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The present study aims at documenting, making use of an original set-up allowing to
acquire well-converged data, the coarsening of foams in two dimensions. Experiments
show that a foam behaves quite differently depending on the way it has been prepared.
We distinguish between an initially quasi-monodisperse foam and a polydisperse foam.
The coarsening laws are initially different, although both foams reach a common,
time-dependent asymptotic regime.

The ageing process relies on exchanges between adjacent foam cells (von Neumann’s
law), and on topological rearrangement (T1 and T2 processes) whose rates are
measured in all regimes. We attempt to make their contribution to the evolution
of the area S and facet number n distribution of probability P (S, n, t) quantitative.
The corresponding mean field theory predictions represent well the phenomenon
qualitatively, and are sometimes in quantitative agreement with the measurements. A
simplified version of this theory, taking the form of a Langevin model, explains in
a straightforward manner the different scaling laws in the different regimes, for the
different foams.
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1. Introduction
Two-dimensional soap froth is a representative case of a broad class of problems

consisting in covering the plane by contiguous sub-areas, or cells. Albeit trivial
solutions exist (mapping the plane by regular shapes like squares, or hexagons for
instance), it is frequently observed in several physical and natural systems that a
disordered solution is adopted. For a medium evolving in time with growing cells,
as for biologic tissues, it is not possible to maintain a perfect lattice, and the
medium becomes disordered. The cell features (their area, their number of facets) are
distributed, all the more broadly as if the systems have aged. General properties appear
to hold for several different systems, which are subjected to identical geometrical
and topological constraints (Mombach, de Almeida & Iglesias 1993; Stavans 1993;
Weaire & Hutzler 1999). Among them is Lewis Law, first established for human
retina epithelium and for cucumber rind (Lewis 1928). It expresses the existence of
a correlation between the area and the number of facets of a single cell. Another
common feature of these systems is the time dependence of the average cell radius
〈r(t)〉. It is observed that 〈r(t)〉 ∝ t1/2, holding for grain growth (Cleri 2000), or in soap
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froth system (Tam & Szeto 1996) both in two and three dimensions (at the notable
exception of accreted ice domains which present a much weaker time dependence,
see, e.g. Prodi & Levi 1980).

The present work concerns the classical problem of ageing of two-dimensional
dry soap froths. A foam is continuously formed at the entrance of a channel,
through which it is progressively transported (§ 2.1). The foam ages as it travels
through the channel. Each downstream position in the channel corresponds to a
given age of the foam, thus allowing to reconstruct its history. As we obtain a steady,
permanently regenerated system, large amounts of data are easily collected allowing,
after appropriate processing to compute high-quality statistics on various aspects of
the cells constitutive of the foam (§ 2.2).

Two different regimes are observed, corresponding to different injection conditions.
For a polydisperse foam (run P), our observation for the evolution of average area
〈S〉 recovers the results already observed and one has 〈S〉 ∼ t . In this regime, the
distribution of surfaces P (S, t) is shown to evolve self-similarly in time t leading
to a stationary distribution P (S/〈S〉), as also observed by others (Stavans 1990;
Segel et al. 1993; de Icaza, Jimenez Ceniceros & Castano 1994). The large statistics
accumulated in our experiment allow the measurements of the distribution P (S, n, t)
of the cell surfaces S conditioned to their facet number n, and in particular the first
moment 〈S|n〉 and second moment σ 2

n of this distribution. If several authors (Glazier,
Gross & Stavans 1987; Szeto & Tam 1995) have reported about the so-called Lewis
law (〈S|n〉 ∝ n), observations for the second moment are new.

For an initially monodisperse foam (run M), the same measurements are made,
and a new regime is observed: the typical cell area grows like t3/2. In this case,
the evolution of the distribution P (S, n, t) is not self-similar. On the contrary, we
show that this new regime is a transient evolution toward the final self-similar
regime. The distribution of the number of cell facets P (n) evolves from a Dirac
distribution P (n) = δn,6 at initial time toward a stationary distribution, exhibiting
an exponential shape, a classical behaviour for two-dimensional cellular structures
(Miri & Rivier 2006). The distribution P (n) obtained with this initially monodisperse
foam is particularly broad (cells with up to n = 15 facets are observed with statistical
significance). This observation, made possible thanks to the large amount of statistics,
singles out a regime where the T1 topological processes are frequent.

Since the cells are tracked in time, we also obtain the temporal evolution of the
properties of each individual cell. The elementary processes ruling the evolution of
the foam are known. In a soap froth, gas exchange happens between cells, as a
consequence of pressure differences, themselves related to the cells topology. The
latter depends simply (for a two-dimensional froth) on the number of facets of a
given cell (von Neumann 1952 and § 4.1). Concomitantly, the local structure of the
foam is modified through so-called T1 and T2 topological processes, which lead to a
modification of the number of facets n. We quantify these phenomena, measuring the
gas exchange rate Ṡ∗ of von Neumann’s law, and the rates β and α of the topological
processes (§ 4.2). Our measurement technique allow us to characterize quantitatively
these processes: the gas exchange rate Ṡ∗ of von Neumann’s law is measured, the
frequency of topological processes is measured and is shown to be related with the
cell’s facet number n.

These quantitative descriptions of the evolution of individual cells allow us to
discuss an analytical model based on a mean field approach in the spirit of the one
imagined by Flyvbjerg (1993) for the evolution of the cell area S and facet number n
distribution P (S, n, t) as a function of time t , based on our experimental observations.
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In contrast with other approaches using a lumped parameterization of the cell’s rate
of growth conditioned to their radius (Beenakker 1986; Streitenberger & Zollner
2006) or of the cell facet number variations (Marder 1987), we make the effect of the
topological processes explicit in that formulation, and derive analytical predictions
for the mean and variance of the area distribution, in particular (§ 5.1). The same
principles rule the evolution of the transient (run M) and self-similar (run P) regimes
which are both predicted within the same theoretical framework.

Finally, we suggest in § 6 that ageing in foams can be understood from a simple
Langevin model, which retains the essential ingredients of our more elaborate
description, and for which we identify the origin of the damping term, and of
the random forcing in relation with the topological changes within the foam. This
model provides a transparent explanation for the existence of two coarsening regimes,
Lewis law, and the growth of the cell’s average surface.

2. Set-up and image processing
2.1. The foam channel

The foam is formed from bubbles injected into a layer of soapy solution at the
entrance of a long channel. The solution is made from a commercial surfactant (Dreft
by Procter & Gamble, a mixture of non-ionic and anionic molecules) diluted into
tap water offering a static surface tension (measured using the protocol of Hansen &
Rodsrud 1991) of γ = 32× 10−3 Nm−1.

The channel is 0.7 mm thick, 20 cm wide, and 2 m long (figure 1). It is made of
two parallel thick (1 cm) glass plates which are rigid enough to ensure that the inner
gap of the channel is uniform. This set-up allows a direct visualization of the foam
by transparency. The whole channel is tilted at an angle of about 20◦ with the
horizontal, keeping a reservoir of soapy water filling the lowest 20 cm of the channel
(figure 2). The other extremity of the channel is opened to the atmosphere.

Carbon dioxide (CO2) gas, chosen for its high solubility in water, is discharged at
the bottom of the channel through a 100-µm-diameter needle dipping in the soapy
water layer. Bubbles of typically 4 mm3 are formed in the neighbourhood of the needle
exit and since the channel is thin enough, the corresponding gas volume is squeezed
in the gap between the plates so that the bubbles are quasi two-dimensional. Bubbles
rise from the injection point, through the soapy water and collect at the solution/air
interface, packing and forming a foam above the soapy water as seen in figure 2.

A monodispersed foam is built by producing regular bubbles (all with the same
volume), whereas a polydispersed foam results from more random bubble sizes
generating conditions at the needle nozzle, which soon prevail when the gas flow rate
is increased through the needle. In both cases, the bubbles settle toward the interface,
aggregate and rearrange in the foam. The rearrangements are not controlled, but in
the case of a monodispersed collection of bubbles, it is observed that a nearly regular
hexagonal lattice is formed. In the polydispersed case, no regular structure is observed
(figure 3).

The arrival of new bubbles at the bottom of the foam induces a very slow flow,
pushing the whole foam toward the exit point at the other extremity of the channel.
The pre-wetting of the channel walls reduces the friction of the foam on the walls
and no pinning is observed. This ensures that the foam ageing process will not be
hindered by the existence of pinning points which would otherwise cause a freezing
of the evolution, known to occur as soon as the average cell radius is equal to the
distance between pinning spots (Krichevsky & Stavans 1992).
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Figure 1. (Colour online available at journals.cambridge.org/FLM) Overview of the foam
channel. The foam is sandwiched between two thick glass plates and is visualized by
transparency with a white screen lightened by two spots embarked, with the camera, on
a trolley travelling along the channel as the foam flows through it.

Foam is known to be a typical multiphase media with a non-Newtonian rheology
(Cantat, Kern & Delannay 2004; Hilgenfeldt, Arif & Tsai 2008). The foam rheological
behaviour is determined by the dominant dissipation mechanism, namely the sliding
of plateau borders over the channel walls. When the foam moves, the strain thus
applies on a very thin layer at the border of the channel. Thus, side cells slip at
the border of the channel at a velocity close to the flow velocity. Consequently, the
average velocity profile of the foam across the channel width is a quasi-perfect plug
flow. The fluctuations of velocity due to the local rearrangement dynamics as the
foam coarsens are weak, of the order of 3 % of the average drift velocity UT .

This configuration, where the foam is permanently renewed and coarsened in steady
state as it travels through the channel, was chosen on purpose, because it allows to
collect easily a large amount of statistics. The correspondence between the position z
of an element of foam in the channel and the time t it has spent in the channel to
reach this position is

z = UT t, (2.1)

where UT is the mean drift velocity. Equation (2.1) is known in the context of
turbulence as ‘Taylor relationship’ that is frequently used for relating space to time in
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Figure 2. (Colour online) Detail of the bubble injection mechanism. The CO2 bubbles are
formed from a needle dipping into the soap solution.

weakly fluctuating media, as in wind tunnels for instance. Averages and distributions
for a given age t are then calculated at a given position z and in the following, we
will refer to the age t of the foam. In this respect, our channel is a ‘foam tunnel’.

2.2. Image capture and reconstruction

In order to obtain significant and reliable statistics, a large number of images of the
foam as it ages are captured in the following way: the foam channel is 2 m long,
and a single cell has a typical diameter of a few millimetres; the separatrix between
the cells is even smaller (the visible separatrix foot at the channel wall is typically
0.5 mm thick). We thus perform a scan of the foam. Making use of a commercial
webcam (Apple ISight) of standard PAL resolution (640× 480 pixels), a snapshot of
the foam is realized covering the total width of the channel (i.e., 20 cm) and only a
small subpart of its length (i.e., 15 cm) to ensure the locality of the measurement. In
order to reduce electronic noise of the camera, six consecutive snapshots are averaged
at the same location. The camera is translated on its trolley at several positions
sequentially, in order to cover the whole length of the channel. This way, up to
20 pictures are captured along the channel, so that two consecutive pictures overlap
by approximately 20 %. This whole set of pictures is captured within less than 20 s,
while the foam has moved by less than one cell diameter, thus offering an overall
view of the foam in the channel at a given instant of time.

The scanning operation is repeated at a regular time interval (a time delay of
about 100 s has been chosen) in order to follow the foam evolution. Data are
recorded for a long period (up to 15 h representing the equivalent of 600 scans)
in order to accumulate statistics. During that time period, the injection conditions
were kept constant. The mandatory condition was checked a posteriori by measuring
the drift velocity of the foam, and the cell area near the injection point, at several
consecutive instants of the experiment. Runs presenting deviations smaller than 5 %
were considered as valuable, as those analysed here.
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(a)

(b)

Figure 3. Instantaneous snapshots of foams in the channel. The image width is 20 cm, and
its length is about 2 m. (a) Run M , initially monodispersed foam. Time runs from bottom
(t = 0 min) to top (t = 120 min). (b) Run P , initially polydispersed foam (from t = 0 min to
t = 45 min).
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The channel is backlighted by illuminating a white screen and the foam is imaged
by transparency (figure 1). On an acquired image, foam cells appear clearly: the gas
bubbles fill entirely the gap between the channel walls, only a thin film wets over
the wall. A liquid separatrix separates two neighbour cells. This separatrix is found
to be very thin (h≈ 40 nm, see § 4.1) and is not directly visible on the foam picture.
The reason is that these liquid separatrices are connected to the channel walls by a
meniscus of width ranging from 0.1 to 1 mm which, deviating light, appears dark and
delimits the cells effectively.

The instantaneous foam picture is divided by a reference picture of the lighting
background and the result is thresholded in order to obtain a binary picture of the
foam structure. Finally, the local pictures set are stitched to each other to obtain a
global reconstitution of the foam structure along the channel for a given instant of
time in the form of a high resolution (6000× 640) image (see figure 3), and then for
all consecutive times.

2.3. Pre-processing

From the instantaneous binary picture of the foam structure obtained as explained
above, the cells borders (the menisci) appear as lines up to 1 mm thick, and are not
very regular: near the injection point, the foam is still very wet and the menisci are
thick. As the foam ages, it also becomes dryer, and the menisci become thinner.

A watershed algorithm is used to obtain a skeleton of the foam structure. This
image processing segmentation algorithm splits the image into connected areas
corresponding to the foam cells. The latter are labelled, so that each cell is clearly
identified on the instantaneous capture. Cell characteristics such as the centre of mass
position, area S, perimeter length and number of facets n, are thus easily obtained.
The major incertitude for determining these quantities is the exact position of the
cell separatrix, which we assumed to be at the centre of the apparent meniscus. The
error made on the position of the separatrix is estimated to be smaller than one pixel
(corresponding to 0.3 mm), leading to a maximal error for the determination of the
cell area of about 5 %. The number of facets of a cell, which is equal to the number
of neighbour cells (see figure 4), is, due to its discrete nature, accurately determined.

Since the high-resolution images of the foam have been acquired at different
consecutive instants of time, the time series of foam evolution is also available. The
tracking protocol of each individual cell from one instant to the other is divided into
the following two steps.

(i) First, a PIV-like algorithm is used to determine the local average displacement
of the foam (δX, δY ). The centre of mass (X, Y ) of the cell is measured at time t . If
the new position (X + δX, Y + δY ) at time t + δt corresponds to the centre of mass
of one cell within an error of one-tenth diameter, then the cell is identified. At this
stage, almost half the cells are identified.

(ii) A second recursive step is performed for the remaining unidentified cells. Foam
cells that have at least three common identified neighbours at time t and t + δt are
assumed to be of the same cell. At the end of this recursive process, more than 98 %
of the cells are identified.

This protocol is illustrated for four consecutive image captures in figure 4. This
tracking protocol was handy checked over 100 randomly chosen cells, tracked over
eight time steps. Only one error was found, and this error concerned a ‘stock cell’
in the core of an island (to be defined in § 3.3.1). In this case, the cells arrange
themselves in a quasi-perfect lattice, where all the cells have the same area S and
the same number of facets (n= 6), so that the error has no consequence. The time
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Figure 4. (Colour online) Tracking of foam cells for run P: cell no. 2502 is tracked over
four consecutive snapshots. Its neighbour cells are also identified.

evolution characteristics of all the cells are stored in a database (available on demand)
for their subsequent analysis.

2.4. Experiments and parameters

We present experimental results obtained for two different runs that differ drastically
regarding their initial conditions: in run M , the distribution of cell area at the injection
is peaked, close to monodisperse, whereas the cell area is broadly distributed in run
P . The experimental conditions are summarized in table 1.

3. Collective properties
3.1. Area and facet number distributions

3.1.1. Initially monodispersed foam

A foam is composed of a multitude of cells that are characterized in two dimensions,
by their area S and their facet number n. In the case of a perfect lattice, all the cells
have the same area, and have six facets. The initial state of run M is close to that
simplistic limit. However, foam ageing results in a more complex state, where the
area and facet number are more and more broadly distributed. Figure 5 illustrates
this evolution. The initial area distribution is a Dirac delta around the area S0 of the
injected cells,

P (S, t = 0) ≈ δ(S − S0), (3.1)
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Experiment label M P

Type Mono Poly
Number of snapshots 600 300
Total number of cells 174 000 152 000
Initial area 〈S0〉 22 mm2 36 mm2

Velocity UT 0.9 m h−1 2 m h−1

Travel time 120 min 45 min

Wall thickness 40 nm 60 nm
Ṡ∗ 140 mm h−2 95 mm h−2

α 0–0.7/h 3/h–0.8/h
β 0.8/h 0.1/h
βtmax 1.6 Self-similar regime

Table 1. Summary of the experimental parameters.
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Figure 5. Cell area and facet number distributions in run M at several times (t = 6, 24, 42,
66, 78, 96, 114 min). t = 6 (!), 24 ("), 42 (#), 66 ($), 78 (%), 96 (&), 114 (') min. The
arrow indicates the value of Scutoff /S0 at t = 42 min. Inset: evolution of the relative stock cells
reservoir population.

whereas the corresponding facet distribution is null except for n= 6, so that

P (n, t = 0) ≈ δ(n − 6). (3.2)

At larger times t , the facet number distribution P (n, t) becomes broader, due to the
morphological changes of the foam (see § 4.2); P (n, t) has a maximum at n = 6 at all
times, and decreases exponentially, at larger n. The area distribution P (S, t) exhibits
a large amount of cells with area S0 which also have six facets (the excess of 6-facet
cells can be seen on P (n), but due to the discrete nature of the facet distribution,
this is less visible than on the area distribution). These cells have experienced no
evolution from the initial state to the current time t , and their relative number
Nsc(t)/Nsc(0) decreases at a fairly constant rate, as seen in figure 5. They are grouped
into compact islands. The role of these ‘stock cells’ reservoir is discussed in § 3.3.1. The
area distributions P (S, t) present a nearly exponential decrease for intermediate areas,
with a rapid fall-off at large S. It does not, however, exhibit any self-similar shape,
since the characteristic area of the exponential decrease part of the distribution, and
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Figure 6. (Colour online) Cell area and facet number distribution in run P at several times
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that of the cutoff area are not proportional. For run M , the distribution P (S, t) is
thus composed of three parts:

(i) a Dirac delta at S = S0,
(ii) a weak exponential decrease for S < Scutoff ,
(iii) a sharp decrease for S >Scutoff .

In this case, the average area 〈S〉 is not very meaningful: the total area of the
foam being conserved through its evolution, 〈S〉 is inversely proportional to the total
number of cells, which includes the ‘stock cell’ reservoirs. It will be shown below that
the dynamics of foam ageing occur outside of these reservoirs, so that we can exclude
these cells from the statistics. Let 〈Srest〉 be the average area of the cells outside from
the reservoirs. Since the exponential decrease of P (S, t) is mild for S < Scutoff , one has
〈Srest〉≈ Scutoff . The measurement of Scutoff thus provides a good measurement of the
average foam evolution, and figure 7 shows that this characteristic area grows like
t3/2.

3.1.2. Initially polydispersed foam

Starting with a foam composed of cells with distributed area, as is the case
for run P , the evolution shortcuts the transient stage of the ‘stock cells’ reservoir’s
disappearance, which is an artifact of the monodispersed injection condition. Here, the
foam is initially very disordered, with a rounded shape area distribution P (S, t = 0)
centred around its initial average. Roughly, one half of the cells have six facets
(note that this category exceeds 92 % for the monodispersed run M), one quarter
have five facets and the last quarter have seven facets. The average facet number
is conserved during all the experiments (〈n〉≈ 6, consistently with Euler’s theorem,
see the pedagogical discussion in Bohn, Douady & Couder 2005). Figure 6 shows
the facet number distribution to be nearly steady, and presents a slight dissymmetry
favouring the facet numbers n> 6.

The area P (S, t) distributions are shown in figure 6 versus S rescaled by the current

average area 〈S〉, which grows linearly with time (d〈S〉/dt ≈ 85 mm2 h
−1

). In these
coordinates, it appears that the area distribution tends towards a self-similar shape:
the initial round-shaped distribution flattens for 0.5 <S/〈S〉< 1.5 at larger time. For
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Figure 7. (a) Cutoff area in run M (initially quasi-monodispersed foam with S0 = 22 mm2)
and (b) average area for run P , initially polydispersed case.
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Figure 8. (Colour online) Distributions P (S, n) at time t = 30 min ((a), n is varied from 3 to
12) and t = 60min ((b), n is varied from 3 to 17), for run M .

S/〈S〉> 1.5, the probability P (S/〈S〉) decreases rapidly. Consequently, the distribution
area cutoff scales like 〈S〉, a signature of self-similarity (figure 7).

3.2. Conditional expectation, Lewis law

As can be seen in figure 3, large cells have a large number of facets. Quantitatively,
figure 8 shows P (S, n), the repartition of the cell area distribution with the number
n of facets. P (S, n) is the probability density that a cell has an area between S and
S+dS, and a number of facets equal to n. It is related to the conditional probability by

P (S, n) = P (n)P (S|n). (3.3)

The distribution P (S, n) is then normalized with respect to an integration over S and
a summation over n. By definition, one also has

P (S) =
+∞∑

n=0

P (S, n). (3.4)
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For small facet numbers (n ! 6), P (S, n) is a decreasing function of S, close
to an exponential. For larger n, P (S, n) is rounder, with a most probable
value increasing with n. One may define the conditional average and variance
(figure 9)

〈S〉n =

∫
S P (S|n) dS, (3.5a)

σ 2
n =

∫
S2P (S|n) dS − 〈S〉2

n. (3.5b)

Note that for n = 6, these quantities are affected by the ‘stock cells reservoirs’ (in run
M). Figure 9 shows that 〈S〉n grows linearly with n for n " 6. This is known as Lewis
law (Lewis 1928).

The dependence of 〈S〉n on n, measured by the derivative d〈S〉n/dn is found to be a
linearly increasing function of time. The variance σ 2

n appears to be nearly independent
of n, for n > 6, and an increasing function of time. For n= 6, σ 2

n is artificially small,
due to large amount of ‘stock cells’. For run M , one has

〈S〉n ≈ (n − 3)Ṡ∗t/2, (3.6a)

where Ṡ∗ is the von Neumann’s area increase velocity (see § 4.1) and

σ 2
n ∝ t3. (3.6b)

In run P , 〈S〉n and σ 2
n are linear functions of n (figure 10). These quantities scale in

time like 〈S〉 so that

〈S〉n ≈ 0.35(n − 3)〈S〉 (3.7a)

and

σ 2
n ≈ 0.04 (n − 3) 〈S〉2. (3.7b)
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3.3. Environment properties

3.3.1. Stock cells reservoirs

The foam can be viewed as a cluster of individual cells. When the cells are
initially monodispersed, this cluster is a (nearly) perfect crystal. Local defects generate
reorganizations of the cells arrangement through T1 and T2 processes (see § 4.2).
These topological modifications are the first step of the foam ageing, which thus
results from localized processes. Consequently, the foam regions with no default do
not age (see also the discussion by Glazier et al. 1987), and persist as subregions of
cells arranged in a perfect lattice; These sub-clusters are the ‘stocks cells reservoir’.

The true ageing dynamic of the foam occurs outside of these reservoirs, where
some cells grow, while other vanish, in a disordered fashion. At the border of the
reservoir, the ‘stock cells’ are exposed to this disorder, and may suffer T1 process
(see § 4.2). Such cells are thus likely to be included in the aged part of the foam.
The reservoirs are thus progressively eroded, and figure 3 shows that the reservoir
represents the largest part of the foam in the earliest stage (more than 92 %), and that
it progressively reduces to unconnected clusters which have, however, not completely
disappeared at the latest stages we have investigated.

The population of stock cells Nsc(t) decreases with time nearly exponentially, as
shown in figure 5, until the reservoir empties. The number of stock cells injected in
the ageing part of the foam per unit time is thus decreasing in time.

3.3.2. The aged foam: a disordered medium

Since all stock cells are found in reservoirs, these are most probably surrounded by
other stock cells. The crystal-like environment of stock cells is thus very correlated.
On the contrary, the aged foam composed of the cells outside the reservoir appears
very unordered. Figure 11 shows the area distribution Pn(S) of the first neighbours of
cells with a fixed facet number n. At the notable exception of n= 6 facet cells, which
include the stocks cells reservoir, these distributions essentially collapse. The n=6
facets cells are split into two categories: the stock cells and the others. Excluding
stock cells of the statistics (i.e. excluding cells with area S0) would lead to a global
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Figure 11. (Colour online) Pn(S) at time t = 30 min (a) and t = 60 min (b) of run M . n is
varied from 5 to 9. At the notable exception of n= 6, all the curve collapses. The stock cell (with
area S0) is overrepresented in the neighbourhood of six facets cells (that are essentially other
stock cells.) Insets: evolution of m, the neighbours’ mean facet number and comparison with
Aboav law. (a) Run M , m(n) is plotted for time t = 12, 36, 60, 84 min, and the Aboav–Weaire
law is plotted for time t =12 min (A =1, µ2 ≈ 0.1 ) and time t = 84 min (A =0.75, µ2 ≈ 3.0).
(b) Run P: m(n) is an independent function of time, and a mean result is presented. A = 1,
µ2 ≈ 0.9.

collapse of all Pn. These observations suggest that a single cell in the foam basically
evolves in a surrounding medium whose properties are that of the mean. Adjacent
cells at a given instant of time (‘survivors’) have indeed been observed to be initially
distant from each other, separated by many other cells which have in the meantime
disappeared (Levitan et al. 1994), also suggesting that adjacent cells have had a
basically uncorrelated history.

3.3.3. The Aboav-Weaire law

However, the foam is not a totally uncorrelated medium. Aboav (1980) has observed
that the average facet number m(n) of the neighbours cells depends on its number
of facet n. The number m(n) is a decreasing function of n, as a consequence of
geometrical constraints. A correlation of the form

m(n) = A +
B

n
, (3.8)

where A and B are constants, is usually observed. Weaire & Hutzler (1999) show
that, assuming the shape of m(n), impose that A and B are fixed. In a simple form,
it is found that

m(n) = 6 − A +
6A + µ2

n
, (3.9)

where A is a free parameter and µ2 is the second moment of the facet number
distribution P (n). Our experimental data are compatible with these correlations,
although the agreement is not perfect. In the case of run M , the free parameter A is
found to be of order 0.75, which is an unusually small value for soap froth (Weaire &
Hutzler 1999 report a value closer to 1.2). The coexistence of well-ordered island (the
stock cells reservoir) with disordered foam may be at the origin of this unusual value.
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Figure 12. (Colour online) Individual cell area variation. (a) Run M , individual dSn/dt are

averaged over the whole experiment (all time), Ṡ∗ is measured at 140 mm2 h
−1

. (b) Run P ,
individual dSn/dt are averaged for fixed times t = 5 (!), 15 (&), 25 (%), 35 (&), and 45 (!)

min, Ṡ∗ = 95 mm2 h
−1

.

Nevertheless, m(n) lies between 6− A for large n, and 6 + A + µ2/3 for n = 3. The
largest portion of the cell population has a number of facets n included between 5 and
7 (see, e.g. run P), corresponding to a difference in m(n) of roughly 0.4. This variation
in the neighbourhood features is weaker than the global fluctuation in the whole
medium (µ2 = 0.9). This is consistent with the observations of § 3.3.2, and supports a
‘mean field’ description of the interactions between cells in the foam.

4. Individual cell evolution properties
The local evolution of the foam is governed by two kinds of elementary processes:

mass exchange of gas between neighbour cells is responsible for their growth and
decay in area, while topological changes known as T1 and T2 processes induce
changes in facet number.

4.1. von Neumann’s law

The area variation of a cell in a two-dimensional foam was first described by von
Neumann (1952). The pressure difference between neighbour cells leads to a chemical
unbalance through the cell walls: the concentration of dissolved gas is proportional
to the vapour pressure inside the cell, so that a concentration gradient appears inside
the wall, and thus a mass flux by Fick diffusion. The area variation of a cell is
proportional to the net mass flux exchanged with all its neighbours. von Neumann
showed that this net mass flux is given by its number n of facets so that

dS

dt
= Ṡ∗ (n − 6) , (4.1)

where Ṡ∗ depends on the foam characteristics (see details in Appendix A) and is
measured from figure 12.

4.2. Topological changes

4.2.1. T2 process

Foam cells having less than six facets decrease in area. This process ends by the cell
disappearance. Most commonly, at the last stages, the foam has reorganized so that
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Figure 13. (Colour online) T2 process in run M . Snapshots are separated by 106 s.

Figure 14. (Colour online) Several T1 processess (run M). Snapshots are separated by 106 s.

the cells vanish having three facets (see § 4.2.2). Rarely two facet cells are observed.
An example of T2 process is given in figure 13. The consequences of the T2 process
is, besides the disappearance of one cell, that its last three neighbours all lose 1 facet.
The total number of facets in the foam is then reduced by six (three neighbours lose
one facet, and the disappearing cell loses three facets) when the total number of cells
is reduced by 1. Consequently, the average number of facets 〈n〉 is conserved if it is
equal to 6. This equilibrium is unstable since

〈n〉 = 6 =⇒ δ〈n〉 = 0,

〈n〉 < 6 =⇒ δ〈n〉 < 0,

〈n〉 > 6 =⇒ δ〈n〉 > 0,





(4.2)

these relations holding for the whole set of cells. For the surviving cells, one has of
course 〈δn〉=−1.

4.2.2. T1 process

Another topological process, named T1, occurs in the foam. This process concerns
four cells that swap their neighbourhood (see figure 14: initially, cells A and B are
neighbours, while C and D are common neighbours of A and B. After the T1 process,
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Figure 15. (Colour online) (a) Average and (b) variance of δn, the variation of the number of
facets of cells with initially n facets. δn is estimated on two consecutive snapshots (separated by
106 s). The continuous line represents the average statistics for time 1 h ! t ! 2 h, dots, t = 60
(%), 80 (!), 100 ("), 110(!), 120 (!) min. Insets: average and variance of δn, the variation
of the number of facets of cells with initially n facets, over a time δt . (δt is varied from one
to three consecutive snapshots (106 s !, 212 &, 318 %s)). The data are taken for time 1 h
! t ! 2 h in run M .

A and B are no more neighbours, even if they remain common neighbours of C and
D. Cells C and D have become neighbours. In such a process, A, B lose one facet
while C, D gain one facet. The T1 process is thus an exchange of one facet between
cells

n′
A,B = nA,B − 1,

n′
C,D = nC,D + 1.

}
(4.3)

The average number of the facet distribution is conserved

〈δn〉 = 0 (4.4)

but its variance has increased

σ 2
δn = 1. (4.5)

Note that the characteristic time of such a process has been found in dry foams to be
of the order of seconds (Durand & Stone 2006), a time interval much shorter than
the one of the global coarsening process (lasting hours).

4.2.3. Consequences on the facet number distribution

The major consequence of these topological processes is that the facet number
distribution is modified. The observed variation δn for a given cell between two
snapshots lies most probably in the set {−1, 0, +1}. Figure 15 shows the average
value and the variance of δn for a fixed initial cell facet number. A linear dependence
on n is found

〈δn〉n ≈ −a(t)[n − 3], (4.6a)

σ 2
δn ≈ b(t)[n − 3]. (4.6b)

The origin of the facet number variation lies in the T1 and T2 processes. The first
one is at the origin of the broadening of the distribution of n, without changing the
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mean 〈n〉, while the latter has for main effect to diminish 〈n〉. We have never observed
spontaneous film breakage. We have shown (§ 3.3.2) that the local environment of
one cell is statistically independent of the cell number of facets. A naive estimation
of the probability of occurrence of topological processes in the direct neighbourhood
of one cell is that it is proportional to its number of facets n. A small correction
to this simple picture is however observed and the probability that a topological
process occurs in the direct neighbourhood of one cell is rather proportional to n− 3.
This fact might be a consequence of a spatial correlation, reported through Aboav’s
relationship (§ 3.3.3): small cells are, on average, surrounded by cells with an average
facet number m(n) exceeding 6. In the neighbourhood of small cells, T2 processes are
thus unlikely. A longer correlation range may exist (Szeto, Aste & Tam 1998), and its
consequence is embedded in (4.6). To summarize, this condition prevents topological
modification of three-facet cells, and the number of facets of one cell cannot become
smaller than 3.

Let α[n − 3] and β[n − 3] be, respectively the rate of occurrence T2 and T1

processes, for a given cell. For a time interval δt , the distribution of δn is then of the
form

P (δn, δt) = ((α + β)[n − 3]δtδ−1 + (1 − (α + 2β)[n − 3]δt)δ0 + β[n − 3]δtδ+1) , (4.7)

and the effect on the averaged quantities is thus expected to be

〈δn〉 = −α[n − 3]δt, (4.8a)

σ 2
δn = (α + 2β)[n − 3] δt. (4.8b)

Consequently, α and β are deduced from a and b in (4.6) by

α = a,

β = (b − a)/2.

}
(4.9)

At the first instant of run M , the estimation of a and b is difficult, since the number
of cells with a number of facet higher than eight is small (so that the variation of δn
with n is hardly measured). It seems that b is constant in time, as a grows from a very
low value to its asymptotic value. For run P , b is close to a so that the estimation of
β is not possible (figure 16).

5. Computing the cell surface distribution
Having determined the processes which affect cell size distribution, and measured

their rates α and β , we derive a mean field theory to compute the shape and evolution
of P (S, n, t).

5.1. A continuous model

The area and number of facet evolves through the process that we have just quantified.
It is then possible to write the Fokker–Planck equation for the evolution of P (S, n, t)

∂tP = lim
δt→0

[
−∂S

(〈
δS

δt

∣∣∣∣ S, n

〉
P

)
− ∂n

(〈
δn

δt

∣∣∣∣ S, n

〉
P

)

+ ∂2
n

(〈
σ 2
δn

δt

∣∣∣∣ S, n

〉
P

)
+ δ(S)

〈
dS

dt

∣∣∣∣ S
〉

P

]
, (5.1)

where the last term ensures that when a cell reaches an area S = 0 it disappears from
the distribution. Consequently, the norm of P is not conserved, and P (S, t) should be
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Figure 16. Computed values of α (!) and β (%). (a) Run M , (b) Run P . β is found to be
smaller than 0.2 h−1, with no accuracy.

normalized by (
∫

dS
∫

dnP (S, n))−1 at each instant of time. However, this term leads to
technical complications and is neglected in the following. The modelled distribution
thus includes negative area cells that have no physical meaning. We just consider the
distribution P (S, t) for S " 0. An error nevertheless remains: cells that have had a
negative area for some time and which have recovered a positive area subsequently
should not be considered. This flaw also affects Flyvbjerg (1993) formulation, which
accounts for the normalization, but not for the presence of negative area cells. This
leads to an overestimation of the probability distribution in the neighbourhood of
S ≈ 0 for dS/dt > 0 (cells with n> 6). Fortunately, this probability is found to be very
small, so that the error made is negligible.

5.2. The discrete problem

In (5.1), n is considered as a continuous variable. This approximation is crude near
n = 3, since the first- and second-order moments of δn are proportional to n − 3. We
thus consider the, fundamentally equivalent, but technically more precise following
discrete version of the Fokker–Planck equation:

∂tP = − (n − 6)∂SP + α̌ (([n − 3] + 1)P ( , n + 1, ) − [n − 3]P ( , n, ))

+ β̌ (([n − 3] + 1)P ( , n + 1, ) + ([n − 3] − 1)P ( , n − 1, t)

− 2[n − 3]P ( , n, )) , (5.2)

with time and area made non-dimensional so that β̌ =β/β equals unity and
d /d = (n − 6), i.e replacing time by = βt . The dimensionless variables are thus

= βt,
= βS/Ṡ∗,

α̌ = α/β,

β̌ = 1.





(5.3)

We address the asymptotic coarsening regime (of run M for instance, see figure 16),
and we assume, for simplicity, that α and β are constant in time. Let us consider the
initial condition (cells having all n = 6 with a given initial area distribution P0( ))

P ( , n, = 0) = P0( )δ(n − 6), (5.4)
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Figure 17. Foam composed of six-facet cells, with distributed area corresponding to the
initial condition in (5.4).

which might correspond either to a perfect hexagonal lattice for a narrow surface
distribution P0(S), or to a disordered medium with a broad surface distribution, as
pictured in figure 17. The corresponding solution to (5.2) is (see Appendix B)

P ( , n, ) = P0( ) ⊗ δ( + 3 ) ⊗ Q⊗−3
−

⊗




3∑

i=0

Ci
3C

2
n+i−4

(
− α̌ + β̌

β̌

)i

(Q− ⊗ Q+)
⊗i



⊗ Q⊗(n−3)
+ , (5.5)

where ⊗ denotes the convolution operator along , and Q±, are functions of given
by their Fourier transform,

Q̄± =
2β̌

±(α̌ + 2β̌ + ik) +
x

tan(x /2)

, (5.6)

with

x =

√
−α̌2 − 2 iα̌ k − 4iβ̌ k + k2 =

√
4β̌(α̌ + β̌) − (α̌ + 2β̌ + ik)2. (5.7)

The transfer function leading to P ( , n, ) decomposes in a summation of a Dirac
delta function of decaying amplitude exp(−(3α̌ + 6β̌) )δn,6δ( ), and of a continuous
distribution over . The former term shows that cells with n= 6, as the stock cells
found in the ‘reservoirs’, do persist, even in a disordered foam.

5.3. Comparison with experimental data (run M)

Equation (5.5) describes the evolution in time of the distribution P ( , n, t) of cell
areas and facet number, for the initial condition given by (5.4). Run M is well
described by this initial condition, except that stock cells are continuously injected in
the ageing foam through the erosion of the reservoirs, as described in § 3.3.1 and this
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Figure 18. (Colour online) P (S, n, t) for run M at time t = 1 h and comparison with the
prediction in (5.10), for 5 ! n ! 10.

over a long time, concomitantly with the ageing process of the rest of the foam which
(5.5) intends to represent. Let I (t) be the injection rate of the stock cells. Since the
evolution equation (5.2) is linear, the superposition principle applies, and the global
cell area distribution P(S, n, t) is given by

P( , n, ) =

∫
d ′P ( , n, − ′)I ( ′), (5.8)

where P (S, n, t) is given by the Green function in (5.5). Figure 5 shows the evolution
of the amount Nsc(t) of remaining stock cells. The injection rate I (t) is thus

I ( ) = −dNsc( )

d
. (5.9)

During the first 60 min of run M , the decrease of Nsc(t) is close to exponential,
indicating a decreasing rate of stock cell injection I (t). In the time interval
corresponding to stock cell injection, α is a linearly increasing function of time,
as seen in figure 16; it reaches a constant after t =1 h. The experimental data are
thus compared with

9∑

i=0

IiP

(
S, n, t

9.5 − i

10

)∣∣∣∣(
α̌ i+1

10 ,β

) , (5.10)

with I = 0.9 being the injection rate of stock cells, α= 0.65 h−1 and β = 0.8 h−1, data
that are compatible with the experimental values in figure 16.

The computation of P (S, n, t) is made through a numerical evaluation of the
Fourier transform of P̄ (k, n, t). As seen in figure 18, the agreement is not perfect, but
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a qualitative agreement is reached, suggesting that the main physical aspects of the
problem have been captured.

5.4. Distribution of the number of facets P(n)

The distribution P ( , n, ) given in (5.5) includes negative area cells ( < 0). The
distribution P (n, t) of the number of facets can be deduced from the global
distribution and, up to a normalization factor, one has

P (n, t) ∝
∫ +∞

0

d P ( , n, ). (5.11)

However, as can be seen from the comparison in § 5.3 and figure 18, the predicted
distribution P ( , n, ) has non-negligible probability for negative area cells only
for cells with a small number of facets (n ! 6), so that for larger n, the following
approximation holds:

P (n, ) ≈
∫ +∞

−∞
d P ( , n, ), (5.12)

which turns out to be the zero-mode of the Fourier Transform P̄ ( = 0, n, ),

P (n, ) ≈ 4β̌2

(
α̌2

tan h(α̌ /2)

)2

− (α̌ + 2β̌)2




3∑

i=0

Ci
3C

2
n+i−4

(
− α̌ + β̌

β̌

)i




×




2β̌

(α̌ + 2β̌) +
α̌

tan h(α̌ /2)





n−6

(5.13)

holding for n " 7. This is the sum of Gamma distributions of orders 0, 1, 2 and 3,
which presents an exponential tail at large n,

P (n, ) ∝
(

2β̌

(α̌ + 2β̌) + α̌/tan h(α̌ /2)

)n

, (5.14)

consistently with the observed shape of P (n, t), as seen from figures 5 and 6. This
allows a direct measurement of the ratio α̌/β̌ from the experimental distributions
which, for run M is found to be equal to 0.8, and for run P to be of order 4 (see
below).

5.5. Comparison for run P , the self-similar regime

The experimental distribution P (S, n, t) for run P shows that the conditioned average
〈S|n〉 and the variance σ 2

n are proportional to n, the number of facets. The whole
distribution is self-similar in the sense that it depends solely on S/〈S〉, and 〈S〉 scales
like time t (see § 3.1.2).

The occurrence rate of T2 processes can be estimated through the statistics of δn. It
is found that α≈ 3 h−1, at the first instant and then decays to α≈ 0.8 h−1 (figure 16).
The direct measurement of the rate of T1 processes is unavailable, but the stationary
distribution P (n, t) of the number of facets, which presents an exponential decay,
has allowed us to measure, considering that α̌ ≈ 0.5, and using (5.14) in the previous
section, the ratio β/α≈ 1/4.
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In the limit β 0α, the expression of Q̄± simplifies to

Q̄± =
2β̌

α̌ + ik
.

1

±1 +
1

tanh((α̌ + ik) /2)

=
2β̌

α̌ + ik
.

[
±1

2
(1 − exp(∓(α̌ + ik) ))

]
(5.15)

showing that Q+ is a truncated exponential exp(−α̌ ) between =0 and = , and
Q− is a truncated exponential between =− and =0,

Q± =
β̌

α̌
exp(−α̌ ) # [0 ±t]. (5.16)

The distributions Q± have an average area

〈S±〉 ≈ ± 1 − e−α̌t(1 + α̌ )

α̌ (1 − exp(−α̌ ))
, (5.17a)

and variance

σ 2
S ≈ 2 1 + e2α̌t − eα̌t(2 + (α̌ )2)

(α̌ )2(−1 + eα̌t)2
, (5.17b)

and thus

〈S+〉 ≈ /2, for α̌ 0 1 and 〈S+〉 ∝ α̌−1 for α̌ 2 1. (5.18)

In the present run P , αt is nearly constant (αt = α̌ ≈ 0.5), so that one expects
〈S+〉≈ 0.4 , and σ 2

S ≈ 0.08 2.
The initial condition in run P is a mixture of 5-, 6-, and 7-facet cells, and the

predicted distribution has the complicated expression

P ( , n, ) =
∑

i,j

(
Ai,j ( , n, ) ⊗ δ( + (j − 3) ) ⊗ (Q− ⊗ Q+)⊗(i−j )

)
⊗ Q⊗n−3

+ . (5.19)

The primary experimental fact that 〈S|n〉 and σ 2
n are both proportional to n − 3

suggests that P (S, n, t) is dominated by the Q⊗n−3
+ factor, which is close to a Gamma

distribution of order (n − 3), defined by the self-convolution (n − 3) times of an
exponential distribution.

The matching is then qualitative, even if the quantitative agreement is weak.
(i) The conditioned mean area is given by 〈 |n〉= S+(n−3)≈ 0.4(n−3) (5.17a). In

dimensional form, this leads to 〈S|n〉=0.4(n − 3)Ṡ∗t . Numerically, 〈S|n〉=38(n − 3)t ,
where t is expressed in hours, and S in mm2. The measurements reported in figures 7
and 10 (3.7a) show that 〈S|n〉=0.35(n − 3)〈S〉≈ 30(n − 3)t .

(ii) The conditioned variance is given by σ̌ 2
n = σ 2

S(n − 3)≈ 0.08(n − 3) 2 (5.17b). In
dimensional form, this leads to σ 2

n = 0.08(n − 3)Ṡ∗2t2. Numerically, σ 2
n = 720(n − 3)t2,

where t is expressed in hours, and σ 2
n in mm4. The measurements made in figures 7

and 10 (3.7b) show that σ 2
n = 0.04(n − 3)〈S〉2 ≈ 300(n − 3)t2.

The predicted area exceeds by a factor 1.3 the ones that are observed. This
disagreement might be due to the contribution of the kernel in (5.19), or to the
variation of α with time (the solution is obtained by assuming α and β are constants).

The qualitative agreements (on the shapes of the distributions P (S, n, t) and P (n, t))
and the quantitative fits (on the n dependences of the mean 〈S〉 and variances σ 2

S )
suggest that our analysis has captured the main aspects of the coarsening problem,
although the temporal dynamic is overestimated.
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We explore further the difference between an initially mono- and polydisperse foam,
and its relation between the coarsening laws of young and old foams, on hand of an
analogy with the Langevin model.

6. A Langevin model
The concomitant processes at the origin of the foam ageing are the drift of the cells

area according to von Neumann’s law (§ 4.1), and the topological processes T1 and
T2, (§ 4.2) which modify their facet number. The ‘trajectory’ of a cell characteristic
(area S, facet number n) has been shown to be ruled by the following set of equations:

Ṡ = Ṡ∗ (n − 6) ,
ṅ = −α(n − 3) + f (t),

}
(6.1)

where f (t) stands for a random process, uncorrelated in time, corresponding to the
occurrence of T1 processes. Identifying

S/Ṡ∗ − 3t ←→ x,
n − 3 ←→ v,

}
(6.2)

one sees that it is possible to map the present coarsening problem onto the familiar
Langevin process for the dispersion of particles (with position x and velocity v) by
thermal agitation (Langevin 1908). The velocity of each particle is damped by viscous
drag (whose analogue corresponds to T2 processes) with friction coefficient α, and
is randomly altered by the thermal noise of the underlying bath (whose analogue
corresponds to T1 processes)

ẋ = v,
v̇ = −αv + f (t).

}
(6.3)

In the simplistic version of the Langevin model, the random noise f is independent
of velocity and position, and is Delta-correlated in time

〈f (t)f (t ′)〉 = εδ(t − t ′). (6.4)

This process is well known to give rise to a standard diffusion law for the variance of
the particle’s positions, which is independent of the initial conditions at large times

σ 2
x = 〈x2〉 − 〈x〉2 ∼ ε

α2
t for t 2 1/α, (6.5)

with position x and velocity v being correlated according to

〈x|v〉 ∼ 〈x〉 + v/2α. (6.6)

At short times (t < 1/α), however, the dispersion law depends on the initial conditions.
For particles which are initially all confined at the same location x0, and which all
have the same initial velocity v0, a super-diffusive regime is found (see, e.g. Chapter
II.2 in Chandrasekhar 1943)

σ 2
x ∼ ε t3, for t < 1/α, (6.7)

〈x|v〉 ∼ 〈x〉 + (v − v0)t/2. (6.8)

At any time, the distribution of positions and velocities P (x, v, t) is Gaussian.
Given the formal analogy between the dynamics in (6.1) and (6.3), it is tempting

to apply these predictions to the foam problem. However, two major differences exist
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between our model of foam ageing and the Langevin model for diffusion, avoiding a
strict analogy.

(i) First, the amplitude of the noise is independent of velocity in the Langevin
model, whereas the rate of random T1 processes is proportional to the number
(n − 3) of cell facets. One may disregard this dependence, and retain the average
amplitude only

ε ≈ β〈n − 3〉 = 3β (6.9)

since 〈n〉= 6.
(ii) Second, the particle velocity is a continuous variable in the Langevin model,

whereas the cell number of facets n is a discrete one.
The consequence of these differences is that n is exponentially distributed rather

than Gaussianly and that n cannot be smaller than 3 (whereas particle velocities can
be positive or negative). However, despite these differences, the scaling laws for the
area dispersion remain valid. Runs M and P thus appear as representative of the two
limits recalled above.

(i) Run M corresponds to the early super-diffusive regime (characteristic of a young
foam), since at initial condition all cells have the same area S0 and the same number
of facets n0 = 6. It is therefore expected that the conditioned average of the area is

〈S|n〉 ∼ S0 + Ṡ∗(n − 6)t/2, (6.10)

which recovers Lewis Law (§ 3.2), and that the variance (6.7) of the area scales like

σ 2
n ∼ β t3 (6.11)

consistently, taking β as a constant in that case (figure 16), with the experimental
observations reported in figure 9. The evolution of the average area 〈S〉 is a further
consequence of the variance in temporal evolution: the distribution of cell area is a
direct consequence of the distribution of facet number (σ 2 ≈ (Ṡ∗t/2)2〈(n−〈n〉)2〉 ∼ t3.
Since the cells’ area can only be positive, their average area (which is given by 〈Srest〉 in
run M , itself related to Scutoff ) grows like σ ∼ t3/2, in agreement with the experimental
observation in figure 7.

(ii) Run P corresponds to the late diffusive regime (characteristic of an old foam)
for which the ‘particles’ are ‘thermalized’ with a constant distribution of velocity
(the distribution of facet P (n, t) is stationary in the coarsening analogue, as seen in
figure 6).
According to (6.5) and (6.9), the typical cell area grows like S ∼ (3βt/α2)1/2. With
β/α constant in this case, and α decreasing like 1/t (see figure 16 and § 7.1), one
anticipates that

S ∼ t, (6.12)

consistently with what is observed in figure 7.
Note finally that, if we have argued that the dynamics of the cells’ area can be

viewed as a diffusion process, in which S(t) experiences a random walk through
a Langevin type of mechanism, it is not our claim that foam cells diffuse in the
physical space, with their boundaries fluctuating according to a random walk. This
kind of description is made by several authors (Glazier, Anderson & S. 1990; Sire &
Majumdar 1995), with q-Potts models in which cells are domains whose borders move
according to a random protocol, but this is completely unrelated to our remark here.
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7. Conclusion and further remarks
The present study has documented experimentally, making use of an original set-up

allowing to acquire well-converged data on the coarsening of foams in two dimensions.
The experiments have shown that a foam behaves quite differently depending on
the way it has been prepared. We have distinguished between an initially quasi-
monodisperse foam, and a polydisperse foam. Although both foams reach a common,
time-dependent asymptotic regime, the coarsening laws are initially different.

The ageing process relies on exchanges between the foam cells (von Neumann’s
law), and on topological rearrangement (T1 and T2 processes) whose rates have
been measured in all regimes. We have attempted to make their contribution to the
evolution of the area S and facet number n distribution of probability P (S, n, t)
quantitative by a mean field theory whose predictions represent well the phenomenon
qualitatively, and are sometimes in quantitative agreement with the measurements. A
simplified version of this theory, taking the form of a Langevin model, explains in
a straightforward manner the different scaling laws in the different regimes, for the
different foams.

Critical to the laws of foam coarsening are the rates α and β of the topological
processes T2 and T1 directing the evolution. It is probably useful at this point to
worry about their status, and possible time dependence.

7.1. T2 process and α in the self-similar regime

The process T2 corresponds to the disappearance of 3-facet cells, whose area vanish
(see § 4.1). Run P suggests that an estimation of the rate α is possible in this case.
Indeed, a self-similar regime is reached, meaning that the relative proportion of 3-facet
cells in the cells assembly is constant. Consequently,

α ≈ − 1

N

dN.

dt
(7.1)

In the self-similar limit, the average area of these 3-facet cells is proportional to 〈S〉
itself, so that their lifetime 1/α scales like 〈S〉/Ṡ∗. Since the total area of the foam is
conserved, and that the average area of a single cell increases as a consequence of the
disappearance of other cells, one has

1

〈S〉
d〈S〉
dt

= − 1

N

dN

dt
∼ Ṡ∗

〈S〉 , (7.2)

showing that 〈S〉 is a linear function of time (as shown on figure 6, and demonstrated
along similar lines by Glazier & Stavans 1989)

〈S〉 ∼ Ṡ∗t, (7.3)

and also setting the value of α

α ∼ 1/t. (7.4)

The distribution P (S, n, t) is fixed by the shape of the kernel Q⊗n−3
+ whose shape

depends only on αt (when β 0α, see (5.15)). The fact that αt tends toward a constant
is an a posteriori justification of the self-similar behaviour of P (S, n, t).

Note that this self-similar regime is not a steady-state regime, and that this is
therefore not an equilibrium regime. The parameter ruling the foam evolution is not
t , but αt . Since the rates α and β decrease (at least in run P) in time like 1/t , αt is not
likely to attain very large values, so that the true equilibrium, diffusional self-similar
regime in the sense of our Langevin model, is in fact never completely reached. A
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foam is, for most of its lifetime, experiencing a transient regime. Thermodynamical
considerations on the maximization of a foam entropy lead Iglesias & de Almeida
(1991) to predict an equilibrium distribution P (S, n, t), which is thus not likely to
describe the present experiments.

7.2. T1 process and β

A foam rearranges through T1 processes to relax internal stresses with a characteristic
time that itself is a function of the intensity of the residual stress (Gopal & Durian
1995; Cohen-Addad & Hohler 2001). The rearrangement dynamics is thus slowing
down in time. It is, to this respect, not surprising that β , the rate of T1 processes,
is found to decay in time in the self-similar regime of old foams, as is α. It is on
the other hand found to be roughly constant in young foams, those where coexist
clusters of perfect hexagonal cells (the ‘stock cells reservoirs’), and regions of ageing
foam, surrounding them. This coexistence may be at the origin of the ever-renewed
stress making β constant.

In the Langevin analogue to the coarsening problem derived in § 6, β is a measure
of the agitation of the medium, setting an apparent temperature to the system. A
perfect hexagonal lattice is at zero temperature, since no topological process occurs.
The disorder imposed by the rearrangements in the foam, or by an external strain
increases the temperature; but it is at this point difficult to make a precise description
of it, and in any case out of the scope of the present paper.

Finally, we note that a self-similar regime is also observed for three-dimensional
ageing foams, leading to a lognormal distribution of the face number and an
exponential distribution of the cell volumes (Lambert et al. 2009). Although there is
no strict equivalent of von Neumann’s law in three-dimensional foams (Monnereau &
Vignes-Adler 1998; Hilgenfeldt et al. 2001; Hilgenfeldt 2002; Streitenberger & Zollner
2006; MacPherson & Srolovitz 2007), a mean field formulation of the kind of equation
(5.2) with cell population averaged, effective rates for the disappearance of the smallest
cells and the change of cells’ facets numbers, is likely to be even more justified
compared to the two-dimensional case: a cell neighbourhood will explore even more
completely the average medium statistics in three than in two dimensions.

This work has been supported by the Agence Nationale de la Recherche (ANR)
through grant ANR-05-BLAN-0222-01. Comments and suggestions by I. Cantat and
S. Hilgenfeldt have been helpful.

Appendix A. The von Neumann’s Law
The growth of cells’ area dS/dt is linked, in two dimensions, to their facet number

n, and von Neumann (1952) showed that,

dS

dt
= Ṡ∗(n − 6), (A 1)

with

Ṡ∗ =
4π

6
γ

DC∗

h
VM, (A 2)

with γ the liquid surface tension, D the diffusivity coefficient of the dissolved species
in the liquid constitutive of the foam, C∗ the solubility concentration of the species
involved in mass transport through the separatrix, h the cell separatrix wall thickness
and VM the molar volume of the gas. Figure 12 shows the linear relationship between
n and dS/dt , from which Ṡ∗ has been measured.
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This allows an indirect measurement of the wall thickness h, which is found to be
of the order of 40 nm (run M) and 60 nm (run P) with D = 1.9× 10−9 m2 s−1 for
CO2 in water. These values are independent of the age of the foam, excluding the
influence of drainage on the ageing dynamics. The maximal age of the foam is about
2 h (for run M), whereas Glazier & Stavans (1989) report an effect of drainage on
the ageing dynamics for experiments lasting typically over 100 h.

The von Neumann’s relationship (4.1) holds under certain assumptions as follows.
(i) When CO2 dissolves in water, it forms a hydrated complex H2CO3. The latter

reacts and acidifies water:

CO2 (aq) + 3H2O −−⇀↽−− H2CO3 + 2H2O −−⇀↽−− HCO−
3 + H3O

+ + H2O −−⇀↽−− CO2−
3 + 2H3O

+

(A 3)
and forms bicarbonate ions. At the experimental pH condition (pH= 8.6), the
dominant form is HCO−

3 , which is in fast equilibrium with H2CO3 and CO2−
3 ,

but in slow equilibrium with CO2(aq). One gets, at equilibrium

[CO2(aq)]eq = PCO2
[H2O]/KH,

[H2CO3]eq = [CO2(aq)]eq/KD,

[HCO−
3 ]eq = [CO2(aq)]eq10pH−pKa1 = [CO2(aq)]eq/K,

[CO2−
3 ]eq = [CO2(aq)]eq102pH−pKa1−pKa2,





(A 4)

where KH = 163 MPa denotes the Henry pressure, KD ≈ 650 denotes the dissociation
constant of hydration reaction and pKa1 = 6.35 and pKa2 = 10.33 the dissociation
constant of acidobasic reactions (note that the dissociation constants of the acidobasic
reaction Ka1 and Ka2 are reported with respect to CO2aq ). The pressure drop from one
side to the other of the separatrix (in the direction x) imposes a concentration gradient
∂x[·] for all species. Accounting for the kinetic of these reactions, the concentration
profile in a separatrix is driven by the following set of reaction–diffusion equations:

∂t [CO2(aq)] = D∂2
x [CO2 (aq)] − k+[CO2 (aq)] + k−[H2CO3],

∂t [H2CO3] = D∂2
x [H2CO3] + k+[CO2 (aq)] − (k− + K+) − K−[H2CO3]

+[HCO−
3 ][H3O

+],

∂t [HCO−
3 ] = D∂2

x [HCO−
3 ] + K+[H2CO3] − K−[HCO−

3 ][H3O
+],





(A 5)

where the diffusivity D of all species is assumed to be identical, k+, k− are the hydration
reaction rates and K+ and K− are the acidobasic reaction rates. For simplicity, we did
not consider the production of CO2−

3 , which exists in negligible amount. Considering
that the acidobasic reaction is fast with respect to the hydration reaction, H2CO3 and
HCO−

3 are in equilibrium

[HCO−
3 ] = [H2CO3]

KD

K
, (A 6)

where K = 10pH−pKa1 . The system reduces to

∂t [CO2(aq)] = D∂2
x [CO2 (aq)] − k+[CO2 (aq)] + k−

K

KD

[HCO−
3 ],

∂t [HCO−
3 ] = D∂2

x [HCO−
3 ] +

(
k+[CO2 (aq)] − k−

K

KD

[HCO−
3 ]

)
/(1 + K/KD).





(A 7)

At the interfaces (x =−h/2 and x = +h/2), the dissolution kinetic might be considered
as infinitely rapid and the concentration of CO2(aq) is fixed by the pressure

[CO2(aq)]
∣∣

±h/2
= P±[H2O]/KH . (A 8)
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The concentration gradient of H2CO3 and HCO−
3 vanishes as these molecules might

not be transferred to the gas phase. Considering finally the stationary state, we get
(with K/KD 0 1) the following concentration profile:

[CO2(aq)] = [CO2(aq)]eq +
1

K
(
Ak−x + B sinh(

√
K/Dx)

)
,

[HCO−
3 ] = [HCO−

3 ]eq +
1

K
(
Ak+x − B sinh(

√
K/Dx)

)
,

A =
*P [H2O]

2Kh
K

[
K

KD

k−
h

2
+ k+

√
D

K tanh

(√
K
D

h

2

)]−1

,

B = k+A/

√
K
D

cosh

(√
K
D

h

2

)
,

K = k+ + k−
K

KD

,






(A 9)

and the mass flux density is

φ = D
*P

KHh




k+ + k−K/KD

k+
tanh(

√
Kh2/4D)√

Kh2/4D
+ k−K/KD




, (A 10)

where the contribution of H2CO3 and CO2−
3 ions has been neglected. However, the

kinetic of the acidobasic reaction is slow compared to the diffusion time (Soli & Byrne
2002 report a reaction time τR ∼ 1/(k+ + k−K/KD)≈ 30 s), a time much larger than
the diffusion time through the separatrix. Thus, the concentration profile [HCO−

3 ]
is homogeneous across the separatrix thickness, and only CO2(aq) contributes to the
transport of carbon dioxide through the wall. Finally,

C∗ = [H2O]/KH . (A 11)

(ii) The angle between two consecutive borders should be exactly 2π/3. This angle
corresponds to the mechanical equilibrium at the vertex point, where three cell borders
join. The lack of resolution of our images prevents the accurate measurement of this
angle. Stavans & Glazier (1989) measured a small correction due to nonlinear bending
effect of the Plateau border. This correction induces to a stronger curvature for small
cells (with n ! 6), and is expected to cause a mass over-flux of 50 % for 3-sided cells.
This effect is not seen on our measurements of the average of δSn.

(iii) The foam should be really two-dimensional. The von Neumann relation links
mass flux to facets number n. The thickness variation of separatrix should be taken
into account, if not constant. This variation is confined into tiny Plateau borders
whose influence on the global mass exchanges is negligible, even for the smallest cells.

(iv) The Fick flux is estimated in the stationary limit. The transient lasts for
h2/D ≈ 2.5 µs and is negligible since it is infinitely short compared to the evolution
times discussed here (hours).

(v) The vapour should be composed of one single gas (so that chemical and
mechanical equilibrium are related to one unique pressure). We work with CO2

around atmosphere, so that the contribution of water vapour (whose partial pressure
is Psat = 30 mbar at ambient temperature) is negligible.

(vi) The characteristic flux Ṡ∗ depends on the solubility of the gas in the liquid,
which is sensitive to temperature. The foam should then be isotherm. The dissolution
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of CO2 is exothermic

CO2 (g)
−−⇀↽−− CO2(aq) with *H = −20 kJ mol−1. (A 12)

The mass flux is of order

φ ∼ 4π

6

DC∗

h

γ

P , (A 13)

where P is the typical cell perimeter. We find φ≈ 2× 10−4 mol m−2 s−1 here typically.
The corresponding reaction rate induces a variation of temperature of about 10−8 K,
which is clearly negligible.

Appendix B. Solution of the model
We present an analytic solution of (5.2) for the particular initial condition

corresponding to run M . The generalization to any initial condition is possible,
making use of the linearity of (5.2).

B.1. Transformation

Equation (5.2) is a second-order partial derivative equation, along variable time t ,
area S and a discrete derivation on the number of facets n. A transformation of this
equation in Fourier space (t, k, q), where k and q are the dual variable for S and n,
respectively simplifies the problem. Define

P̃ (k, q, t) =

∫
dSdn exp(−ikS − iq[n − 3])P (S, n, t), (B 1)

where the integration extends from negative to positive area and facet number, and
n is a continuous variable; (5.2) becomes

∂t P̃ = 3ikP̃ + k∂qP̃ + αi(eiq − 1)∂qP̃ + β2i (cos(q) − 1) ∂qP̃ , (B 2)

which is a first-order partial derivative, linear equation along two variables t and q .
A further transformation

t ′ = t −
2 arctan

(
−α − 2β + 2(α + β)eiq − i k√
−α2 − 2i α k + k (−4 i β + k)

)
,

√
−α2 − 2 i α k + k (−4 i β + k)

k′ = k,
q ′ = q,






(B 3)

such that
∂t = ∂ ′

t ,

∂q = ∂q ′ +
1

k + iα
(
eiq − 1

)
+ 2iβ (cos(q) − 1)

∂t ′,




 (B 4)

leads to a first-order ordinary differential equation

3ik′P ′ +
(
k′ + iα(e−iq ′ − 1) + 2iβ(cos(q ′) − 1)

)
∂q ′P ′ = 0. (B 5)

B.2. Solution

The solution of (B 5) is of the form

ln(P ′) =
6 i k′

√
−α2 − 2 i (α + 2β) k′ + k′2

arctan

(
−α − 2β + 2(α + β)eiq ′ − ik′
√

−α2 − 2 i (α + 2β) k′ + k′2

)

+f (k′, t ′), (B 6)
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where f (k′, t ′) is some function which must match the initial condition. For the case
of run M , the initial area distribution is a Dirac delta at S = S0, and all cells have all
n0 = 6 facets

P (S, n, t = 0) = δ(S − S0)δn,n0, (B 7)

so that

ln
(
P̃ (k, q, t = 0)

)
= −ikS0 − (n0 − 3)iq, (B 8)

which imposes that

f (k′, t ′) = − ik′S0 + 3ik′t ′

− (n0 − 3) ln

[
−
√

−α2 − 2 i α k′ + k′ (−4 i β + k′)

2(α + β)

×
(

tan

[√
−α2 − 2 i α k′ + k′ (−4 i β + k′)t ′

2

])
+
α + ik + 2β

2(α + β)

]
,

(B 9)

and one gets

P̃ (k, q, t) = exp(ikS0 − i3kt)K̃(k, q, t)−(n0−3), (B 10)

where

K̃(k, q, t) =
α + ik + 2β

2(α + β)

−
√

−α2 − 2iαk + k (−4iβ + k)

2(α + β)

(
tan

[√
−α2 − 2iαk + k (−4iβ + k)t

2

− arctan

(
−α − 2β + 2(α + β)eiq − ik√
−α2 − 2i αk + k (−4i β + k)

)])
. (B 11)

Finally, it is possible to perform the inverse Fourier transform of the kernel K̃(k, q, t)
along the variables (n, q)

K̄(k, n, t) = Q̄−1
−

(
δ(n − 3) +

[
−1 +

α + β

β
Q̄+Q̄−

]
Q̄n−3

+

)
, for n ∈ . (B 12)

In order to obtain P̄ (k, n, t), the kernel K̄ has to be convoluted n0 − 3 times, with
respect to n,

P̄ (k, n, t) = exp(ikS0 − i3kt)Q̄−(n0−3)
−

[
δn,0 +

(
n0−3∑

i=1

Ci
n0−3C

i−1
n−3+i−1

×
[
−1 +

α + β

β
Q̄+Q̄−

]i
)

Q̄n−3
+

]
, (B 13)

which can be rewritten as

P̄ (k, n, t) = exp(ikS0 − i3kt)Q̄−(n0−3)
−

(
n0−3∑

i=0

Ci
n0−3C

n0−3−1
n−3+i−1

[
−α + β

β
Q̄+Q̄−

]i
)

Q̄n−3
+ .

(B 14)
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