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An energy cascading model of intermittency involving rare localized regions of both large and/or
weak energy dissipation~dynamical intermittency! is considered and compared to the case of
intermittency arising from a large number of regions with nearly equal dissipation rates~space
intermittency!. The latter leads to the log-normal statistics of the dissipation rate while the first
scenario leads to shifted log-Poisson distributions either for a large or for weak energy dissipation.
The only difference between these two cases is that small values of dissipation~with respect to the
maximum of PDF! are more probable for intermittency of the regions with weak dissipation than for
intermittency of the regions with large values of dissipation. Some consequences are derived which
show that Novikov’s inequalities are valid for intermittency with rare regions of a weak dissipation
only. Different experimental data of probability distributions of dissipation are presented and
compared to theoretical predictions. Some experimental evidences of quasi-two-dimensional
vortical structures with weak dissipation are discussed. They suggest that the scenario involving
dynamical intermittency with holes of dissipation could apply to a real world turbulence. ©1996
American Institute of Physics.@S1070-6631~96!00912-9#

I. INTRODUCTION

One of the main and, still, incompletely understood fea-
tures of fully developed turbulent flow is the intermittency of
the energy cascading process. Physically speaking, this
means that active~in the sense of energy dissipation! and
inactive regions in the flow do not spread uniformly over the
entire turbulent region but concentrate into some volumes.
Several models of intermittency have been proposed. The
first one is the well known log-normal model1,2 of the energy
dissipation fielde(x,t) 5 n/2S i , j (]ui /]xj 1 ]uj /]xi)

2. This
model can be interpreted as one of the class of multifractal
models,3 which are based on the assumption of multifractal-
ity of the energy dissipation measure. The variety of inter-
mittency models and their assumptions about the energy dis-
sipation distributions are reviewed and compared in Refs. 4,
5. Recently, She and Le´vêque6 have proposed a model of
turbulence which leads to a log-Poisson statistics for the en-
ergy dissipation fielde(x,t!, as pointed out by Dubrulle7 ~see
also Ref. 8!. By contrast to previous pictures, intermittency
in this model results from the existence of localized, rare
non-dissipative regions in the flow.

In this paper, we study the small scale intermittency sta-
tistics on the basis of a dynamical cascade process in the
spirit of the Novikov–Stewart9 model of which the dynami-
cal version is the well knownb-model proposed by Frisch
et al.10 The model presented here has some common points
with several previous models such asp-model of Meneveau
and Sreenivasan11,4 ~Sec. I!, models of distribution of the
multipliers12–15 and also may be interpreted from a fractal
point of view.16 This model is a cascade model which in-
cludes dissipatively active and passive localized regions in
the flow. The cascade breakdown of these regions of dissi-
pation contains several free parameters. By construction, the

energy dissipation field is self-similar if the parameters of the
model do not depend on the scale of the dissipative struc-
tures. In the case of a large number of breakdowns we obtain
as the limiting cases a log-Poisson and a log-normal distri-
bution for the energy dissipation. The log-Poisson distribu-
tion is valid either for strong dissipatively active or passive
structures with the difference that the former violates Novik-
ov’s inequalities; the scaling of dissipation is a power law.
So we arrive at the conclusion that small scale intermittency
results from the existence of the holes of dissipation. This is
the main result of the paper. In the last part we give various
experimental evidences supporting the existence of the holes
of dissipation in high Reynolds number turbulence. This con-
cept of intermittency originating from holes of dissipation
developed during last years by different authors is derived
here from a different point of view.

Our paper is in direct connection with the results of She
and Lévêque,6 Dubrulle7 and She and Waymire.8 In the pa-
per of Novikov35 these results were estimated from the point
of view of a ‘‘gap problem’’ of PDF. The cascade picture of
energy dissipation breakdown introduced in Ref. 8 is in the
spirit of the orthodox mechanism presented below. It was
shown in Ref. 8 that this picture corresponds to a random
multiplicative process~using the terminology of probability
theory! which, with the help of a general decomposition
theorem of infinitely divisible processes, leads to a log-
Poisson statistics. In our paper we avoid the references to
such general theorems, preferring a physical argumentation.
This allows us to derive, in the limit case of log-Poisson
distribution, concrete PDF’s which can be fitted to experi-
mental data. Also we show that the log-Poisson statistics is
one of limiting PDF which can be obtained from the dynami-
cal cascade described in the paper. Another limiting case is
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the log-normal distribution which, in spite of theoretical dif-
ficulties that we discuss, is widespread in the literature on
turbulence.

The paper is organized as follows. In Sections II and III
the model of cascade and the associated distributions of the
dissipation rate are described. In Sections IV, V we discuss
some consequences on the moments ofe(x,t! and on the
variance of the logarithm. The main point is that this model
contains both the intermittency originating from very ‘‘ac-
tive’’ dissipative localized regions, and the intermittency
coming from filamentary vortex-like structures which are re-
gions of weak dissipation~referred to hereafter as ‘‘passive’’
dissipative zones or ‘‘holes’’ of dissipation!. We show how
the log-Poisson statistics of the dissipation field results from
a mixture of both regions in the flow. Finally, in Section VI,
we comment on some experimental data which support the
ideas presented before.

II. DYNAMICAL INTERMITTENCY CASCADE

Let us consider a volumeV of turbulence with mean
energy dissipation rate per unit massē. The total energy
dissipation in the volume is equal toēV. Let us assume that
in the volumeV M1 active~or passive! regions of larger~or
smaller! than ē rate of dissipation appear, as shown in figure
1. ~The non-intermittent zones are labeled by 1, the intermit-
tent zones with large dissipation by 2, and the intermittent
zones with small dissipation by 3.! The volume of each re-
gion is equal toV/N ~V is divided in N small volumes
among whichM1 are more~or less! active than the others
N2M1!. The mean energy dissipation rate of each of theM1
active ~or passive! volume is assumed to be

e1
~1!5 ēS N

M1
D a1

, ~1!

where the exponenta1 is such that fora1.0 the correspond-
ing volume is dissipatively active, with increased dissipation
rate ~regions 2 in figure 1!, and for a1,0 the volume is
dissipatively passive meaning that its dissipation is less than
mean dissipation rateē ~regions 3 in figure 1!. We also
chooseM1,N/2 because in other case a given active~or

passive! region becomes non-intermittent~non-active! and
non-intermittent region becomes passive~or active!.

The mean energy dissipation rate in the restN2M1 re-
gions of volumeV is

e2
~1!5 ē

12~M1 /N!12a1

12M1 /N
. ~2!

In ~1!, ~2! the lower index 1 refers to a dissipation in active
~a1.0! or passive~a1,0! volumes and the index 2 to a
non-intermittent volume. The expression~2! is consistent
with the conservation of the total dissipationēV in volume
V.

Note that the Novikov–Stewart9 model is restored if
a151 in ~1!, ~2!, corresponding toe2

~1!50. In this limit, all
dissipation is concentrated in theM1 active volumes only.

Instead of~1! and~2!, we will now use logarithms of the
relative dissipation rates, defined as

lnF e1
~1!

ē G5g1 , lnF e2
~1!

ē G52k1r 1g1 ,

g i[g i~a i ,r i !52a i ln r i , r i5
Mi

N
, ~3!

k i[k~a i ,r i !5 lnF 12r i

12r i
12a iG @r ig i #

21.

Now, in the spirit of a dynamical cascade process~in
space, see Ref. 10!, we consider that each of theM1 active
~passive! regions consists ofN small regions, among which
onlyM2 are active~passive! compared to the dissipation rate
of ~1!. In theseM2 volumes the energy dissipation rate is
equal to

e1
~2!5 ēS N

M1
D a1S N

M2
D a2

. ~4!

For the restN2M2 non-active volumes in each ofM1 vol-
umes of the first level, the energy dissipation rate is

e2
~2!5 ēS N

M1
D a1 12~M2 /N!12a2

12M2 /N
, ~5!

The same process holds for the~N2M1! non-active vol-
umes and goes on for the subsequent steps of cascade,
i52,3,... etc. In~1!–~5! the upper index corresponds to the
step of the cascade, soe1

( i ) ande2
( i ) are the energy dissipation

rates in active~passive! and non-active volumes afteri steps
of cascade.

Now we make the two following assumptions:—~I! In-
dependency:The cascade of the dissipation rate in any vol-
ume at the stepi does not depend on the processes in other
regions at any other stepj ( jÞ i );—~II ! Developed turbu-
lence:The cascade process in any intermittent active~or pas-
sive! region is completed when the scale of smallest active
~passive! volume l h reaches the Kolmogorov scaleh. The
number of cascade levels is large.

This model of cascade contains the following param-
eters.

FIG. 1. One-dimensional illustration for energy dissipation: 1—dissipation
in non-intermittent volumes; 2 and 3—active dissipation passive~quasi-
zero! dissipation volumes.

3368 Phys. Fluids, Vol. 8, No. 12, December 1996 Gledzer et al.

Downloaded¬18¬Dec¬2005¬to¬147.94.56.24.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



~a! The numberN defines the breakdown coefficientQ
between the characteristic scales of successive stepsi and
i11 such as

l i11

l i
5N21/35Q21, Q5N1/3. ~6!

We consider that the parameterQ can take any valuesQ.1
but is constant for alli . Note that for a cascade with a large
number of levels,Q→1.

~b! The ratior i is such that at a given leveli ,

r i5
Mi

N
,
1

2
, ~7!

defines the numberMi of active ~or passive! regions at a
given scalel i which are contained in any of theMi21 corre-
sponding volumes of the previous level. This condition is
linked with our definition of active~or passive! regions. Pa-
rametersr i mark the space intermittency of cascade process.

~c! The exponentai is indicative of the strength of the
relative energy dissipation rate in active~or passive! volumes
at a given scalel i . The corresponding parametersgi charac-
terize the dynamical intermittency of cascade.

~d! Parameterski ~which depend onr i ,a i! indicate the
level of dissipation in non-intermittent regions.

III. PROBABILITY FUNCTIONS OF THE ENERGY
DISSIPATION RATE

We consider a test volumevq5VN2q, q>1, at the scale
defined by~6!,

l q5
L

Qq , L5V1/3, ~8!

whereL corresponds to the largest scale in the flow.
This volume is one of theM1 active~passive! regions of

first level with probability M1/N. With the probability
~12M1/N!, the test volume is covered by non-active regions.
So, with probabilityM1/N the logarithm of the relative dis-
sipation rate, ln~e/ē!, is equal @according to ~3!# to
g152a1ln(M1/N), and with probability ~12M1/N! to
2k1r 1g1.

If the test volume is found to be in one of theM1 active
~passive! volumes of first level, it may be covered with prob-
ability M2/N by one of theM2 active~passive! regions of the
second step. The value of the logarithm ln~e/ē! is now in-
creased byg252a2 ln(M2/N) and becomes equal tog11g2.
Symmetrically, ln~e/ē! is increased byg12k2r 2g2 with prob-
ability ~12M2/N!.

If the test volume is in the otherN2M1 regions of first
level, ln~e/ē! takes the value2k1r 1g11g2 with probability
M2/N and the value2k1r 1g12k2r 2g2 with probability
~12M2/N!.

We can now write the generating function of the random
value x5ln(eq/ ē) with q steps of the cascade when the
smallest scale of energy dissipation volumes becomes equal
to l q ~8!,

wq~z!5E Pq~x!zxdx5)
i51

q

wD i
~z!, ~9!

wherewD i
(z) is the generating functions of stepi . In ~9! the

conditions of independency~I! and of developed turbulence
~II ! have been used, andPq(x) is the probability ofx afterq
steps of cascade.

We have

wD i
~z!5E PD i

~x!zxdx,

with PD i
(x) the probability ofx at stepi . For this value and

according to the procedure described above, we write

PD i
~x!5r id~x2g i !1~12r i !d~x1k i r ig i !, ~10!

which states that the quantityx is equal togi with probability
r i and to2k i r ig i with probability ~12r i!.

We thus obtain from~10! and ~9!

wq~z!5)
i51

q

@r iz
g i1~12r i !z

2k i r ig i#

5)
i51

q F r izg i1~12r i !S 12r i
12a i

12r
D ln zG

5z2( i51
q k i r ig i)

i51

q

@11r i~z
g i ~11k i r i !21!#. ~11!

We shall consider several particular limit cases.

A. Dynamical intermittency

Let us consider the case of a small number of intermit-
tent active~or passive! volumes with finite and equal incre-
ments~decrements! gi :

r i5
Mi

N
!1, k i r i!1, g i5g5const. ~12!

Figure 2 shows the functionk~a,r ! for several values ofr .
So, the conditionk i r i!1 in ~12! is valid if ai are not too
close to 1 which is the case of Novikov–Stewart model. In
this case the valuesk~a,r ! become very large, and the con-
dition k i r i!1 is violated.

FIG. 2. Functionk~a,r ! ~3! for ~1! r50.5; ~2! r50.3; ~3! r50.1; ~4!
r50.01.
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For smallr i we also assume that for large enoughq, the
sums(i51

q k i r i and(i51
q r i are finite,

(
i51

q

r i5nq , (
i51

q

k i r i5mq . ~13!

With ~12!, ~13! the generating function may be approxi-
mately represented by

wq~z!'z2gmq)
i51

q

exp@r i~z
g~11k i r i !21!#

'z2gmq exp@nq~z
g21!#. ~14!

Introducing instead ofz a new variablez5zugu we obtain
from ~14! the probability function of the normalized loga-
rithm of the dissipation rate,k5x/ugu.

~a! For active dissipative volumes, valueg.0 in ~12!
~ai.0!,

Pk
1~mq ,nq!5e2nq

nq
k1mq

~k1mq!!
, k>2mq . ~15!

~b! For passive dissipative volumes,g,0 ~ai,0!,

Pk
2~mq ,nq!5e2nq

nq
mq2k

~mq2k!!
, k<mq . ~16!

In ~15!, ~16! we assume thatk1mq , mq2k are integers.
Only discrete values ofk are allowed in the model. This
model is essentially a quantized approximation of the real
continuous process which can be obtained in the limit case of
Q→1, q→`, r i→0. Accurate statements can be obtained,
but are out of the scope of this paper which focuses on physi-
cal arguments.

Equation ~15! defines a shifted~by the amount2mq!
log-Poisson distribution of the random valuek5x/ugu of
mean value and variance,

^k&5nq2mq , sk
25^~k2^k&!2&5nq . ~17!

In ~16!, the sign of the shift changes;^k&5mq2nq .
In figure 3 the normalized probability functions of

ln(eq/ ē) corresponding to the both shifted log-Poisson dis-
tributions ~15!, ~16! are plotted for parametersugu50.1,
nq56, mq59 @for ~15! see curve 3 in fig. 3#, nq56, mq53
@for ~16! see, curve 1 in figure 3#. Curve 1 in figure 3 shows
that for cascade with the passive dissipation volumes the
small values ofeq/e ~with respect to the maximum of the
PDF! become more probable than the larger values ofeq/ ē.
Evidence of this behaviour was indicated by Vincent and
Meneguzzi17 who showed that the dependence of the loga-
rithm of the dissipation PDF is close to linear for large nega-
tive values of ln(eq/ ē). This is the case of distribution~16!
for large negativek. But it should be noted that for large
positive ln(eq/ ē) the probability~16!, being equal zero, un-
derestimates the PDF’s which can be obtained in experi-
ments or numerical simulations.

B. Space intermittency

Another limit case can be considered when instead of
~12! we have

g i→0, ~18!

with any r i ~<1/2! and relaxing the condition of constant
logarithmic increments~decrements! gi5g. The condition
~18! necessary also meansai→0. Proceeding to characteris-
tic function,z5ei j, now we have for the right hand side of
~11!,

wq~j!'e2 i j( i51
q g ik i r i)

i51

q

$11 i jg i r i~11k i r i !

2j2 1
2r i@g i~11k i r i !#

2%

'e2 i jx02j2~D/2!,

x0~q!5(
i51

q

g i r i@k i~12r i !21#,

D~q!5(
i51

q

g i
2r i~12r i !~11k i r i !

2. ~19!

We use in~19! the second order expansion ongi as is
usually done to obtain central limit theorem~for turbulence,
see, for example, Ref. 12!, considering that with condition
~18! the values x0(q);D(q);( i51

q g i
2 are finite but

(i51
q g i

m→0,m>3.
From ~3!, ~18! for ki , x0(q), D(q) we obtain

k i'
1

12r i
F11

g i

2~12r i !
G , 11k i r i5

1

12r i
,

x0~q!5(
i51

q

r ig i
2 1

2~12r i !
, D~q!5(

i51

q

r ig i
2 1

12r i
.

~20!

So, if now instead of conditions~13! we assume that
sumsx0(q) andD(q) in ~20! are finite forgi→0, we obtain
for ~19! a Normal distribution forx, the logarithm of the
relative energy dissipation ratex5ln~e/ē!, with mean value
^x&52x0(q) and variancê(x2^x&)2&5D(q). Remind that
this holds for small relative amplitudes of the energy dissi-

FIG. 3. Normalized probability functions ofx5ln(eq/ ē) for ~1! distribution
~16! with ugu50.1, nq56, mq53; ~2! normal distribution forx with mean
value ^x&520.3 and varianceD50.06; ~3! distribution ~15! with ugu50.1,
nq56,mq59.
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pation rate@in active or passive volumes, becausex0(q) and
D(q) do not depend on the sign ofai , uai u!1#. Of course,
log-normal distribution also follows from~14! for r!g→0
with x0(q)5g2nq/2, D(q)5g2nq .

In figure 3 we show the log-normal distribution~curve 2
in figure 3! with the mean valuê x&520.3 and variance
D50.06 in comparison with the log-Poisson distributions
~15!, ~16!.

IV. THE HYPOTHESIS OF THE VARIANCE OF THE
LOGARITHM OF DISSIPATION

To link the characteristicsnq ,mq ~13! of the shifted log-
Poisson distributions~15!, ~16! with the scalel q ~8! of the
volume in which we define the energy dissipation rate, it is
necessary to specify the distributions ofr i5Mi /N.

A. Kolmogorov–Obukhov’s model

The simplest choice is a constant valuer for all levelsi :

r i5
Mi

N
5r5const<1. ~21!

With the condition gi5g5const ~12!, this choice corre-
sponds toai5a5const, hence, the valueski do not depend
on i andki5k in ~3!. We thus have

k5
1

rg
lnF 12r

12regG , g5a lnS 1r D . ~22!

For nq ,mq we now obtain from~13!

nq5qr5m r ln
L

l q
, m r5

r

ln Q
, mq5knq , ~23!

where the indexq corresponding to the scalel q is found
from ~8! as

q5
1

ln Q
ln

L

l q
. ~24!

The valuenq gives the variance of the normalized loga-
rithm of dissipation~17!, k5ln~e/ē!/ugu. So, equation~23! for
nq leads to the Kolmogorov–Obukhov1,2 assumption about
this variance, i.e. a logarithmic dependence on the size of the
system:

s ln eq
2 5m ln

L

l q
, m5m rg

2. ~25!

Note that this result is valid for any distribution of~15!, ~16!
and also for a log-normal distribution~19!. The hypothesis of
constant ratiosr i5Mi /N5r for all steps of the cascade does
not take into account the presence of a viscous cutoffl h .

B. Power-law model

With increasing stepi ~reduction of the scales! it seems
more reasonable that the valuesr i increase~increase of spa-
tial intermittency!. Assuming~as usual for cascade or shell
models! that for the neighbouring steps the ratior i11/r i5ed

is constant, expressing the invariance by expansion of the
system, we have the relation

r i5red i , d.0, r!1, ~26!

which reduces to~21! if d50.
But together with relation~26! we have to take into ac-

count some ‘‘boundary’’ condition in connection with our
condition ~7! about the notion of intermittent active~or pas-
sive! region, that isr i,1/2. So, for some scalel l above the
viscous scalel h the corresponding valuer i , i; i l is of order
1/2. The numberi l is defined by~8!, and we have the fol-
lowing estimation ford:

i l5
1

ln Q
ln

L

l l
, red il;

1

2
,

d

ln Q
;
ln~1/2r !

ln~L/ l l!
.

For nq we obtain

nq5r(
i51

q

ed i5
red

ed21
~eqd21!'b0S Ll qD

bl

,

~27!

bl5
ln~1/2r !

ln~L/ l l!
, b05

r

ed21
.

Equation~27! for the variance of the normalized loga-
rithm of dissipation corresponds to the power-law scaling
model with the relationbl;1/lnRel suggested by Castaing
et al.18,19 where the standard estimation for the Reynolds
number,L/ l l;Rel

3/4 has been used in~27!.
The assumption~21! of constant scale ratiosr , leading to

the Kolmogorov–Obukhov law~25! for ln~e/ē! appears
much adapted to large scales of the inertial range, in which
the viscosity plays no role. On the other hand, the scale rep-
artition ~26! with its power-law ~27! suits to viscous-
dominated scales, also called the intermediate dissipation
range ~Frisch and Vergassola20!. This point was already
pointed out in Ref. 21.

V. MOMENTS OF THE ENERGY DISSIPATION RATE

Let us consider the moments of the energy dissipation
rateeq at scalel q , which, with the relationuq;(eql q)

1/3 give
the moments of velocity incrementsuq at this scale. Using
x5ln(eq/ ē), k5x/ugu and the sifted log-Poisson probability
function for x with g.0 ~15! we have

^eq
p&5 ē p^epkugu&5 ē p (

k52mq

`

epkugue2nq
nq
k1mq

~k1mq!!

5 ē pe2nqP2mqePnq, P5epugu. ~28!

For the distribution function~16! with g,0, we have the
same expression as~28!, with P5e2pugu. Hence, for both
cases~15! and ~16! we obtain

^eq
p&5 ē pe2nqP2mqePnq5 ēpenq~P212pkg!,

~29!
P5epg, g5a i ln 1/r i5g i .

A. Intermittency from dissipatively active regions

In the limit r i5const ~Kolmogorov–Obukhov assump-
tion! where~23! is valid, we have
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^eq
p&5 ē pS l qL D tp

, ^uq
p&;S l qL D zp

,

~30!

tp5m r~11kgp2epg!, zp5
p

3
1tp/3 .

The second relation in~30! is the consequence of the
relation assumed correct between the statistics of the velocity
incrementsuq and local energy transfer~or dissipation! rate
eq , uq

3; l qeq ~see, for example, Refs. 22, 34!.
As already noted in the Introduction~see Ref. 22!, it

follows from ~30! that the cascade with active dissipation
regions,g.0, violates~because of the exponential termepg!,
for large orderp.0, the Novikov inequalities fortp , such as
tp.22p1t2 , or the corresponding inequalities for
zp ,z2p12.z2p. The present case is even more drastic than
for the log-normal model, because in~30!, tp has an expo-
nential dependence onpg. The log-normal model can also
be obtained from~30! with g!1 @see~18!#:

tp5m r@pg~k21!2p2g2/2#.

B. Intermittency from dissipatively passive regions

In the case of a cascade with intermittent dissipatively
passive regions,g,0, the behaviour oftp is quite opposite.
We obtain instead of~30!

tp5m r~12pkugu2e2pugu!. ~31!

From ~22! with g52ugu it follows that for r→0,

kugu5
1

r
ln
12re2ugu

12r
→12e2ugu. ~32!

This gives from~31! and ~30!

t150, ^eq&5 ē. ~33!

The expression~30! for tp can be written in the form pro-
posed by She and Le´vêque,6

tp5m r~12sp!2pm r~12s!, s5e2ugu,1. ~34!

These formulas were obtained by She and Le´vêque6 with

m r52, s5
2

3
, ~35!

on the basis of the assumption that passive regions of dissi-
pation correspond to filamentary vortical structures. As a
generalization of the result of She and Le´vêque the similar
formula with two arbitrary constants~34! was proposed in
the paper36 where the case withm r(12s)51 is considered in
connection with the ‘‘gap problem’’ raised by Novikov.35

Remind that in our case of the shifted log-Poisson distribu-
tion ~16! ~which is the limiting case as the log-normal one!
the PDF for large positive ln(eq/ ē) is zero.

The parameters~35! give a numerical estimate for the
constantm in the Kolmogorov–Obukhov law~25! @because
of relation ~34! for ugu#:

m5m r ln
2
1

s
5m52 ln2

3

2
'0.3288, ~36!

which is closed to the generally accepted value.23

Another measure of intermittency is associated with the
exponent of the six-order structure function,t2, z6521t2.
From ~34!, ~36! we have

t252m r~12s!252m
~12s!2

ln2 s
52

2

9
, ~37!

for the parameters of~35!. It is important to note that in Ref.
6 the quantity2t2 was identified withm. Actually, it is veri-
fied for log-normal model only which corresponds to the
limit g→0, s→1 in our case.

For completeness, let us also mention that since

^~eq2^eq&!2&

^e2&
5

^eq
2&2^eq&

2

^e2&
512S l qL D mr ~12s!2

, ~38!

for small scales~l q→0! or large Reynolds numbers~L→`!,
the influence of the term̂eq&

2 in ~38! decreases.
At large p, the equations~30! and ~34! give

^eq
p&5 ē pS Ll qD

pmr ~12s!

, p→`. ~39!

We can obtain this result by noticing that for largep, the
contribution of the passive regions of dissipation is small,
(e1

(q)/ ē)p5sqp→0 @see~1!#. The non-active volumes for the
corresponding dissipation afterq steps of cascade give, ac-
cording to~2!, with constantr i5r , ai52uau, s5r uau, r→0,

e2
~q!

ē
5S 12rs

12r D q'~11r ~12s!!q'eqr~12s!

5S Ll qD
mr ~12s!

, ~40!

where equations~23!, ~24! have been used. So ase2
(q)'eq ,

equation~39! is recovered from~40!. Takingm r(12s)52/3
we obtain24 ^eq

p&; l q
22/3p. This gives one of She–Le´vêque’s6

assumptions:

jq
`5 lim

p→`

~^eq
p11&/^eq

p&!; l q
22/3.

Another assumption in Ref. 6 is

^eq
p11&

jq
`^eq

p&
5ApS ^eq

p&

jq
`^eq

p21& D
b

, 0,b,1,

which corresponds to the hypothesis of a log-Poisson
statistics.7

We can estimate the constantmr on the basis of our
model from the following considerations. Instead of the
original constantsQ, r , and a52uau ~or g! we can use
m r5r /ln Q ands5e2ugu5r uau. Let us consider the caser→0
and uau→`. This particular case corresponds to a flow with
rare structures with zero dissipation,e1

(1)/ ē5s50. The am-
plitude of the velocity field near one of these structures can
be represented in the formu(x) 5 u0e

2a/x 1 xe2bx2, where
x is a distance from the centre of structure. This function
describes the rigid-body rotation nearx50 with zero dissi-
pation where the influence of the external~surrounding! flow
is small. When distancex is large the velocity becomes equal
to the velocity of the surrounding flowu0 with weak depen-
dence onx. The dissipation of this velocity field is propor-
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tional to [(a/x2)e2a/x] 2, with a maximum at the distance
x0;2a from the center. Thusex0 ; x0

22 and hence,e x0
p

; x0
22p . Modelling non-active regions as such filamentary

structures, one findŝeq
p& ; l q

2pmr(q @ 1) withmr52, which
corresponds precisely to She–Le´vêque’s result.

C. ‘‘P’’-model

Equation~11! gives the generating function of logarithm
of the dissipation rate,x5ln(eq/ ē), which depends on pa-
rametersr , Q ~or mr! anda ~or s5r2a!. Another particular
case can be considered withr i5r51/2. This case corre-
sponds to thep-model of Meneveau and Sreenivasan.11 In-
deed the moments ofx are evaluated from the second equal-
ity in ~11! by the equation

^xn&5
]n

]~ i j!n
wq~e

i j!5
]n

]~ i j!n S 12D
q

@si j1~22s! i j#q, ~41!

where we used the relations

zg5eg i j5si j, s5r2a, 12r 12a512
1

2
s, r5

1

2
.

For the moments ofeq , we obtain from~41!:

^eq
p&5 ē p^epx&5 ē p(

n50

`
1

n!
pn^xn&

5 ē p(
n50

`
1

n!
pn

]n

]~ i j!n S 12D
q

@si j1~22s! i j#q

5 ē pe2 ip]/]jS 12D
q

@si j1~22s! i j#q

5 ēpS 12D
q

@sp1~22s!p#q. ~42!

Choosing the breakdown coefficientQ52 ~as in Ref. 11!, we
haveq5ln(L/ l q)/ln 2, and~42! gives

^eq
p&5 ē pS l qL D 12p2 log2@~s/2!p1~12s/2!p#

. ~43!

This corresponds to ap-model with parameter

p̃5
s

2
. ~44!

The valuesp̃'0.3 proposed by Meneveau and Sreenivasan
ands52/3 of She and Le´vêque are in agreement with~44!.
The parametera which corresponds to the model of Men-
eveau and Sreenivasan is equal toa5ln(2p̃)/ln 2,0. This
scenario, as the one of She and Le´vêque’s, thus corresponds,
in our classification, to a cascade involving passive regions
~a,0!.

VI. COMPARISON WITH EXPERIMENTAL DATA

Here, we present a selection of various experimental
data supporting some statements made above. In particular,
we start with a possible evidence for weakly dissipative ob-
jects in the flow.

A. Localized holes of dissipation

We have explained how the~shifted! log-Poisson statis-
tics of the dissipation or transfer ratee could be indicative of
a scenario involving rare, localized holes of dissipation in the
flow materialized by quasi-one-dimensional vortical filamen-
tary structure having a solid-body rotating core. Some evi-
dences of such objects firstly were revealed in numerical
experiments~see, for example, Refs. 25, 26, 27!. First ex-
perimental observations of such structures was done by
Douady, Couder, and Brachet28 ~see also the book by
Frisch29 and references therein!.

Villermaux et al.30 have given more detailed experimen-
tal evidence for the existence, in a three-dimensional, homo-
geneous, isotropic turbulence, of such objects. Their statisti-
cal importance was estimated to be of one event per 100
large-scale turnover time forRe about 103. These authors
have also shown how a Kelvin–Helmholtz instability of
large-scale sheet-like structures could explain the formation
of these intense roll-up vortices. Their arguments also pro-
vide an estimation of the statistical frequency of such events,
which writesp;exp~20.7Re1/6!/8 quantitatively consistent
with their observations and numerical simulations.17 The
probability of realization of the favorable conditions for the
formation of these intense vortices is thus a decreasing func-
tion of the Reynolds number.

Let the regions with reduced dissipation rate~passive,
ai5a,0! appear above some critical leveli c with constant
ratio r . At the leveli l ,i l. i c , the value of dissipation rate in
the passive volume becomes proportional tor uau( il2 i c). The
probability of appearance of such volumes is@using ~24!#
proportional tor il2 i c,

r il2 i c;S l ll cD
ln~1/r !/ ln Q

.

The diameter of the structures, typically given byl l ,
30 de-

creases with the Reynolds number sincel l;LRe21/2 or
l l;LRl

23/4. Thus the probability decreases accordingly.

B. Distributions of e

In figure 3 we have presented the general form of the
shifted log-Poisson PDF for a cascade with holes of dissipa-
tion ~curve 1!. This form of the energy dissipation PDF was
experimentally found by Naert31 and the same form for small
eq/ ē was obtained in our experiments. The measurements
were made on the axis of a round jet~Rl5835! and on the
axis of the wind tunnel of the ONERA in Modane

TABLE I. Characteristics of the turbulent flows: Axisymmetric jet
~Rl5835! and wind tunnel of ONERA~Rl52485 and 3374!, f s and f k are,
respectively, the sampling and the Kolmogorov frequencies,Umeanthe mean
velocity, u8 the r.m.s. of the velocity signal, andl andh, respectively, the
transversal Taylor and Kolmogorov length scales.

Rl

Umean

~m/s!
u8

~m/s!
l

~cm!
h

~mm!
f s

~kHz!
f k

~kHz!

835 6.48 1.65 0.78 0.14 25 7.53
2485 20.45 1.58 3.19 0.326 25 10.00
3374 15.77 2.38 2.80 0.236 25 10.63
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~Rl52485!. Both these flows have large enough Reynolds
numbers and a well defined inertial range~two decades of
scaling!. So we can expect the existence of the universality
of small scale statistics for both flows considered.

We also made experiments in the boundary layer of the
ONERA wind tunnel~Rl53374!. The main characteristic
parameters of these flows are indicated in Table I. Details are
given in Refs. 32, 33. In particular, the spatial resolution of
velocity gradients is about 4h in the jet and 2.5h in the
ONERA wind tunnel, whereh is the Kolmogorov scale. The
energy dissipation rateel averaged over a length of sizel
was estimated as in Ref. 34.

Figures 4 and 5 show normalized PDF’s ofel for differ-
ent length sizel , respectively, for the round jet and on the
axis of the wind tunnel~Rl52485!. They were experimen-
tally obtained with sample of about 33107 data leading to a
reliable statistical convergence down to a probability level of
531025. Note in figures 4, 5 the increasing probability of
small el when the scalel is reduced.

In figure 6 the experimental distributions in the case of
the jet are plotted forl5110h and l528h. The fit of the
theoretical distribution~16! leads to the values of param-

eters:nq1530, mq1526, ugu50.2 for l5110h and nq2553,
mq2547, ugu50.2 for l528h. Therefore, parametersnq , mq

increase when the sizel is reduced, in accordance with the
equations~14!, ~23!, which give

nq5qr, mq5knq , ~45!

corresponding to an increase of the numberq of cascade
step. In the case of the jet, we observe that both forl5110h
and for l528h, the value ofk5mq/nq is rather the same,
namelyk'47/53'26/30'0.88. This corresponds to~45!.

The same approximation was made for the PDF ofel
with l510h in the wind tunnel~figure 7!. In this caseugu
50.5, nq512.5,mq59. These values ofmq , nq , as equa-
tions ~45! show, indicate that for the wind tunnel the ratior
is less than in the case of jet.

Quite opposite is the shape of PDF’s, shown in figure 8,
for data in the boundary layer~near the wall of tunnel at a
distance corresponding to the logarithmic zone of the mean
velocity profile; see Table I,Rl53374!. In this case, the
structures with small energy dissipation at each level of the

FIG. 4. Normalized probability distributions of ln(e l / ē) on the axis of a
round jet:L, l5278h; 1, l5110h; s, l555h; l, l528h.

FIG. 5. Normalized probability distributions of ln(e l / ē) on the axis of a
wind tunnel:L, l5376h; 1, l5100h; s, l528h; l, l510h.

FIG. 6. Approximations of the experimental PDF’s ofx5ln(e l / ē) for a
round jet~Rl5835! by the shifted log-Poisson distribution~16! ~solid lines!:
large circles, the data forl528h, the corresponding solid line is the distri-
bution ~16! with nq553, mq547, ugu50.2; small circles, the data for
l5110h, the solid line corresponds to the distribution~16! with nq530,
mq526, ugu50.2.

FIG. 7. Approximations of the experimental PDF’s for axis of wind tunnel
~Rl52485! by the shifted log-Poisson distribution~16! ~solid line!: circles,
the data forl510h, the corresponding solid line is the distribution~16! with
nq512.5,mq59, ugu50.5.

3374 Phys. Fluids, Vol. 8, No. 12, December 1996 Gledzer et al.

Downloaded¬18¬Dec¬2005¬to¬147.94.56.24.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



cascade seem to be suppressed by the large scale shear flow.
Moreover, the structures with active dissipation are more
probable, and the PDF’s of dissipation agrees better with the
theoretical distribution~15! with the shape like curve 3 in
figure 3.

The PDF’s of dissipation rateel in the jet case for large
length sizel ~l5400h, l5100h! exhibit an intriguing feature
at small el ~figures 4, 6!. Tails of the PDF have a plateau
which disappears when the scalel is decreasing to the dissi-
pation range. Such a plateau was also observed in Ref. 31.

The probability level about of this plateau is 331024

~ten times larger than the level of statistical convergence!
when the scalel over which the dissipation is averaged is
large enough. The plateau is all the more obvious that the
averaging scalel is large. Specifically, the plateau becomes
apparent whenl is of the order ofl or more~see the curve
corresponding tol555h'l in figure 4 and figure 10!.

The plateau can be explained by an increased amount of
localized filamentary vortices with given~small! values of
dissipationel . Generally speaking, the form of PDF with
increased probability for smallel may be represented as su-
perposition of PDF’s with some ‘‘plateau’’ ascribed to struc-
tures of different scales with reduced dissipation, intrinsic to
the present dynamical cascade model. But a plateau is a
manifestation of structures with small dissipation which are
external to a described cascade. It corresponds, as seen in
figure 9 which shows a time series of the dissipation signal,
to rare, localized events of low dissipation. Also included in
figures 9~b!, ~c! is the band ofe’s corresponding to the width
of the plateau: since the depth of these holes of dissipation is
well below the standard variation ofe, and since these events
are very sharply defined, their probability density is constant.

The probability of occurrence of these events is therefore

p'E
2`

e*
P~e!de1P~e* !~e02e* !, ~46!

FIG. 8. Normalized probability distributions of ln(e l / ē) in a shear layer of
the wind tunnel:L, l5400h; 1, l5100h; s, l527h; l, l511h.

FIG. 9. ~a! A time series of the averaged dissipationel , with l555h in linear–linear coordinates.~b!, ~c! The same as previously on a log-linear scale: note
the presence of strong, sharply localized holes of dissipation.
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FIG. 9. ~Continued!.

3376 Phys. Fluids, Vol. 8, No. 12, December 1996 Gledzer et al.

Downloaded¬18¬Dec¬2005¬to¬147.94.56.24.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



wheree0 is the most probable value ofe ~see figure 10! and
e* is the limit of the plateau. The integration of the PDF
according to~46! provides:p'1023.

This phenomenon is of course reminiscent of the vortex
filaments bearing a solid-body non-dissipative rotating core
whose relevance for the present discussion has been pointed
out in section VI A. Their density in turbulent flows has been
estimated to be30

p;exp~20.7Re1/6!/8. ~47!

According to the Reynolds number of the jet experiment
(Re5Rl

2/15'46500), expression ~47! leads to
p'2.531023, in qualitative agreement with the probability
estimated from the PDF ofe ~46!.

A strong indication supporting the identification of these
holes of dissipation to vortex filaments is the fact that the
plateau disappears when the averaging scalel is smaller than
the Taylor microscalel. Indeed, the diameter of the solid-
body rotation core of these intense vortical structure is of the
order ofl ~see Ref. 30!. They thus become transparent in the
PDF’s of e, whene is averaged on a scale smaller thanl.

However, and despite these encouraging coincidences,
the fact that these presumable intense, weakly dissipative
filamentary structures are revealed through a plateau in the
PDF of e in a jet experiment compels us to prudence: the
geometry of the jet is not free from external intermittency
and these holes of dissipation could also be associated to the
passage of the boundary of the jet through the probe volume.

VII. CONCLUDING REMARKS

We have presented a rather general model of energy cas-
cading intermittency with rare localized regions of dissipa-
tion ~very large or very weak! which gives the shifted log-
Poisson statistics of dissipation. In this scheme, including
both dynamical and spatial intermittency, the log-normal dis-
tribution appears as a nearly equal energy dissipation rate,
corresponding to a strong spatial intermittency. In the case of
strong ‘‘dynamical’’ intermittency, related to both the weak
or strong dissipation zone, only the first case satisfies the
Novikov’s inequalities. This result suggest that only dynami-

cal intermittency based on an upper bound value of energy
dissipation rate is possible. Experimental data are in agree-
ment with this view involving localized filamentary vortices.

Concerning the experimental PDF’s of dissipation it is
possible to explain the absence of an ideal cutoff on the right
tails and the deviations of the left tails using the convolution
of a log-Poisson and large-scale log-dissipation statistics.
This idea to describe the small scale statistics of velocity
differences was proposed in references 18, 19. In this case
the large-scale statistics corresponds to a Gaussian distribu-
tion and small-scale velocity differences fluctuations are ap-
proximated by a log-normal distribution. In our paper we
used the simplest~and to some extend more straightforward!
interpretation of the experiments. But even this simple fit by
the distribution~16! explains some features of the experi-
mental distributions in figures 4, 5 like the increased prob-
abilities for small valueseq/ ē.
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6Z. S. She and E. Le´vêque, ‘‘Universal scaling laws in fully developed
turbulence,’’ Phys. Rev. Lett.72, 336 ~1994!.

7B. Dubrulle, ‘‘Intermittency in fully developed turbulence: Log-Poisson
statistics and generalized scale covariance,’’ Phys. Rev. Lett.73, 953
~1994!.

8Z. S. She and E. Waymire, ‘‘Quantized energy cascades and log-Poisson
statistics in fully developed turbulence,’’ Phys. Rev. Lett.74, 262 ~1995!.

9E. A. Novikov and R. W. Stewart, ‘‘Intermittency of turbulence and spec-
trum of fluctuations in energy-dissipation,’’ Izv. Akad. Nauk SSSR Ser.
Geophys.3, 408 ~1964!.

10U. Frisch, P.-L. Sulem, and M. Nelkin, ‘‘A simple dynamical model of
intermittent fully developed turbulence,’’ J. Fluid Mech.87, 719 ~1978!.

11C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett.59, 1424~1987!.
12E. A. Novikov, ‘‘Intermittency and scale similarity of the structure of
turbulent flow,’’ Prikl. Mat. Mekh.35, 266 ~1970!.

13A. B. Chhabra and K. R. Sreenivasan, ‘‘Scale-invariant multiplier distri-
butions in turbulence,’’ Phys. Rev. Lett.68, 2762~1992!.

14K. R. Sreenivasan and P. Kailasnath, ‘‘An update on the intermittency
exponent in turbulence,’’ Phys. Fluids A5, 512 ~1993!.

15K. R. Sreenivasan, ‘‘On local isotropy of passive scalars in turbulent shear
flows,’’ in Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50
Years on, Proc. R. Soc. London Ser. A434, 165 ~1991!.

16T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. J.
Shraiman, ‘‘Fractal measures and their singularities: The characterization
of strange sets,’’ Phys. Rev. A33, 2,1141~1986!.

17A. Vincent and M. Meneguzzi, ‘‘The spatial structures and statistical
properties of homogeneous turbulence,’’ J. Fluid Mech.225, 1 ~1991!.

18B. Castaing, Y. Gagne, and E. J. Hopfinger, ‘‘Velocity probability density
functions of high Reynolds number turbulence,’’ Phys. D46, 177 ~1990!.

19B. Castaing, Y. Gagne, and M. Marchand, ‘‘Log-similarity for turbulent
flows?,’’ Phys. D68, 387 ~1993!.

FIG. 10. PDF ofe defined by~45! in the jet experiment~Rl5835! for
l'l555h, e* is the edge of the~birthing at that scalel ! plateau, ande0 is
the most probable value ofe.

3377Phys. Fluids, Vol. 8, No. 12, December 1996 Gledzer et al.

Downloaded¬18¬Dec¬2005¬to¬147.94.56.24.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



20U. Frisch and M. Vergassola, ‘‘A prediction of the multifractal model: The
intermediate dissipation range,’’ Europhys. Lett.14, 439 ~1991!.

21B. Chabaud, A. Naert, J. Peinke, F. Chilla, B. Castaing, and B. Hebral, ‘‘A
transition toward developed turbulence,’’ Phys. Rev. Lett.73, 3227
~1994!.

22U. Frisch, ‘‘From global scaling, a` la Kolmogorov, to local multifractal
scaling in fully developed turbulence,’’ in Ref. 15, pp. 89–99.

23F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, ‘‘High-order
velocity structure functions in turbulent flows,’’ J. Fluid Mech.140, 63
~1984!.

24We would like to mention an intriguing coincidence: the ratio of the
dissipation rates for two successive scales,e1

(q11)/e1
(q)

'(e1
(q11))/e1

(q))/( l q/ l q11)5s52/3, in passive volumes is given bys52/3
~for mr52: l q/ l q115Q5er /2→1, r→0!, the same value corresponds to the
ratio of the logarithms of the dissipation in the non-intermittent region:
ln(e2

(q11)/e2
(q))/ln( l q/ l q11)5mr(12s)5s52/3.

25E. D. J. Siggia, ‘‘Numerical study of small-scale intermittency in three-
dimensional turbulence,’’ Fluid Mech.107, 375 ~1981!.

26J. Jiménez, A. Wray, P. G. Saffman, and R. S. Rogallo, ‘‘The structure of
intense vorticity in isotropic turbulence,’’ J. Fluid Mech.255, 65 ~1993!.
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