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An energy cascading model of intermittency involving rare localized regions of both large and/or
weak energy dissipatiofdynamical intermittencyis considered and compared to the case of
intermittency arising from a large number of regions with nearly equal dissipation (spiase
intermittency. The latter leads to the log-normal statistics of the dissipation rate while the first
scenario leads to shifted log-Poisson distributions either for a large or for weak energy dissipation.
The only difference between these two cases is that small values of dissifwitiomespect to the
maximum of PDF are more probable for intermittency of the regions with weak dissipation than for
intermittency of the regions with large values of dissipation. Some consequences are derived which
show that Novikov's inequalities are valid for intermittency with rare regions of a weak dissipation
only. Different experimental data of probability distributions of dissipation are presented and
compared to theoretical predictions. Some experimental evidences of quasi-two-dimensional
vortical structures with weak dissipation are discussed. They suggest that the scenario involving
dynamical intermittency with holes of dissipation could apply to a real world turbulencel 995
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I. INTRODUCTION energy dissipation field is self-similar if the parameters of the
) o model do not depend on the scale of the dissipative struc-
One of the main and, still, incompletely understood fea-res. |n the case of a large number of breakdowns we obtain
tures of fully developed turbulent flow is the intermittency of ;4 he limiting cases a log-Poisson and a log-normal distri-

the energy cascading process. Physically speaking, thigtion for the energy dissipation. The log-Poisson distribu-
means that activéin the sense of energy dissipatjoand tion is valid either for strong dissipatively active or passive

inactive regions in the flow do not spread uniformly over thestructures with the difference that the former violates Novik-

entire turbulent region but concentrate into some volumes(.)v,s inequalities; the scaling of dissipation is a power law.

ﬁé\{%r:é ir:(t)r?:Ivsve(I)Ifkl:g\a/\:rrrllge[]ncgrmh:;/;c?c]eggf tprzgl?nseerd. Thgo we arrive at the conclusion that small scale intermittency
dissipation fielde — ) Eg / 19%)2 hgy results from the existence of the holes of dissipation. This is
issipation fielde(x,t) = v/22.; (il 9x; + 0u;l ;)" This e main result of the paper. In the last part we give various

model can be interpreted as one of the class of multifract . : . .
3 . . experimental evidences supporting the existence of the holes
models; which are based on the assumption of multifractal- " =" ™ “° " .
of dissipation in high Reynolds number turbulence. This con-

ity of the energy dissipation measure. The variety of inter- . . S Lo
y gy P y ept of intermittency originating from holes of dissipation

mittency models and their assumptions about the energy dis: . . . .
sipation distributions are reviewed and compared in Refs. 4qeveloped du_rlng last years bY different authors is derived
5. Recently, She and Méqué® have proposed a model of here from a different point of view.

turbulence which leads to a log-Poisson statistics for the en- OEJEPapgr Is in dir7ect connection with th-el%results of She
ergy dissipation fields(x,t), as pointed out by Dubruifgsee ~ @nd L&véque;’ Dubrulle” and She and Waymireln the pa-

also Ref. 8. By contrast to previous pictures, intermittency PE" _of NovikoV*® these results were estimated from _the point
in this model results from the existence of localized, rarePf View of a “gap problem” of PDF. The cascade picture of
non-dissipative regions in the flow. energy dissipation breakdown introduced in Ref. 8 is in the
In this paper, we study the small scale intermittency staSpirit of the orthodox mechanism presented below. It was
tistics on the basis of a dynamical cascade process in th@hown in Ref. 8 that this picture corresponds to a random
spirit of the Novikov—Stewaftmodel of which the dynami- Mmultiplicative processusing the terminology of probability
cal version is the well knowrB-model proposed by Frisch theory which, with the help of a general decomposition
et al1° The model presented here has some common pointéeorem of infinitely divisible processes, leads to a log-
with several previous models such gsnodel of Meneveau Poisson statistics. In our paper we avoid the references to
and Sreenivasah” (Sec. ), models of distribution of the such general theorems, preferring a physical argumentation.
multipliers>~® and also may be interpreted from a fractal This allows us to derive, in the limit case of log-Poisson
point of view!® This model is a cascade model which in- distribution, concrete PDF’s which can be fitted to experi-
cludes dissipatively active and passive localized regions irmental data. Also we show that the log-Poisson statistics is
the flow. The cascade breakdown of these regions of dissene of limiting PDF which can be obtained from the dynami-
pation contains several free parameters. By construction, theal cascade described in the paper. Another limiting case is

Phys. Fluids 8 (12), December 1996 1070-6631/96/8(12)/3367/12/$10.00 © 1996 American Institute of Physics 3367

Downloaded-18-Dec-2005-t0-147.94.56.24.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



passive region becomes non-intermittemon-active and
non-intermittent region becomes passfee active.

The mean energy dissipation rate in the fdstM, re-
gions of volumeV is

_ 1-
ey e (Ma/N) )
2 1-M;/N
In (1), (2) the lower index 1 refers to a dissipation in active
(a;>0) or passive(a;<0) volumes and the index 2 to a
non-intermittent volume. The expressid@) is consistent
- o\ —/ with the conservation of the total dissipatieN in volume
N V.
J i . d J Note that the Novikov—Stewdrtmodel is restored if
FIG. 1. One-dimensional illustration for energy dissipation: 1—dissipation ., _ 1 : ; (1) — e limi
in non-intermittent volumes; 2 and 3—active dissipation passaeasi- @ 1 m. (1)3 2), COI’I’ESpOI’ldIhg tas; .0' In this limit, all
zer9 dissipation volumes. dissipation is concentrated in thé, active volumes only.
Instead of(1) and(2), we will now use logarithms of the
relative dissipation rates, defined as

y

the log-normal distribution which, in spite of theoretical dif-
ficulties that we discuss, is widespread in the literature on |
turbulence.

The paper is organized as follows. In Sections Il and 11l
the model of cascade and the associated distributions of the
dissipation rate are described. In Sections IV, V we discuss
some consequences on the momentse(eft) and on the
variance of the logarithm. The main point is that this model
contains both the intermittency originating from very “ac-
tive” dissipative localized regions, and the intermittency
coming from filamentary vortex-like structures which are re-  Now, in the spirit of a dynamical cascade proceiss
gions of weak dissipatiofreferred to hereafter as “passive” space, see Ref. 10we consider that each of thé, active
dissipative zones or “holes” of dissipatipnwe show how (passivé regions consists dil small regions, among which
the log-Poisson statistics of the dissipation field results frononly M, are active(passivg compared to the dissipation rate
a mixture of both regions in the flow. Finally, in Section VI, of (1). In theseM, volumes the energy dissipation rate is
we comment on some experimental data which support thequal to

ideas presented before.
(2) — N N 4
T AM,) My @)

For the restN— M, non-active volumes in each &, vol-
umes of the first level, the energy dissipation rate is

e

(1
e

=vy1, In =—Kil17Y1,

_ M,
Yi=vilai,r)=—aInry, ri:W, (3)

KiEK(ai,l’i)Zln [riYi]_l'

i
—rla
I

IIl. DYNAMICAL INTERMITTENCY CASCADE

Let us consider a volum& of turbulence with mean
energy dissipation rate per unit mass The total energy
dissipation in the volume is equal ®V/. Let us assume that @ N |\ %t 1—(M,/N) 2
in the volumeV M, active (or passive regions of largexor € =?(M—) T1-MJN
smalle) thane rate of dissipation appear, as shown in figure ! 2
1. (The non-intermittent zones are labeled by 1, the intermit-  The same process holds for té— M) non-active vol-
tent zones with large dissipation by 2, and the intermittenumes and goes on for the subsequent steps of cascade,
zones with small dissipation by)3The volume of each re- =23 ... etc. In(1)—(5) the upper index corresponds to the
gion is equal toV/N (V is divided in N small volumes step of the cascade, £’ ande)’ are the energy dissipation

among whichM, are more(or lesg active than the others rates in activépassivé and non-active volumes aftersteps
N—M,). The mean energy dissipation rate of each ofNhe  of cascade.

®

active (or passive volume is assumed to be Now we make the two following assumptions(h-In-
N | @ dependency:The cascade of the dissipation rate in any vol-
egl>:aLM—) , (1)  ume at the step does not depend on the processes in other
1

regions at any other step(j#i);—(Il) Developed turbu-
where the exponent; is such that fore; >0 the correspond- lence: The cascade process in any intermittent actorepas-

ing volume is dissipatively active, with increased dissipationsive) region is completed when the scale of smallest active
rate (regions 2 in figure J, and for ;<0 the volume is (passive volumel, reaches the Kolmogorov scalg The
dissipatively passive meaning that its dissipation is less thanumber of cascade levels is large.

mean dissipation rate (regions 3 in figure )l We also This model of cascade contains the following param-
chooseM;<<N/2 because in other case a given actiee eters.
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(@) The numbemN defines the breakdown coefficie@t
between the characteristic scales of successive stepsl
i +1 such as

liva

Al N -l —N13

I N Q™% Q=N
We consider that the paramet@rcan take any value@>1
but is constant for ali. Note that for a cascade with a large
number of levelsQ—1.

(b) The ratior; is such that at a given leve)

M, 1
ri=W<§,

(6)

@)

defines the numbeM; of active (or passive regions at a
given scald; which are contained in any of thd; _; corre-

sponding volumes of the previous level. This condition is

linked with our definition of activdor passive regions. Pa-

[1§] 3
\
"%‘_

1, -7
1-7" 2,
- '4 2
..... - =" - /
I et g g W
e = a
-5 -4 -3 ) -1 0 1

FIG. 2. Function(a,r) (3) for (1) r=0.5; (2) r=0.3; (3) r=0.1; (4)
r=0.01.

rameters; mark the space intermittency of cascade process.

(c) The exponenty is indicative of the strength of the
relative energy dissipation rate in actif@ passivgvolumes
at a given scalé,; . The corresponding parameteyscharac-
terize the dynamical intermittency of cascade.

(d) Parametersq; (which depend onm,,«;) indicate the
level of dissipation in non-intermittent regions.

Ill. PROBABILITY FUNCTIONS OF THE ENERGY
DISSIPATION RATE

We consider a test volumngN*q, g=1, at the scale
defined by(6),
I

L=V (8)

L
A" Qu’
whereL corresponds to the largest scale in the flow.

This volume is one of th&1, active(passive regions of
first level with probability M;/N. With the probability

(1—M/N), the test volume is covered by non-active regions.

So, with probabilityM ;/N the logarithm of the relative dis-
sipation rate, Iteé/e), is equal [according to (3)] to
vi=—aqIn(M,/N), and with probability (1-M;/N) to
K1Y

If the test volume is found to be in one of thé, active
(passive volumes of first level, it may be covered with prob-
ability M,/N by one of theM, active(passive regions of the
second step. The value of the logarithniela) is now in-
creased byy,=—a, In(M,/N) and becomes equal tg + 5.
Symmetrically, Iiie/€) is increased byy; — kf »7, with prob-
ability (1-M,/N).

If the test volume is in the othéd— M regions of first
level, In(e/e) takes the value-kyr 1y,+ 7, with probability
M,/N and the value—«4r;y;— kol 2y, With probability
(1-M,/N).

We can now write the generating function of the random
value x=In(€,/€) with g steps of the cascade when the

whereg, (2) is the generating functions of stepin (9) the
conditions of independendy) and of developed turbulence
(I1) have been used, ariR},(x) is the probability ofx afterq
steps of cascade.

We have

@Ai(z):f P, (x)Z*dx,

with PAi(x) the probability ofx at stepi. For this value and
according to the procedure described above, we write

Pa,(X)=1i0(X= i) + (1=1§) S(X+ kil i 7)., (10)

which states that the quantiyis equal toy, with probability
r; and to—«;r;y; with probability (1—r;).
We thus obtain fron{10) and(9)

q
<Pq(2):i];[l [riz%i+(1—r;)z "]

1_ri17ai Inz
1-r

q
—z S ] [14r (2 -1)]. (11
=1

ri27i+(1—ri)<

We shall consider several particular limit cases.

A. Dynamical intermittency

Let us consider the case of a small number of intermit-
tent active(or passive volumes with finite and equal incre-
ments(decrementsy; :

M:
ri:W'<1, kiTi<1, 7;=y=const. (12

smallest scale of energy dissipation volumes becomes equBlgure 2 shows the functior(a,r) for several values of.

tolq (8),
q
eq(2)= f PaZdx=11 s (2), 9
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So, the conditionk;r;<1 in (12) is valid if «; are not too
close to 1 which is the case of Novikov—Stewart model. In
this case the values(a,r) become very large, and the con-
dition «;r;<€1 is violated.
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FIG. 3. Normalized probability functions (xf=ln(eq/e_) for (1) distribution
(16) with [%=0.1, ng=6, my=3; (2) normal distribution forx with mean
value (x)=—0.3 and varianc® =0.06; (3) distribution (15) with |/=0.1,
ng=6, my=9.

For smallr; we also assume that for large enougtthe
sumsXi_  kir; andEler are finite,

q
ieriznq, Z = (13

With (12), (13) the generating function may be approxi-
mately represented by

q
eq(2)=z" quH exp[ri(zy(“'ﬂfi)_ 1)]
=1

~z "M exgdng(z’—1)]. (14

Introducing instead of a new variableg=z|7‘ we obtain
from (14) the probability function of the normalized loga-
rithm of the dissipation ratek=x/|y|.

(@) For active dissipative volumes, valug>0 in (12)
(ai>0)1

kerq

+ A q _
P, (mg,ng)=e " —(k+mq)! , k=—-mg. (15
(b) For passive dissipative volumeg<0 (¢;<0),
mgy—k
g

(Mg— k)1

In (15), (16) we assume thak+m,, m,—k are integers.
Only discrete values ok are allowed in the model. This

P, (Mg,ng)=e " ksmj. (16

In(eq/e—) corresponding to the both shifted log-Poisson dis-
tributions (15), (16) are plotted for parametergy|=0.1,
ng=6, my=9 [for (15 see curve 3 in fig. B ny=6, my=3

[for (16) see, curve 1 in figure]3Curve 1 in figure 3 shows
that for cascade with the passive dissipation volumes the
small values ofe,/e (with respect to the maximum of the
PDF) become more probable than the larger values d)&
Evidence of this behaviour was indicated by Vincent and
Meneguzzi’ who showed that the dependence of the loga-
rithm of the dissipation PDF is close to linear for large nega-
tive values of In(sq/e_). This is the case of distributiofl6)

for large negativek. But it should be noted that for large
positive In(eqle—) the probability(16), being equal zero, un-
derestimates the PDF's which can be obtained in experi-
ments or numerical simulations.

B. Space intermittency

Another limit case can be considered when instead of
(12) we have

¥i—0, (18
with any r; (<1/2) and relaxing the condition of constant
logarithmic incrementgdecrements y;=vy. The condition
(18) necessary also meang—0. Proceeding to characteris-
tic function,z=e'¢, now we have for the right hand side of
1),

<Pq(§)~ef'§2i:17ikirii1:[1 {L+iéyiri(1+kiry)

— & [v(1+ K]

we—igxo—gz(D/Z)
q
XO(Q)ZiZl yirilxi(1—ry)—1],

q
D(q)zZ1 Yri(L—r)(1+xirp) (19

We use in(19) the second order expansion enas is
usually done to obtain central limit theoreffor turbulence,
see, for example, Ref. 12considering that with condition
(18 the values xo(q)~D(q)~32%,y? are finite but
Eiq=l'yim—>0, m=3.

From (3), (18) for «;, Xo(q), D(q) we obtain

model is essentially a quantized approximation of the real  ;~ 1+ Yi } 1+Kiri:_1 ,

continuous process which can be obtained in the limit case of 1-r 2(1-r) 1-r;

Q—1, g—oo, r;—0. Accurate statements can be obtained, 1

but are out of the scope of this paper which focuses on physi-  x,(q)= >, riy? TSy D(q)= E ry? T
=1 -l — T

cal arguments.

Equation (15) defines a shiftedby the amount—m,)
log-Poisson distribution of the random valke=x/|y| of
mean value and variance,

(kK)y=ng—mg, ‘Tk (k= <k>)2> Ng. (17

In (16), the sign of the shift changegk)=my—n,.
In figure 3 the normalized probability functions of

3370 Phys. Fluids, Vol. 8, No. 12, December 1996

(20

So, if now instead of condition§13) we assume that
sumsxy(q) andD(q) in (20) are finite fory—0, we obtain
for (190 a Normal distribution forx, the logarithm of the
relative energy dissipation rate=In(e/e), with mean value
(x)=—xo(q) and variancé(x—(x))%=D(q). Remind that
this holds for small relative amplitudes of the energy dissi-
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pation ratdin active or passive volumes, becaugéq) and
D(qg) do not depend on the sign of , |a;|<1]. Of course,
log-normal distribution also follows front14) for r<y—0
with Xo(0) = ¥*ng/2, D(q) = y°ng.

In figure 3 we show the log-normal distributigourve 2
in figure 3 with the mean valugx)=-0.3 and variance

which reduces t@21) if 6=0.

But together with relatior{26) we have to take into ac-
count some “boundary” condition in connection with our
condition(7) about the notion of intermittent actier pas-
sive) region, that isr;<<1/2. So, for some scalg above the
viscous scalé,, the corresponding valug, i~i, is of order

D=0.06 in comparison with the log-Poisson distributions1/2. The numbei, is defined by(8), and we have the fol-

(15), (16).
IV. THE HYPOTHESIS OF THE VARIANCE OF THE
LOGARITHM OF DISSIPATION

To link the characteristics,,m, (13) of the shifted log-
Poisson distribution$15), (16) with the scalel, (8) of the

volume in which we define the energy dissipation rate, it is

necessary to specify the distributionsref M;/N.
A. Kolmogorov—Obukhov's model
The simplest choice is a constant vatutor all levelsi:

M
ri=W'=r=constS1.

(21
With the condition y,=vy=const (12), this choice corre-
sponds toa; =a=const, hence, the values do not depend
oni and =« in (3). We thus have

1 1-r o 1 -
K_G n l_—rey, y=a ln F . ( )
For ny,m, we now obtain from(13)

r
Ng=qr=u, In —, =——", Myg=«kN,, 23
q= ar= Iq My In Q q q (23

where the indexg corresponding to the scalg is found
from (8) as

1 L
= m In E
The valuen, gives the variance of the normalized loga-

rithm of dissipation(17), k=In(e/€)/|y. So, equatiori23) for
n, leads to the Kolmogorov—Obukhb% assumption about

q (24

this variance, i.e. a logarithmic dependence on the size of th

system:

2 _ L — 2
Tin eq_/*l’ |nG1 M= MY (25)
Note that this result is valid for any distribution @f5), (16)
and also for a log-normal distributiqd9). The hypothesis of
constant ratios; = M;/N=r for all steps of the cascade does
not take into account the presence of a viscous cutoff

B. Power-law model

With increasing step (reduction of the scalgst seems
more reasonable that the valugdncrease(increase of spa-
tial intermittency. Assuming(as usual for cascade or shell
model$ that for the neighbouring steps the ratiq ,/r;=e°’

lowing estimation fors:

) 1 L 1 1) In(1/2r)
i=—=In—, refn~= —~_—— "
nQ I, 2" InQ In(L/y)
For n, we obtain
q s B
. re L\~
— Si 40_ 1)~ —
nq rizl € eﬁ_ 1 (e 1) bO( |q) '
(27)
_In(1/2r) o
(L)t 0 ef-1¢

Equation(27) for the variance of the normalized loga-
rithm of dissipation corresponds to the power-law scaling
model with the relatior,~1/In Re, suggested by Castaing
et al1®1® where the standard estimation for the Reynolds
number,L/l, ~Re¥* has been used i27).

The assumptiof21) of constant scale ratias leading to
the Kolmogorov—Obukhov law(25) for In(e/e) appears
much adapted to large scales of the inertial range, in which
the viscosity plays no role. On the other hand, the scale rep-
artition (26) with its power-law (27) suits to viscous-
dominated scales, also called the intermediate dissipation
range (Frisch and Vergassdd. This point was already
pointed out in Ref. 21.

V. MOMENTS OF THE ENERGY DISSIPATION RATE

Let us consider the moments of the energy dissipation
ratee, at scald ,, which, with the relationu,~ (€4l )" give
the moments of velocity incrementg, at this scale. Using
)?=|n(6q/e_), k=x/|v| and the sifted log-Poisson probability
function for x with y>0 (15) we have

o0 k+mq
Py =P/ aPKYly="¢P phYg—Ng 9
eM=¢€Ple =€ ePki7le g
(€q) = €€ kqu (k+mg)!
=ePe P~ MagPry  p=gPl, (28)

For the distribution functioril6) with y<0, we have the
same expression a28), with P=ePl”l. Hence, for both
caseq15) and(16) we obtain

< Eg> = ePe "gp~MggPNg="¢PaNg(P—1-p«xy) ,
(29

P=ep7, Y= @ In 1/ri:’}/i.

is constant, expressing the invariance by expansion of tha. Intermittency from dissipatively active regions

system, we have the relation

ri=red, 6>0, r<i, (26)

Phys. Fluids, Vol. 8, No. 12, December 1996

In the limit r;=const(Kolmogorov—Obukhov assump-
tion) where(23) is valid, we have
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—[1g\" lq {p Another measure of intermittency is associated with the
<€3>:Ep I <Ug>~ I exponent of the six-order structure function, (=2+,.
, (30 From (34), (36) we have 2
= + — @by =— 4 . l_s 2
p ur(l+kyp—eP?), gp 3 Tpi3 Ty= _Mr(l_s)zz _ ( ) (37

Ins 9’

The second relation it30) is the consequence of the . .
relation assumed correct between the statistics of the velocitfé?r the para_meters C(BS)' It IS |mpqrtant to note thqt n Ref.
the quantity— 7, was identified withu. Actually, it is veri-

forﬁg‘fl:tj:q(iﬂg Ifgfaéxzr.f;?é tFrgrgfézozr %ljsmatlom rate :‘|ed for Iog-normal model only which corresponds to the
. - : imit yv—0, s—1 in our case.

As already noted in the Introductiofsee Ref. 28 it For completeness, let us also mention that since
follows from (30) that the cascade with active dissipation P '
regions,y>0, violates(because of the exponential teg®), ((eq—(eq>)2> <6§>_<6q>2 lq
for large ordep>0, the Novikov inequalities for,, such as %) = %) =1-1T
T7,>2—p+7,, or the corresponding inequalities for
{p.{ap+2>{op. The present case is even more drastic tharfor small scalegl,—0) or large Reynolds number(t —),
for the log-normal model, because (80), 7, has an expo- the influence of the termeq>2 in (38) decreases.
nential dependence gmy. The log-normal model can also At large p, the equation$30) and (34) give
be obtained from30) with y<1 [see(18)]: L)pm(l—s)

Tp::U“r[p'Y(K_l)_pz'yz/z]- G

We can obtain this result by noticing that for large the

contribution of the passive regions of dissipation is small,
In the case of a cascade with intermittent dissipatively( GI(Q)/G_)pzsqp_@ [see(1)]. The non-active volumes for the

passive regionsy<0, the behaviour of, is quite opposite. corresponding dissipation after steps of cascade give, ac-

r(1-5)2
) , (39

(eh)=¢€P . po. (39)

B. Intermittency from dissipatively passive regions

We obtain instead of30) cording to(2), with constant;=r, ;=—|a|, s=r'?, r—0,

7= (1= prly|—e P). (31) e [1-rs|d

: : —= ~(1+r(1-s))9~eir1=s
From (22) with y=—|4/ it follows that forr —0, € 1-r
1 1-re 1] L\ ar(l-9)
= — - —a |7 —
|| ; In - —1-e " (32 _(Iq , (40)
This gives from(31) and(30) where equation$23), (24) have been used. So a§"~¢,,

71=0, (e)=¢. (33) equation(39) is recovered fron{40). Taking u,(1—s)=2/3
SR A we obtairf* (eh)~1,2/%. This gives one of She-kéque’s
The expressiort30) for 7, can be written in the form pro- assumptions:

osed by She and keque®
posed ™y * €= lim (8" HyI(ely)~1, 2.

o= (1=sP)—pu,(1-s), s=e <1 (34) poe
These formulas were obtained by She andéggi€® with Another assumption in Ref. 6 is
2 (eb™) ( (€P) )ﬂ
=2, s=g, (39 = o Al =], 0<B<],
. 3 Eae) Plea(eR )

on the basis of the assumption that passive regions of dissivhich corresponds to the hypothesis of a log-Poisson
pation correspond to filamentary vortical structures. As astatistics’
generalization of the result of She andviegue the similar We can estimate the constapt on the basis of our
formula with two arbitrary constant&34) was proposed in model from the following considerations. Instead of the
the papet® where the case with,(1—s)=1 is considered in  original constantsQ, r, and a=—|a| (or y) we can use
connection with the “gap problem” raised by Novikd¥. u =r/In Q ands=e " "'=rl® Let us consider the case-0
Remind that in our case of the shifted log-Poisson distribuand |a|—. This particular case corresponds to a flow with
tion (16) (which is the limiting case as the log-normal ¢ne rare structures with zero dissipatiod,l)/e_z s=0. The am-
the PDF for large positive I/ €) is zero. plitude of the velocity field near one of these structures can
The parameter$35) give a numerical estimate for the pe represented in the forufx) = uge™ @ + xe ¢ where
constanty in the Kolmogorov—Obukhov law25) [because x is a distance from the centre of structure. This function

of relation (34) for |y]: describes the rigid-body rotation nea=0 with zero dissi-
1 3 pation where the influence of the extergslirrounding flow
w=p, IN> —==p=21In -~0.3288, (36 is small. When distanceis large the velocity becomes equal
S 2 . . .
to the velocity of the surrounding flow, with weak depen-
which is closed to the generally accepted vate. dence onx. The dissipation of this velocity field is propor-
3372 Phys. Fluids, Vol. 8, No. 12, December 1996 Gledzer et al.
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tional to [(a/x?)e %2, with a maximum at the distance A. Localized holes of dissipation

Xo~2a from the center. Thug, ~ X,” and henceef

We have explained how thshifted log-Poisson statis-

-2 H : : : . .. . . . .
~ Xo “". Modelling non-active regions as such filamentarytics of the dissipation or transfer ratecould be indicative of

structures, one findse) ~ I;p“'(q > 1) with u, =2, which
corresponds precisely to She-egue’s result.

C. “P”-model

a scenario involving rare, localized holes of dissipation in the
flow materialized by quasi-one-dimensional vortical filamen-
tary structure having a solid-body rotating core. Some evi-
dences of such objects firstly were revealed in numerical
experiments(see, for example, Refs. 25, 26,)2First ex-

Equation(11) gives the generating function of logarithm perimental observations of such structures was done by
of the dissipation ratex=In(ey/€), which depends on pa- Douady, Couder, and BrackBt(see also the book by

rameters, Q (or i) anda (or s=r~%). Another particular
case can be considered with=r=1/2. This case corre-
sponds to thg-model of Meneveau and Sreenivasann-

Frisch® and references thergin
Villermaux et al>° have given more detailed experimen-
tal evidence for the existence, in a three-dimensional, homo-

deed the moments of are evaluated from the second equal-geneous, isotropic turbulence, of such objects. Their statisti-

ity in (11) by the equation
" . " 1\9 )
(XM= aaon pq(e'f)= Gy (5) [s'€+(2—9)'¢]9, (4D)

where we used the relations

1
1-rl e=1--s, r==

Z¥=g"é=gi¢ .
2 2

s=r—9,

For the moments o&,, we obtain from(41):
_ w1
(ehy=€P(e™)=eP2, — p™(x")
n=0 Nn!

1 ;N1\ .
mp”—(g) [s'¢+(2—9)"¢]

=<’ i &)

n=0

q
=?Jeipﬁ/(7§( %) [Si§+(2—s)i§]q

_[1\¢
=ep(§) [sP+(2—s)P]. (42

Choosing the breakdown coefficieQt=2 (as in Ref. 1], we
haveq=In(L/l,)/In 2, and(42) gives

] 1—p—logy[(s/2)P+(1-s/2)P]
-
This corresponds to p-model with parameter
- S
P=5- (44)

cal importance was estimated to be of one event per 100
large-scale turnover time foRe about 16. These authors
have also shown how a Kelvin—Helmholtz instability of
large-scale sheet-like structures could explain the formation
of these intense roll-up vortices. Their arguments also pro-
vide an estimation of the statistical frequency of such events,
which writes p~exp(—0.7Re"%)/8 quantitatively consistent
with their observations and numerical simulatidhsThe
probability of realization of the favorable conditions for the
formation of these intense vortices is thus a decreasing func-
tion of the Reynolds number.

Let the regions with reduced dissipation rgassive,
a;=a<0) appear above some critical leviglwith constant
ratior. At the leveli, ,i,>i., the value of dissipation rate in
the passive volume becomes proportional!t8(x~ic). The
probability of appearance of such volumes|ising (24)]
proportional tor' "¢,
|}\> In(1/r)/In Q

ri}\ficf-v

c

The diameter of the structures, typically given Ry de-
creases with the Reynolds number singe-LRe 2 or
I,~LR; ** Thus the probability decreases accordingly.

B. Distributions of €

In figure 3 we have presented the general form of the
shifted log-Poisson PDF for a cascade with holes of dissipa-
tion (curve 1. This form of the energy dissipation PDF was
experimentally found by Naetftand the same form for small
eq/E_W&S obtained in our experiments. The measurements

The valuesp~0.3 proposed by Meneveau and Sreenivasanwere made on the axis of a round j&,=835 and on the

ands=2/3 of She and Leeque are in agreement wii#4).

The parameter which corresponds to the model of Men-

eveau and Sreenivasan is equalateIn(2p)/In 2<0. This

scenario, as the one of She and/égue’s, thus corresponds,
in our classification, to a cascade involving passive region

(a<0).

VI. COMPARISON WITH EXPERIMENTAL DATA

Here, we present a selection of various experimentat o
data supporting some statements made above. In particular2 485
we start with a possible evidence for weakly dissipative ob- 3374

jects in the flow.
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axis of the wind tunnel of the ONERA in Modane

TABLE |. Characteristics of the turbulent flows: Axisymmetric jet
R, =835 and wind tunnel of ONERAR, =2485 and 3374 f andf, are,

spectively, the sampling and the Kolmogorov frequentigs.,the mean
velocity, u’ the r.m.s. of the velocity signal, andand 7, respectively, the
transversal Taylor and Kolmogorov length scales.

U mean u’ A n f f

s k
Ry (m/9 (m/s) (cm) (mm) (kHz) (kHz)
6.48 1.65 0.78 0.14 25 7.53
20.45 1.58 3.19 0.326 25 10.00
15.77 2.38 2.80 0.236 25 10.63
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FIG. 6. Approximations of the experimental PDF's »fIn(¢/e) for a
FIG. 4. Normalized probability distributions of lg{e) on the axis of a  round jet(R,=835) by the shifted log-Poisson distributi¢f6) (solid lines:
round jet: &, 1=278p; +, |=1107; O, | =557, &, 1=28x. large circles, the data fdr=287, the corresponding solid line is the distri-
bution (16) with ny=53, m,=47, [%|=0.2; small circles, the data for
=110, the solid line corresponds to the distributi¢h6) with n,=30,
my=26,|1=0.2.
(R,=2485. Both these flows have large enough Reynolds
numbers and a well defined inertial rangjeso decades of
scaling. So we can expect the existence of the universalityeters:ng; =30, mg; =26, |{=0.2 for |=1107 and n,,=53,
of small scale statistics for both flows considered. Mg, =47, |11=0.2 for| =287. Therefore, parameters,, m,
We also made experiments in the boundary layer of théncrease when the sideis reduced, in accordance with the
ONERA wind tunnel(R,=3374. The main characteristic equationg14), (23), which give
parameters of these flows are indicated in Table I. Details are
given in Refs. 32, 33. In particular, the spatial resolution of
velocity gradients is about#in the jet and 2.% in the  corresponding to an increase of the numbeof cascade
ONERA wind tunnel, where; is the Kolmogorov scale. The step. In the case of the jet, we observe that botH 107
energy dissipation rate, averaged over a length of site and forl=28y, the value ofk=m/n, is rather the same,
was estimated as in Ref. 34. namely k~47/53~26/30~0.88. This corresponds {d@5).
Figures 4 and 5 show normalized PDF'sepffor differ- The same approximation was made for the PDFeof
ent length sizd, respectively, for the round jet and on the with =107 in the wind tunnel(figure 7. In this case|y]
axis of the wind tunnel(R,=2485. They were experimen- =0.5,n,=12.5,m,=9. These values ofn,, n,, as equa-
tally obtained with sample of about<@.0’ data leading to a  tions (45) show, indicate that for the wind tunnel the ratio
reliable statistical convergence down to a probability level ofis less than in the case of jet.
5x10°. Note in figures 4, 5 the increasing probability of Quite opposite is the shape of PDF’s, shown in figure 8,
small ¢ when the scalé¢ is reduced. for data in the boundary laydnear the wall of tunnel at a
In figure 6 the experimental distributions in the case ofdistance corresponding to the logarithmic zone of the mean
the jet are plotted fot=110» and | =28y. The fit of the  velocity profile; see Table IR,=3374. In this case, the
theoretical distribution(16) leads to the values of param- structures with small energy dissipation at each level of the

Ng=qr, my=xng, (49)
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FIG. 7. Approximations of the experimental PDF’s for axis of wind tunnel
(R\=2485H by the shifted log-Poisson distributiqf6) (solid line): circles,
FIG. 5. Normalized probability distributions of lafe) on the axis of a  the data fol =107, the corresponding solid line is the distributi¢i) with
wind tunnel: &, [=376x; +, =100y, O, |=287, ¢,1=107. ny=12.5,m,=9, [%=0.5.
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O R T T The probability level about of this plateau isx30 *
- 1 (ten times larger than the level of statistical converggnce
I when the scalé over which the dissipation is averaged is
large enough. The plateau is all the more obvious that the
- averaging scalé is large. Specifically, the plateau becomes
] apparent whet is of the order ofA or more(see the curve
] corresponding td=557~\ in figure 4 and figure 10
@ 1 The plateau can be explained by an increased amount of
1 localized filamentary vortices with givesmal) values of
" 5 1 dissipation¢ . Generally speaking, the form of PDF with
[ % 1 increased probability for smad may be represented as su-
> B e e B E— perposition of PDF's with some “plateau” ascribed to struc-
-15 -10 -5 ne /5 10 tures of different scales with reduced dissipation, intrinsic to
the present dynamical cascade model. But a plateau is a
FIG. 8. Normalized probability distributions of la¢’€) in a shear layer of ~Manifestation of structures with small dissipation which are
the wind tunnel:0, 1=4007; +, |=100y; O, =277, ¢,1=11. external to a described cascade. It corresponds, as seen in
figure 9 which shows a time series of the dissipation signal,
to rare, localized events of low dissipation. Also included in
cascade seem to be suppressed by the large scale shear flfigures b), (c) is the band of’s corresponding to the width
Moreover, the structures with active dissipation are moreof the plateau: since the depth of these holes of dissipation is
probable, and the PDF’s of dissipation agrees better with th@ell below the standard variation ef and since these events
theoretical distribution15) with the shape like curve 3 in  are very sharply defined, their probability density is constant.
figure 3. The probability of occurrence of these events is therefore
The PDF’s of dissipation ratg in the jet case for large
length sizd (I =4007, | =1007) exhibit an intriguing feature
at small ¢ (figures 4, 6. Tails of the PDF have a plateau X
which disappears when the scéles decreasing to the dissi- ~ | * ok
pation rangg Such a plateau was also obsegrved in Ref. 31. = f—wp(é)d'ﬁ P(e) (e e, (48

max)
*

In(P /P,
*

+3
(o4
2
.

-10 4 =

8]

80.0

w | a)

| el

0.5 0.4 0.6 0.8
time (s)

FIG. 9. (a) A time series of the averaged dissipatidnwith | =557 in linear—linear coordinatesb), (c) The same as previously on a log-linear scale: note
the presence of strong, sharply localized holes of dissipation.
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L cal intermittency based on an upper bound value of energy
E fL ﬁ dissipation rate is possible. Experimental data are in agree-

A T, ] ment with this view involving localized filamentary vortices.

2 f .,.-"' "-.. ] Concerning the experimental PDF'’s of dissipation it is
~ -3 [log(P(e*) L il E possible to explain the absence of an ideal cutoff on the right
sl P, i o ; tails and the deviations of the left tails using the convolution
=3 g Ry . ] of a log-Poisson and large-scale log-dissipation statistics.
= 5 ¢ 3 LN . This idea to describe the small scale statistics of velocity

6 Foed . 1 differences was proposed in references 18, 19. In this case

g . ] the large-scale statistics corresponds to a Gaussian distribu-

-7 & g < € 1 ) S .

i o ] tion and small-scale velocity differences fluctuations are ap-

-8 3' — 2‘ e '2' = '3' = '4 proximated by a log-normal distribution. In our paper we

used the simplegbind to some extend more straightforward
interpretation of the experiments. But even this simple fit by
FIG. 10. PDF ofe defined by(45) in the jet experimen(R,=835 for the distribution(16) explains some features of the experi-
I~\=557, ¢ is the edge of thebirthing at that scal¢) plateau, and,is ~ mental distributions in figures 4, 5 like the increased prob-
the most probable value af abilities for small values,/e.

0 1
log(€)

whereg, is the most probable value ef(see figure 1pand ACKNOWLEDGMENTS
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