = 2ωm and ω2 − ω1 = δ, where δ is small (δ ∼ ε). u1 and u2 are normalized. We
have

(ω1 − Ll)u1 = 0 or Lmu1 = δu1, (A.5)

(ω2 − Ll)u2 = 0 or Lmu2 = −δu2, (A.6)

where Lm = ωm − Ll . We use the ansatz

� = [A1u1(x) + A2u2(x) + εp]e−iωmt . (A.7)

The substitution in the NLSE gives at order ε0

Lmu1 = 0 and Lmu2 = 0, (A.8)

which is true at this order. At order ε the two solvability conditions are

i∂τA1 = −δA1 + gc40|A1|2A1 + 2gc22A1|A2|2 + gc22A1A
2
2, (A.9)

i∂τA2 = δA2 + gc04|A2|2A2 + 2gc22|A1|2A2 + gc22A
2
1A2, (A.10)

where c40 = ∫ +∞
−∞ u4

1 dx, c22 = ∫ +∞
−∞ u2

1u
2
2 dx and c04 = ∫ +∞

−∞ u4
2 dx.

Moreover, c22 − c04 ∼ ε and c04 − c40 ∼ ε [25]. In the two previous equations we can
write g̃ = g 1

4c40 and we have

i∂τA1 = −δA1 + 1
4 g̃|A1|2A1 + 2 1

4 g̃A1|A2|2 + 1
4 g̃A1A

2
2, (A.11)

i∂τA2 = δA2 + 1
4 g̃|A2|2A2 + 2 1

4 g̃|A1|2A2 + 1
4 g̃A

2
1A2. (A.12)

This can also be transformed using the two variables 2S = A1 + A2 and 2D = A2 − A1.
After substitution in equations (A.11) and (A.12), we get

i∂τS = g̃|S|2S + δD, (A.13)

i∂τD = g̃|D|2D + δS, (A.14)

which is the two-mode model. S represents the amplitude in one well, whereas D represents
the amplitude in the other well. These two coupled equations describe the interaction between
the two wells. It is an extension of the linear two-mode model of a two-level system.

The two-mode model catches the universal behaviour of two coupled nonlinear oscillators.
For example, the oscillations of two pendula coupled by a torsional spring (figure A.2) are
described by

θ̈1 + sin θ1 = κ(θ2 − θ1), (A.15)

θ̈2 + sin θ2 = κ(θ1 − θ2), (A.16)
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Torsional 
spring

Figure A.2. Sketch of two coupled nonlinear oscillators: coupled pendula.

where κ measures the intensity of the restoring torque due to the spring. The weak oscillations
of the pendula can be caught by the asymptotic expansion

θi(t) = √
ε(Ai(T )e−it + Ai(T )eit + θ

(3)
i (t, T ) + · · ·]. (A.17)

The solvability condition at order ε3/2, with κ ∼ ε is

−2iA′
1 − 1

2 |A1]2A1 = κ(A2 − A1), (A.18)

−2iA′
2 − 1

2 |A2]2A2 = κ(A1 − A2). (A.19)

Appendix B. The computation of the normal form

In this appendix we transform equations (64) and (65) into adimensionalized equations. We
work on the quasi-reversible equations because they include the reversible equations.

First we perform integration by parts to transform equation (64) into

∂τβ〈us, w〉 + A∂τA(−2〈us, r〉 + 〈v, v〉) = (µ〈u1, ϕ̂(1)〉 + 〈û(2), ϕ̂(1)〉) − β〈w, ϕ̂(1)〉
+ A2(−〈v,Luϕ̂(2)〉 + 〈r,Luϕ̂(1)〉). (B.1)

Equation (65) can be presented as

∂2
ττA〈v, usρ〉 + ∂τA〈v,−usϕ̂(2)〉 − µA〈v, V |1v − 6gusvu1〉 − A〈v, v(∂xϕ̂(1))

2

− 6gusvû(2)〉 + Aβ〈v, v − 6guswv〉 + A3〈v,−gv3 + 6gusrv〉 = 0. (B.2)

Now, to get the adimensionalized equations (66) and (67), we use the change of variables

Q = 〈v, v − 6guswv〉
〈v, usρ〉

[
β + A2 1

2〈us, w〉 (−2〈us, r〉 + 〈v, v〉)
]
, (B.3)

X =
∥∥∥∥∥ 1

〈v, ρus〉
[

− g〈v, v3〉 + 6g〈v, usvr〉

− 1

2〈us, w〉 (−2〈us, r〉 + 〈v, v〉)〈v, v − 6gusvw〉
]∥∥∥∥∥

1/2

A (B.4)

µ̃ = µ
〈v, V |1v − 6gusvu1〉

〈v, ρus〉 , (B.5)

µ̂ = 〈v, v(∂xϕ̂(1))
2 − 6gusvû(2)〉

〈v, ρus〉 , (B.6)

νQ = 〈w, ϕ̂(1)〉
〈us, w〉 , (B.7)
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Q0 = (µ〈u1, ϕ̂(1)〉 + 〈û(2), ϕ̂(1)〉)〈v, usρ〉
〈w, ϕ̂(1)〉〈v, v − 6guswv〉 , (B.8)

η =
{
(〈v,Luϕ̂(2)〉 − 〈r,Luϕ̂(1)〉)〈v, usρ〉

〈us, w〉〈v, v − 6guswv〉 − 〈w, ϕ̂(1)〉(〈v, v〉 − 2〈us, r〉)
(〈us, w〉)2

}
×
{

1

〈v, ρus〉
[
−g〈v, v3〉 + 6g〈v, usvr〉

− 1

2〈us, w〉 (−2〈us, r〉 + 〈v, v〉)〈v, v − 6gusvw〉
]}−1

(B.9)

νX = −〈v, usϕ̂(2)〉
〈v, usρ〉 . (B.10)

The sign of the expression under the absolute value in equation (B.4) is of prime interest.
Depending on this value, the coefficient of the X3 term in amplitude equation will be ±1, i.e.
the bifurcation will be supercritical or subcritical. Although we have not been able to find a
general argument, it seems to be always positive for the potential chosen here.

Appendix C. Conservation law

There are many conserved quantities associated with the NLSE. Some of them can be deduced
from the conserved quantities of the autonomous NLSE [21]. Two of them will be of particular
interest, the mass

M =
∫ +∞

−∞
|�|2 dx, (C.1)

and the energy

E =
∫ +∞

−∞
(|∂x�|2 + 1

2g|�|4 + V (x)|�|2) dx. (C.2)

An obvious question is whether or not these quantities are conserved by the set of the
amplitude equations. Actually, we can use the ansatz of equations (27) and (28) to rebuild the
set of two equations using the conservation laws for the mass and the energy. This provides a
better physical interpretation for the amplitude equations.

C.1. Conservation of mass

We expect the conserved quantity Q present in equation (45) to be associated with the mass.
In equation (C.1) we have

M =
∫ +∞

−∞
(us + u)2 dx = M(0) + εM(2) + ε2M(4), (C.3)

with

M(0) =
∫ +∞

−∞
u2

s dx

M(2) =
∫ +∞

−∞
2us(βw − µu1 − A2r) + A2g2 dx

M(4) =
∫ +∞

−∞
2usu(4) + 2Avu(3) + (βw − µu1 − A2r)2 dx.

Finally, equation (44) obtained by an asymptotic method is equivalent to what we get when
we write ∂tM(2) = 0.



1610 P Coullet and N Vandenberghe

C.2. Conservation of energy

Now we expect equation (42) to be associated with the conservation of energy. In equation (C.2)
we have

E =
∫ +∞

−∞
[(∂xus + ∂xu)

2 + (∂xφ)
2(us + u)2] dx +

∫ +∞

−∞
[ 1

2g(us + u)4 + V (us + u)2] dx (C.4)

= E(0) + εE(2) + ε2E(4), (C.5)

with

E(0) =
∫ +∞

−∞
[(∂xus)

2 + 1
2gu

4
s + V |0u2

s ] dx

E(2) =
∫ +∞

−∞
2∂xus((βw − µu1 − A2r)) + A2v2 dx

+
∫ +∞

−∞
1
2g[4u3

s (βw − µu1 − A2r) + 6u2
sA

2v2] dx

+
∫ +∞

−∞
V |0[2us(βw − µu1 − A2r) + A2v2] + V |1u2

s dx

= ωsM(2).

(C.6)

If the mass is conserved (at order ε) then the energy is also conserved:

E(4) =
∫ +∞

−∞
2∂xus∂xu(4) + 2A∂xg∂xu(3) dx

+
∫ +∞

−∞
(µ∂xu(1) + A2∂xr + φ0β∂xh)

2 + (∂τA)2ρ2u2
s dx

+
∫ +∞

−∞
1
2g[4u3

su(4) + 6u2
s ((µu(1) + A2r + φ0βh)

2 + 2Agu(3))] dx

+
∫ +∞

−∞
1
2g[4us(3A

2g2)(µu(1) + A2r + φ0βh)] dx

+
∫ +∞

−∞
V |0[2usu(4) + 2Agu(3) + (µu(1) + A2r + φ0βh)

2] dx

+
∫ +∞

−∞
V |1[2us(µu(1) + A2r + φ0βh) + A2g2] dx (C.7)

= ωsM(4) −
∫ +∞

−∞
(µu(1) + A2r + φ0βh)Lϕ(µu(1) + A2r + φ0βh) dx

+
∫ +∞

−∞
+(µ∂xu(1) + A2∂xr + φ0β∂xh)

2 + (∂τA)2ρ2u2
s dx.

Finally, the combination of the conservation of mass and of conservation of energy at
order ε4 implies equation (42).

Appendix D. Dynamic of a soliton in a slowly varying potential

In this appendix we perform a perturbation analysis based on the dynamics of a soliton of the
NLSE without potential. We introduce the slowly varying potential as a perturbation of the
equation. There have been a large number of works related to the dynamics of solitons in
nearly integrable systems (see [22, 23]). In this appendix we use the conserved quantities of
the NLSE to deduce the dynamic of the soliton in the slowly varying potential.
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We write the NLSE equation in the form

i∂t� + ∂2
xx� + 2|�|2� = εV (x)�. (D.1)

A solution of the NLSE without potential is given by

�(x, t) = 2η
e−iϕ

cosh z
, (D.2)

where ϕ = −4η2t + φ0 and z = 2η(x − x0). In order to catch the dynamics of the soliton in
the slowly varying potential we assume that η, x0 are slowly varying functions of time.

The conservation of the mass M = ∫ +∞
−∞ |�|2 dx = 4η can then be presented as

∂τη = 0, (D.3)

where τ is the length timescale.
The Ehrenfest theorem (which holds for the NLSE [24]) can be presented as

∂2
ττ

∫ +∞

−∞
x|�|2 dx = −

∫ +∞

−∞
V ′(x)|�|2 dx. (D.4)

At leading order we get

4η∂2
ττ x0 = −4η2

∫ +∞

−∞
V ′(x)

1

cosh2[2η(x − x0)]
dx. (D.5)

We approximate the potential with V (x) = αx2 + βx4. We then get the equation for the
position of the soliton

∂2
ττ x0 = −

(
2α + 12

β

4η2

∫ ∞

−∞

z2

ch2z
dz

)
x0 − 4βx3

0 . (D.6)

We first notice than for a harmonic potential, the soliton behaves like a harmonic oscillator.
When the barrier is formed, i.e. α is negative, the central position in the trap loses stability
whenever

α < −6
β

4η2

∫ ∞

−∞

z2

ch2z
dz. (D.7)

For the values given in figure 7 this would lead to instability for b > 0.073, whereas the
numerical simulation predicts a value b = 10.
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