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We discuss how two subparts of a randomly stirred scalar mixture interact to form the overall

concentration distribution. We derive, in particular, the appropriate composition laws in the absence

and presence of a strong correlation between the fields. The resulting concentration distributions compare

favorably with several distinct experiments, illustrating the two limits. The initial relative spatial position

of the subparts plays a crucial role on the nature of their subsequent entanglement.
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Understanding how correlations arise in a complex sys-
tem, and how they determine the future of the system itself
is a pivotal aspect of the physics of irreversible processes.
Scalar mixing is a paradigm of such systems: stirring a
blob of dye in a clear substrate leads irreversibly to a
uniform medium with average concentration. The interest-
ing question is to understand the route toward uniformity
and the transient stages when the scalar concentration C is
distributed according to a certain probability distribution
PðCÞ, depending on time. At least in some circumstances,
the interaction between the fluid particles with different
concentrations is crucial for the fate of the mixture. Curl
[1] has first proposed the simplest idealized vision: parti-
cles meet at random, coalesce in equalizing their concen-
tration before breaking up to meet other particles, in a
sequential fashion. This kind of construction, assuming
no correlation between the elements merging at random,
has been since then generalized and used in several differ-
ent contexts [2–6]. However, recent work on scalar mixing
has emphasized the role of correlations in real space on the
statistical content of random mixtures [7,8]. Here, we
conduct a discussion at the level of the concentration
distribution itself, wondering how the presence, or absence
of correlation in the medium determine the construction
law of PðCÞ.

We consider the simultaneous mixing of two inks (red
and green) with identical molecular diffusivities in a trans-
parent diluting medium, under a given stirring protocol.
The situation can be viewed as the interaction of two
sources [9–11], obviously relevant when the species are
reactive [12,13]. Alternatively, the fields CR and CG can be
interpreted as two subparts of one single total concentra-
tion field

C ¼ CR þ CG (1)

as if, in Fig. 1 for instance, one confuses red and green
fields into a single white spot diluting into a dark environ-
ment [5]. These two subparts of the concentration field,
each singled out by their own color, will each give rise, as
stirring proceeds, to a given concentration distribution

PRðCRÞ and PGðCGÞ. From the interaction of these two
fields will result the distribution of the total field PðCÞ.
Deciphering the nature of this interaction, namely, finding
the relation between PðCÞ and the source fields PRðCRÞ and
PGðCGÞ, is the subject of this Letter.
The signature of the interaction between the fields is all

encoded in the joint probability QðCR; CGÞ of finding both
concentrations CR and CG at the same location in the
medium. An ersatz of the information contained in
QðCR; CGÞ is the correlation coefficient

! ¼ hðCR % hCRiÞðCG % hCGiÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2

R"
2
G

q ; (2)

where h&i is the average overQðCR; CGÞ, and"2
# ¼ hðC# %

hC#iÞ2i is the variance of the individual fields # ¼ R, G.
With a sign depending if the concentrations fields are in
phase, or in phase opposition, ! lies in the range [%1, 1].
For independent fields, ! is zero (a property whose recip-
rocal is wrong). In the same way the total concentration
distribution PðCÞ can be computed from the joint proba-
bilityQðCR; CGÞ, the correlation coefficient ! derives from

FIG. 1 (color online). Mixing of two ink spots in a viscous
medium, initially laid side by side. The concentration field
resulting from the stirring protocol defined in [5] is shown after
1, 2, 5, 8, and 11 cycles.
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PðCÞ as

! ¼ "2 % "2
R % "2

G

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"2

R"
2
G

q (3)

and thus appears as a global index measuring the interac-
tions between the fields. Let us now make precise what
interaction means, and explore possible scenarios for the
construction of PðCÞ:

(1) For CR and CG being independent fields, one has
QðCR; CGÞ ¼ PRðCRÞPGðCGÞ and

PðCÞ ¼
Z
C¼CRþCG

PRðCRÞPGðCGÞdCR (4)

is the convolution of PRðCRÞ and PGðCGÞ, as suitable for
independent variables [14]. This defines the interaction
rule with a correlation coefficient ! equal to zero.

(2) For CR and CG strongly correlated, ordering the field
by increasing values of CR is equivalent with ordering the
field by increasing values of CG. Calling F # the cumula-
tive distribution of P#

F #ðC#Þ ¼
Z C#

0
P#ðCÞdC; (5)

if F RðCRÞ and F GðCGÞ are equal (say to x), then the
concentrations CR and CG lay on the same spatial subset.
Consequently,

8 x 2 ½01(; F%1ðxÞ ¼ F%1
R ðxÞ þF%1

G ðxÞ; (6)

where F%1ðxÞ is the reciprocal function of F ðCÞ.F and P
are thus computed implicitly, defining the maximal
correlation coefficient !max through Eq. (3). With
@x½F%1ðxÞ( ¼ 1=@C½F ðCÞ(, one also has 1=PðCÞ ¼
1=PRðCRÞ þ 1=PGðCGÞ, holding whenever an increasing
morphism between CR and CG exists. In particular, when
the morphism is linear (i.e., PR and PG are similar),
!max ¼ 1. The limit where the fields are negatively corre-
lated (!< 0) can be treated along the same lines.

We now investigate how the two scenarios we have
described help in understanding several experiments.

A first experiment consists in stirring two nearby colored
ink spots in a glycerin layer by a rod. The two spots are
initially side by side, with no overlap. A number of parallel
cuts with amplitude L is made in one direction and then the
same number in the orthogonal direction, defining a stir-
ring cycle. Cycles are repeated iteratively, and so proceeds
the mixture toward uniformity (see Figs. 1 and 5 for pro-
tocol details). At each cycle, the concentration field is
imaged with a color digital camera, allowing the red and
green fields to be extracted independently. Concentrations
CR and CG are made nondimensional by their initial value.
After a few mixing cycles, the ink spots have dispersed and
are intermingled in a large subset of the glycerin layer. The
individual probability distribution PRðCRÞ and PGðCGÞ are
composed of a Dirac delta at C ¼ 0 corresponding to the

external diluting medium, plus a bell shaped distribution
close to a Gamma distribution [5]. As seen in Fig. 2, the
total distribution PðCÞ presents higher concentration levels
than those in the individual fields. The part of the distribu-
tion with nonzero concentrations corresponds to the entan-
glement of the initial spots. Even at the earliest stages of
the stirring protocol, the independence scenario in Eq. (4)
succeeds very well in constructing PðCÞ from the convo-
lution of PRðCRÞ and PGðCGÞ. Note, however, that only the
bell shaped parts of the individual distributions have been
convoluted to compare with the measured PðCÞ (i.e., the
Dirac delta is excluded): a strong correlation obviously
exists between the diluting support of the red and green
fields. However, inside the entangled support of the dyed
fields, CR and CG are independent.
A second experiment is performed by discharging two

fluorescent dyes (red rhodamine and green disodium fluo-
recein) through two adjacent tubes in a diluting water
stream at the inlet of a square transparent duct. The veloc-
ity of the diluting coflow is set equal to the injection
velocities in the tubes, and the average concentrations
hCRi and hCGi are conserved along the duct in this confined
geometry. The flow is turbulent and the concentration fields
are made visual by a plane argon laser sheet slicing the duct
along its axis (see [5] for details).
Near the injection point, the two plumes are segregated

(! ¼ %1). Farther downstream (beyond three cross section
widths L typically), the two plumes are intermingled into
an entangled set of sheets, as seen in Fig. 3. The total
concentration distribution PðCÞ results accurately from
the convolution of the individual fields PRðCRÞ and
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FIG. 2 (color online). Concentration distributions PðCÞ for the
red and green dyes in Fig. 1, and for the total concentration field
(black line), at cycles 2, 5, 8, and 11. The total distribution is
compared with the convolution rule in Eq. (4) (dotted line). The
insets show the corresponding cumulative distributions F ðCÞ.
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PGðCGÞ, indicating that CR and CG are, in that case
also, independent variables in the flow. The inspection
of the conditional distribution PðCRjCGÞ such that
PGðCGÞPðCRjCGÞ ¼ QðCR; CGÞ makes this statement
more accurate: PðCRjCGÞ is independent of CG for any
CG > 0:1, and for CR comprised between 0 and 1% CG. In
other words, a fluid particle from the, say, red field has
statistically in its immediate environment all the concen-
tration levels contained in the green field at that location.
Because the total concentration C cannot exceed 1,
PðCRjCGÞ vanishes for CR larger than 1% CG. Also ap-
parent in Fig. 3 is that for CG close to 0, the probability that
CR is also small is in excess (black curve). This indicates
the presence of void regions in the flow, no invaded by any
of the two initially dyed streams, and which are the ana-
logue of the diluting region whose signature is the Dirac
delta in the distributions of Fig. 2.

Both in a viscous two-dimensional, and a turbulent
three-dimensional flow, initially segregated scalar sources
(with ! ¼ %1) finally entangle and superimpose in an
independent manner (! ¼ 0) under the action of stirring.
These observations are consistent with known facts con-
cerning the interaction of thermal plumes from heated
wires in high Reynolds number wind tunnel turbulence
[9,10,15]. In this configuration, the time required for two
plumes to entangle depends on their initial separation, and
once they have a common support, the individual concen-
tration fields (restricted to the common support) are inde-
pendent. The observed reincrease of ! to positive values is
due to the positive correlation with the void regions on both
sides of the merged plume (called external intermittency in
this context), playing the same role as the diluting medium
in the experiments above.

When the sources give rise to independent concentra-
tions fields, the total concentration distribution is the con-

volution of the individual distributions [Eq. (4)]. Since the
color coding of the subparts of the initial scalar field has
been made arbitrarily, one might expect that the total
concentration distribution PðCÞ itself will evolve in a self
convolution way. That remark, whose relevance is demon-
strated here, has been conjectured earlier and led to a
prediction for the functional form of PðCÞ, found to be a
family of Gamma distributions representing well, in some
cases, actual random mixtures (see [5,16] for a more
elaborated presentation). However, minute modifications
of the initial scalar spatial pattern of the sources make the
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FIG. 3 (color online). Left: Mixing pattern of two dyes in a
turbulent channel flow at a downstream distance 5L with L the
channel width. Right: Conditional distribution PðCRjCGÞ of the
red concentration, for fixed green concentration CG ¼
f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6g at distance 5L. Insert: Distribution
of red, green, and total concentration (respectively in red, green,
and black) and comparison with Eq. (4) (dashed line).

FIG. 4 (color online). Mixing of two ink spots in a viscous
medium, initially deposited concentrically. The concentration
field resulting from the stirring protocol defined in [5] is shown
after 1, 2, 5, 8, and 10 cycles.
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FIG. 5 (color online). Cumulative distribution F ðCÞ for the
red and green dyes in Fig. 4, and for the total concentration field
at cycle 2, 5, 8, and 10. The total distribution is compared with
the correlated rule in Eq. (6). The insets show the corresponding
distributions PðCÞ.
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nature of the subsequent interaction between the fields
drastically different.

Consider a slightly modified version of our first experi-
ment of stirring in a viscous two-dimensional layer
(Fig. 1). Only the initial condition differs: now the two
spots are deposited concentrically in the medium (Fig. 4).
In that case, the convolution rule in Eq. (4) fails at recon-
structing the total field PðCÞ, now given by the strong
correlation rule in Eq. (6), as seen in Fig. 5. The final
correlation coefficient ! is about 0.9 (Fig. 6).

In the experiment of Fig. 1, the initial separation of the
blobs is of the order of the stirring rod amplitude motion L.
A lamellae formed from one of the spots has thus an
individual stretching history independent from the one of
the lamellae of the other spot with which it will ultimately
merge in the entangled set, hence the success of the in-
dependency rule. On the contrary, the two fields are sliced
together from the start with the initial condition of Fig. 4,
and therefore stick to each other along their whole history
in the medium, hence their correlation, obvious in Fig. 6
showing that the spatial locations for a given threshold x in
Eq. (6) are identical for both the CR and CG fields in this
experiment.

Instead of two, one can consider that our experiments
involve three colors: red, green (R, G), and a background
color (B). By mass conservation, CR þ CG þ CB ¼ 1 at
all times. Writing concentrations as a sum of an average
plus fluctuations as C# ¼ hC#iþ c#, one has cB ¼
%ðcR þ cGÞ. Consequently, the correlation of red and
green fields writes hcRcGi ¼ 1

2 ðhc2Bi% hc2Ri% hc2GiÞ.

Hence the sign of the correlation coefficient can be positive
only if hc2Bi is large enough in the intermingled set. The role
of the external fluid is besides crucial: as mentioned, we
subtract the outer background from the fields (the Delta
peak at CR;G ¼ 0) when composing them.
Iterated random motions on a scalar field form stretched

lamellae in two dimensions, and sheets in three dimen-
sions. The concentration field is constructed from the
diffusive merging of these elementary sheets in bundles
whose width defines the correlation distance of the con-
centrations. This coarsening scale is proportional to the
stirring scale L times a correction function of the scalar
diffusivity [17]. Initially distant subparts of the scalar field
are likely to have independent histories in the medium
before merging and defining PðCÞ, while nearby regions
are, and remain correlated.
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FIG. 6 (color online). Left: Spatial sets at cycle 8 in Fig. 4 for
F RðCRÞ ¼ F GðCGÞ ¼ x with x ¼ 0:5 (shaded) and x ¼ 0:95
(bright) for red and green fields, demonstrating their strong
spatial correlation (! ) 0:9). Right: Correlation coefficient !
versus its maximal reachable value !max in Eq. (6) for Fig. 1
(empty labels), and Fig. 4 (filled labels), as cycles proceed
(arrow).
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