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The near- and far-field break-up and atomization of a water jet by a high-speed
annular air jet are examined by means of high-speed flow visualizations and phase
Doppler particle sizing techniques. Visualization of the jet’s near field and
measurements of the frequencies associated with the gas–liquid interfacial instabilities
are used to study the underlying physical mechanisms involved in the primary break-
up of the water jet. This process is shown to consist of the stripping of water sheets,
or ligaments, which subsequently break into smaller lumps or drops. An entrainment
model of the near-field stripping of the liquid is proposed, and shown to describe the
measured liquid shedding frequencies. This simplified model explains qualitatively the
dependence of the shedding frequency on the air}water momentum ratio in both
initially laminar and turbulent water jets. The role of the secondary liquid break-up in
the far-field atomization of the water jet is also investigated, and an attempt is made
to apply the classical concepts of local isotropy to explain qualitatively the
measurement of the far-field droplet size distribution and its dependence on the water
to air mass and momentum ratios. Models accounting for the effect of the local
turbulent dissipation rate in the gas on both the break-up and coalescence of the
droplets are developed and compared with the measurements of the variation of the
droplet size along the jet’s centreline. The total flux of kinetic energy supplied by the
gas per unit total mass of the spray jet was found to be the primary parameter
determining the secondary break-up and coalescence of the droplets in the far field.

1. Introduction

The understanding of the break-up and atomization of liquid jets is fundamental to
two-phase flow combustion and propulsion problems (Sutton 1992). In liquid
propellant rocket engines, the reactants (fuel and oxidizer) are often supplied in an
array of injectors where in each injector a jet of liquid oxygen is atomized by a high-
speed annular hydrogen gas jet (Burick 1972). These types of atomizers when used in
conventional air-supplied combustion applications are generically referred to as twin-
fluid atomizers (Lefebvre 1989). Owing to the complexity of the underlying physical
processes involved in the break-up of a liquid jet by a high-speed turbulent gas jet, this
type of atomization is still poorly understood. Quantitative observations of the near
field and measurements of the drop size and liquid void fraction are difficult to make,
and often subject to large errors. Most of the past studies have focused on measuring
the distribution of drop sizes at the spray’s centreline at a certain fixed distance
downstream of the nozzle (x}D& 30). From these point measurements, correlations
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have been established for the drop size as a function of the flow parameters and the
injector geometry (see for instance Lefebvre 1989; Gomi 1985). The dependence
of the droplet size (typically characterized by the Sauter mean diameter defined by
D
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where d
i
is the diameter of each droplet, and N

i
the number

of droplets per unit volume in each size group) on the gas velocity has been found to
be approximated by a power law D
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with n ranging usually from 0.8 to 1.3

(Ingebo 1991), possibly reaching a value as large as 2 in exceptional cases (Nukiyama
& Tanasawa 1939; Gomi 1985). There is no convincing physical explanation for these
power laws or even for why the drop size, in general, should follow a power-law
dependence on the initial gas velocity. As high-speed photography and non-intrusive
laser-based diagnostics have become more readily available, it is now possible to
visualize the near field (Farago & Chigier 1992; Hopfinger & Lasheras 1994;
Hardalupas & Whitelaw 1994; Englebert, Hardalupas & Whitelaw 1995) and to
perform accurate measurements of the droplet size throughout the spray, thus opening
new avenues in the development of theoretical models.

An early visual study of water jet instability, with or without coflowing or
counterflowing air of velocity comparable to the liquid velocity, was performed by
Hoyt & Taylor (1977). Their results indicate that in the near field the air stream has
practically no influence on the instability which originates in the vorticity sheet of the
water jet. Only further downstream, when perturbations are amplified, does the
aerodynamic form drag on the liquid protrusions become active, and the air stream
contributes to further destabilization of the water jet. This indicates that for the gas
stream to affect the liquid jet instability appreciably in the near field, the gas
momentum flux per unit volume has to be larger than or equal to the liquid momentum
flux per unit volume. Surface tension is, of course, an important parameter and
imposes a cut-off in the length scale of the amplified perturbations.

In the case of interest here, where a low-speed liquid jet is injected at the central axis
of a high-speed coaxial air jet, the liquid break-up and droplet atomization can be
divided into a near-field primary break-up region, and a far-field secondary break-up
region. Both primary and secondary break-up have received considerable attention in
the past. The primary break-up, which is dominant in the first few jet diameters, is
essentially related to the non-miscible shear instability, and results in the stripping of
the liquid jet by the high shear forces at the gas}liquid interface. Further downstream,
droplet atomization may also occur from the deformation forces exerted on the
droplets by the turbulent motion of surrounding air, a process known as secondary
atomization.

Surface-tension-driven instability of liquid jets dates back to Rayleigh (1879), and
Weber (1931) who included the effect of the viscosity of the liquid. These theories are
relevant to ligament break-up in the near field (e.g. Lefebvre 1980). The destabilization
of the liquid jet close to the nozzle exit is a Kelvin–Helmholtz type of instability where
surface tension acts as a stabilizing force and imposes a lower cut-off for the waves
which can grow (see Chandrasekhar 1961). This cut-off is given by a critical Weber
number (Weber 1931; Chandrasekhar 1961). More specific theoretical models of the
break-up of liquid sheets and jets in a gas stream have been developed subsequently
(Mayer 1993; Dombrowski & Johns 1963; Adelberg 1968; and others). These models
give correlations for the dependence of drop size on gas velocity and sheet thickness.
Numerical simulations of two-dimensional interfacial instability by Mayer (1993),
Keller et al. (1994) and Zaleski (1995) have also shown sheet formation and break-up,
but these simulations are limited to low Reynolds number.

Individual liquid lumps stripped off from the central liquid core may still undergo
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secondary break-up if the forces exerted by the turbulent air exceed the confinement
due to the surface tension and the liquid viscosity. Fundamental studies of the break-
up of individual drops submerged in turbulent flows were made by Kolmogorov
(1949), Lane (1951), Hinze (1955), and many others. Three forces are involved in the
splitting of the liquid, namely surface tension, viscous, and inertia forces. From
dimensional arguments, Hinze showed that if τ is the force per unit area exerted by the
gas on the surface of the droplet, the deformation process depends on two
dimensionless groups, and a critical generalized Weber number, We!

c
, can then be

defined as We!
c
¯We

c
[1Φ(N )], where N¯µ}(ρ

l
σd )"/# is a viscous group (or

Ohnesorge number) which accounts for the viscosity of the liquid, and We
c
¯ τd}σ is

the critical Weber number for the case of zero dispersed-phase viscosity.
Theoretical and experimental studies of single-drop shear break-up are numerous,

and the reader is referred to Pilch & Erdman (1987) where the different scenarios
depending on Weber number are discussed. When a water drop of size d is suddenly
exposed to a uniform air flow of relative constant speed (u
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(Hanson, Domich & Adam 1963). For a water droplet in air, Hinze (1955) showed that
(We
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c
is of the order 10 (excluding here any resonant vibration or acceleration break-

up). When the Reynolds number of the gas is very large, as it is in our application (i.e.
of the order of 10% to 10&), the motion of the gas is turbulent and the droplet may also
break due to the dynamic pressure caused by the surrounding turbulence. A model for
such a turbulence break-up was proposed by Kolmogorov (1949) and Hinze (1955).
They defined a turbulent Weber number based on the difference in turbulent velocity
on the scale equal to the drop size We

t
¯ ρ

g
u(d )# d}σ. Kolmogorov then postulated

that when We
t
is greater than a critical value, (We

t
)
c
, atomization of the liquid occurs

as the dynamic pressure forces from the turbulent motion are sufficiently large to
overcome the confinement of the surface tension. Hinze (1955) found that owing to
resonant vibrations, the turbulent critical Weber number is typically smaller than 1,
and he estimated a value of 0.59 from Clay’s (1940) experiments.

In this paper we report an experimental study of the near- and far-field regions of
the break-up of a round water jet by a high-speed annular air jet. Measurements of the
frequency of the near-field interfacial instabilities are used to investigate the underlying
physical mechanisms involved in the primary liquid break-up. The far-field secondary
atomization is analysed by means of detailed measurements of both the droplet size and
velocity distribution as well as turbulent characteristics of the atomizing air. In §2 we
present the experimental set-up and procedures, and in §3 discuss the results of the
near-field primary break-up. The primary break-up is first classified according to the
water to air momentum ratio, the aerodynamic Weber number and the water and air
Reynolds numbers. Measurements of the liquid shedding frequencies in each of the
break-up modes are then presented, and a model of the near-field stripping is proposed.
Finally, in §4 the role of the secondary break-up and quantitative relationships
describing the influence of the turbulence on the break-up and coalescence of the drops
is presented. Simplified models accounting for the local dissipation rate are then
compared to the experimental evidence in §5.

2. Experimental conditions and procedures

The injector geometry is shown schematically in figure 1. The experiments are
conducted at atmospheric pressure and water and air are used as working fluids. The
jet nozzles are straight long tubes so that conditions at the outlet are a developed pipe
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F 1. Coaxial jet nozzle configuration.

flow for the central water jet and a channel flow for the annular air jet. The inner
tube is 110 mm long. It has an outer diameter of 4.2 mm and an inner diameter of
d
l
¯ 2.9 mm which is expanded through a 6° half cone angle to an outlet diameter

D
l
¯ 3.8 mm.This diffuser at the outletmodifies the pipe flowvelocity profile somewhat,

but it does not lead to flow separation in any of the experimental conditions reported
here. The absence of separation was verified for the case of turbulent conditions at the
exit of the water jet in a scale-up flow facility by Rehab, Villermaux & Hopfinger
(1997). The nozzle diameters of the annular air jet are D

g
¯ 5.6 mm and d

g
¯ 4.2 mm,

giving a gap spacing h¯ 0.7 mm over a length of 28 mm. The water nozzle velocity
U
l
was varied from 0.15 to 1.5 m s−", and the air velocity U

g
from 20 to 250 m s−". These

are section-averaged velocities, which are monitored with precision flow meters. The
uniformity of the air flow at the nozzle’s exit was checked with a total head tube of
0.7 mm outer diameter. In order to prevent any recirculation of the water spray in the
test rig which could contaminate the measurements, we placed absorbing material in
a receiving reservoir located far downstream (x}D

g
" 300). Furthermore, extreme care

was taken to prevent contamination from any possible recirculating flow by removing
the spray reaching the damping reservoir with several suction fans.

Instantaneous photographs were taken with a CCD Sony video camera, with a
framing rate 1}30 s and a shutter speed% 10−% s. Forward light scattering was used for
these instantaneous images which have an average pixel resolution of about 20 µm. A
high-speed video camera (Ektapro with a framing rate 1000 to 6000 frames}second)
was also used to inspect the near-field break-up event and to measure the acceleration
of the liquid by the air stream. The liquid shedding frequency was measured with a
laser-photodiode arrangement placed one diameter downstream of the nozzles. This
system consisted of a laser beam of 0.3 mm in diameter placed tangentially to the
undisturbed water jet in the direction perpendicular to the jet’s axis. As the interfacial
instability developed, a photodiode recorded the attenuation signal produced as the
interfacial waves attenuated the beam intensity. These waves are believed to be the
precursors of the sheet}ligaments separating from the edge of the liquid jet. The
attenuation signal from the photodiode was digitized at a rate of 10000 samples per
second on a Le Croy 8212A A}D converter and subsequently processed in a frequency
analyser.

The distribution of droplet size was measured with a phase Doppler particle sizer
(PDPA) (Aerometrics Inc.). The jet was systematically measured at downstream
locations in the range 90&x}D

g
& 7. With a few exceptions, all the results reported

here correspond to measurements performed at the jet’s axis.
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3. The near-field primary liquid break-up

3.1. Flow parameters

In jets, the most important parameter for the near-field development is the Reynolds
number which has to be large (Re& 10$) in order for the jet to become turbulent near
its nozzle. For coaxial jets we can define a Reynolds number for the water jet, Re

l
¯
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l
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, and a Reynolds number of the air jet, Re

g
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g
. In addtion, we can

define an effective Reynolds number to characterize the total flow (gas plus liquid) in
the jet as
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where M is the momentum flux ratio per unit volume
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This quantity is an important parameter (Villermaux, Rehab & Hopfinger 1994) which
was kept large in all the reported experiments. Other relevant parameters in the break-
up and atomization process are the area (or diameter) ratio A

g
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l
, and the mass flux
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The other useful non-dimensional number relevant to the liquid atomization is the
initial aerodynamic. Weber number which is the ratio between the aerodynamic
deformation pressure force exerted on the liquid (estimated with the initial velocity
difference) and the restoring surface tension forces

We
!
¯
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l
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®U

g
)#D

l

σ
, (4)

where σ is the interfacial surface tension.

3.2. Qualitati�e obser�ations of the near-field primary atomization

In figure 2 instantaneous images of the liquid jet break-up are presented for different
flow conditions. In figure 2(a–d ) the liquid velocity is U

l
¯ 0.33 m s−", Re

l
¯ 1250. The

air velocity U
g

is varied from 15.7 to 40.6 m s−" corresponding to 850%Re
g
% 2100.

This condition corresponds to the initial aerodynamic Weber numbers 16%We
!
% 110,

and 3%M% 25. Surface tension clearly dominates the near-field break-up in
figure 2(a–c), but qualitatively seems to play a minor role in figure 2(d ). Fibre-type
ligaments begin to form in figure 2(d ), and they are then observed to break into drops
via a Rayleigh-type capillary break-up mechanism. Farago & Chigier (1992) report
ligament formation when We

!
& 100. In figure 2(e–h) similar images are displayed but

with the air velocity going up to 85 m s−" (Re
g
¯ 4400) and for a water velocity

0.58 m s−" (Re
l
¯ 2230). For the geometry investigated in the present experiments (the

diameter of the liquid jet is larger than in the experiments of Farago & Chigier), fibre-
type ligaments are seen more clearly when We

!
& 200 (figure 2g). These fibres are also

seen to decrease in size as the Weber number is increased. However, increasing the air
velocity for a given water velocity increases not only the Weber number but also the
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(a)

(b)

(e)
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(d) (h)

F 2. Instantaneous flow visualization of the break-up of the liquid jet by the annular air jet. (a)
U

g
¯ 15.75 m s−", M¯ 3.8, We

!
¯ 16, Re

l
¯ 830; (b) U

g
¯ 21.7 m s−", M¯ 7.35, We

!
¯ 31, Re

l
¯

1120; (c) U
g
¯ 28 m s−", M¯ 12.2, We

!
¯ 52, Re

l
¯ 1450; (d ) U

g
¯ 40.6 m s−", M¯ 25, W

!
¯ 110,

Re
l
¯ 2100; (e) U

g
¯ 21.7 m s−", M¯ 2.05, We

!
¯ 31, Re

l
¯ 1120; ( f ) U

g
¯ 40.6 m s−", M¯ 7.0,

We
!
¯ 110, Re

l
¯ 2100; (g) U

g
¯ 56 m s−", M¯ 13, We

!
¯ 210, Re

l
¯ 2900; (h) U

g
¯ 85.4 m s−",

M¯ 31, We
!
¯ 489, Re

l
¯ 4420.

momentum flux ratio M. In figure 3(a–c) we show images for different Weber numbers
and also for the same Weber number but different values of M (compare figures 3a and
3b). The ligament size in the near field seems similar in the two images 3(a) and 3(b),
but at the lower M an intact liquid core persists further downstream. When the Weber
number is large, the momentum flux ratio is, therefore, the crucial parameter in
determining the liquid core length (or liquid intact length).

The other point of interest in these flow visualizations is the strong spiral mode and



Break-up and atomization of a round water jet 357

(a)

(b)

(c)

F 3. Instantaneous flow visualization of the jet break-up. (a) U
l
¯ 1.0 m s−", M¯ 2.5,

We
!
¯ 200; (b) U

l
¯ 0.5 m s−", M¯ 10, We

!
¯ 200; (c) U

l
¯ 0.5 m s−", M¯ 40, We

!
¯ 800.

the acceleration of the liquid sheet, particularly visible at the lower values of We
!

(figures 2b and 2e). Furthermore, figure 2(b) seems to suggest that although the final
liquid atomization is a chaotic process (Hardalupas & Whitelaw 1994; Engelbert et al.
1995) the water is peeled off from the jet’s surface at nearly constant frequencies, an
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F 4. Power spectrum of the photodiode signal indicating the liquid shedding frequency.
U

l
¯ 0.3 m s−" and U

g
¯ 25 m s−".

important point which was corroborated by the high-speed films and by local laser
attenuation measurements discussed in §3.3. It should also be noticed that for the mass
flux ratios shown in figures 2 and 3 (m" 5) there are always relatively large lumps of
liquid still present far downstream. These lumps are seen to become smaller and fewer
in number at the larger momentum flux ratios and smaller mass flux ratios.

3.3. Liquid shedding frequency

At the air–water interface, the shear stresses are continuous. At large values of M, the
interfacial water layer is accelerated by the air to a velocity U

i
larger than U

l
. The case

of interest here is a turbulent air stream (Re
g
& 1000) with either a turbulent or a

laminar water jet (Re
l
respectively larger or smaller than about 2000). In both cases,

and in the limit of large momentum ratio M, the interfacial velocity should be
proportional to (ρ

g
}ρ

l
)"/#U

g
.

In the case of turbulent air and laminar water, the interfacial velocity is estimated by
equating the shear stresses at the interface. Indeed, the acceleration of the liquid at the
interfaces induces, by diffusion of vorticity, a velocity profile in the liquid whose
thickness δ(x) increases with the downstream distance x from the nozzle exit.
Assuming, for clarity of the argument U

i
(U

l
(this condition might, however, not

always be fulfilled, see Dimotakis 1986 and Raynald 1997), continuity of stress results
in

µ
l

U
i

δ
E ρ

g
u*#, (5)

where "

#
C

g
U #

g
¯ u*#, C

g
¯ 5¬10−$ being a friction coefficient (Schlichting 1987). The

liquid boundary layer thickness δ(x) grows until it ultimately reaches a value δ
c
such

that the Reynolds number based on U
i
and δ

c
, Re

c
¯U

i
δ
c
}ν

l
, is large enough to allow
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the instability of the shear layer. At that critical location x
c
E ν

l
}U

i
, one has

U
i
E (Re

c
C

g
ρ
g
}ρ

l
)"/#U

g
. (6)

However, when both the liquid and the gas are turbulent at the nozzle exit, the
condition of continuity of the stress at the interface becomes

ρ
l
U#

l
E ρ

g
u*#, (7)

leading to the same scaling dependency as shown in (6).
The wavelength, λ, of the Kelvin–Helmholtz instability of the shear layer developing

between a light stream and a slower dense stream is proportional to the initial thickness
of the velocity profile, δ

!
, and to the square root of the density ratio, i.e. λE δ

!
(ρ

l
}ρ

g
)"/#

(Raynald et al. 1997). Thus, the shedding frequency fEU
i
}λ can be written in all cases

as

fE
ρ
g

ρ
l

U
g

δ
!
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Different dependencies of the frequency f on the gas velocity U
g
can exist depending on

the mechanism which sets the thickness δ
!
. Two extreme cases can be expected. When

the liquid is laminar and the gas has a fully developed turbulent profile at the nozzle
exit, the length scale becomes the viscous sublayer, ν

g
}u*, as has been shown recently

measurements by Raynald (Raynald, Villermaux & Hopfinger 1998). In this case

fE
ρ
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C"/#
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ν
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g
. (9)

If both the liquid and the gas are turbulent, the maximal scale of the disturbances is
fixed by the thickness of the gap, D

g
®D

l
. Therefore, the shedding frequency becomes

fE
ρ
g

ρ
l

U
g

D
g
®D

l

. (10)

If, on the other hand, the gas stream is laminar and the exit vorticity thickness has a
boundary layer dependency on the gap Reynolds number ρ

!
}(D

g
®D

l
)ERe−"/#

g
, an

intermediate effect of f on U
g

between the limits described by equations (9) and (10)
should be expected.

The frequencies determined from the spectrum of the photodiode signal (an example
of which is shown in figure 4) as a function of U

g
, for different values of U

l
, are shown

in figure 5(a). It is seen that the observed trends correlate well with equation (9)
when the water velocity U

l
! 0.5 m s−" (Re

l
! 2¬10$), and with equation (10) when

U
l
" 0.5 m s−" (Re

l
" 2¬10$), and 200"We

!
" 100.

When the momentum ratio is large M&M
c

(see below for a definition of M
c
) a

recirculating air cavity exists on the jet’s centreline which oscillates at a lower
frequency, f

r
, and this frequency coexists with the shear instability frequency. The

origin and the features of this low-frequency oscillation (often referred to as a
‘superpulsating mode’) are explained in Villermaux & Hopfinger (1994a, b). Their
study emphasized the role of the recirculation on the origin of this slow mode which
is distinct from the primary shear instability and can be modelled by an amplitude
equation with time delay (see also Villermaux et al. 1994 and Rehab et al. 1997).

3.4. Liquid intact length

For zero liquid mass flow a separated flow region replaces the liquid cone. By
traversing a small total head tube (0.7 mm outer and 0.4 mm inner diameter)
downstream, starting at the nozzle, it was found that the pressure changed from a
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F 5. (a) Liquid shedding frequency as a function of the air velocity for different water velocities.
(b) Liquid shedding frequencies rescaled with equation (10) versus the liquid Reynolds number for
several gas velocities. In the limit of a very small liquid Reynolds number, the shedding frequency is
independent of the liquid velocity and is proportional to the square of the gas velocity. (c) Liquid
shedding frequencies rescaled with equation (11) versus the liquid Reynolds number for several gas
velocities. When the liquid is turbulent (Reynolds number " 2000) the shedding frequency is linearly
proportional to the gas velocity.

negative value at the nozzle exit to the ambient pressure at a downstream distance
L

!
¯ 0.8D

l
, and reached a maximum at a location of 1.5D

l
. The length of zero ∆p

corresponds to the length of a separated flow cavity, the equivalent of the separated
flow region behind a backward-facing step. Note, that the axisymmetric flow cavity is,
however, much shorter than the two-dimensional flow cavity. The maximum pressure
corresponds to the location where the annular jet has merged into an axisymmetric jet
flow.

When water is supplied at the centre, the recirculation of air may still occur when the
water flow rate is less than the rate at which water can be entrained by the air stream
over the distance L

c
, where L

c
is the critical length for which the water just fills the

cavity. L
c
will be of the order of, but larger than, L

!
because the pressure defect at the

centre is less when there is water supplied (less convergence of the streamlines).
The momentum flux ratio corresponding to L

c
is the critical value M

c
. Taking L

c
as

a reference length, we have for momentum flux ratios M!M
c

a liquid break-up
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F 6. Schematic view of the liquid break-up. x
b
¯ liquid break-up length or liquid intact length.

U
i
¯ velocity of the liquid}air interface, δ

!
¯ characteristic thickness of the liquid sheets. (a) x

b
"L

c
,

(b) x
b
!L

c
.

length x
b
"L

c
(figure 6a), whereas when M"M

c
, the liquid cone is chopped off and

x
b
!L

c
as sketched in figure 6(b).

A simple entrainment model can account for this observed behaviour. When the air
momentum is dominant, the liquid ligaments are entrained into the air stream. The
local pressure drop in the air stream due to the turbulent motions of r.m.s. velocity u!

g

is proportional to ρ
g
u!#
g
. This will cause an entrainment of water into the air stream at

a velocity u
e
given by the relation

ρ
l
u#
e
¯C

e
ρ
g
u!#
g
, (11)

where C
e

is a factor which can be determined from experiments with jets in equal-
density fluids. This relation is valid when both the air Reynolds number and the initial
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aerodynamic Weber number are sufficiently large for the entrainment not to be limited
by surface tension. As mentioned above, according to figures 2 and 3, the break-up can
be considered as independent of, or weakly dependent on, surface tension when
We

!
" 200. When taking a critical value of 10 for the local shear Weber number, the

scales affected by surface tension are then less than D
l
}20¯ 150 µm. Assuming that the

entrainment velocity remains constant with the downstream distance, conservation of
liquid mass requires that u

e
A¯U

l
πD#

l
}4, where A is the surface area of the interface

(Villermaux 1995). For the geometry of our injectors the air potential cone length
x
pg

E 5h%D
l
, so that when x

b
¯D

l
the turbulence responsible for the entrainment

is u!
g
¯α(U

g
®U

l
), and when x

b
is considerably longer than D

l
, u!

g
¯αU

g
. For the

particular case of water–air, U
l
'U

g
and the two expressions are nearly identical.

Thus, taking u!
g
¯αU

g
, and approximating the surface of the interface as a cone,

x
b

D
l

¯ 0 ρ
l
U#

l

4C
e
ρ
g
α#U#

g

®
1

41"/#. (12)

Using α¯ 0.17, C
e
¯ 0.25 (estimated from the length of the potential cone in a single-

phase jet), and neglecting the 1}4 in (12), the break-up length is

x
b

D
l

¯
1

αM "/#
E

6

M "/#
. (13)

For coaxial jets of equal density the inner jet cone length is given by equation (13)
(Rehab et al. 1997). In water–air coaxial jets, the water cone length also depends
weakly on the water velocity for a given M (Raynald et al. 1997).

The length given by equation (13) is indicated in the photographs of figures 2 and
3. Although these images do not allow testing of the validity of equation (13), the
observed trends are consistent. The existence of oscillations in the liquid cone length
is related to the spiral mode instability, and the periodic shedding of water makes the
determination of the intact length from instantaneous photographs difficult. For
instance, Eroglu, Chigier & Farago (1991) determined the intact length from four to
seven photographs taken for the same flow conditions. In their experiments, the initial
Weber number was less than 250 and, therefore, in most of their experiments the intact
length depends also on the Weber number. However, it is surprising to note that in the
past the momentum flux ratio has not been considered as the determining parameter
of the liquid intact length, not even when the initial Weber number is very large.

It should be noted that the liquid intact length defined by equation (13) corresponds
to the distance from the water jet nozzle to where the liquid fraction on the jet axis is
close to 1. Thus, it has some correspondence to the potential cone region in a single-
phase jet. It is also possible to define the liquid cone length by the distance from the
nozzle at which the void fraction is a given value, say 0.5 (as has been used in other
investigations).

The mass flux ratio is a quantity which should appear in the expression for the intact
length (equation (14)). In deriving this equation, it has been assumed that over the
distance x

b
the air velocity remains nearly constant. The two annular shear layers

merge downstream of x
pg

ED
l
and form a nearly two-dimensional jet. This jet velocity

may decrease more rapidly than in a usual two-dimensional jet because momentum has
to be transferred to the entrained liquid. However, a model taking into account the
effect of the liquid mass flux could not be verified by the present experiments. The
important point to be made here is that for high initial Weber number and high gas
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Reynolds number, as is generally the case in liquid propellant rocket engine
applications, the momentum flux ratio M is the dominant parameter. Equation (13)
provides a physical explanation for this being the case.

From equation (13) we can determine the critical value of M at which the
recirculating air flow commences and the water cone is chopped off before L

c
. By

taking for the minimum value of x
b
ED

l
, a value found for constant-density jets

(Villermaux et al. 1994), we get M
c
E 35. An alternative way to determine M

c
, which

does not require a value for x
b
, is to say that the recirculation will start when the local

pressure drop caused by the gas turbulence "

#
ρ
g
u!#
g

is just equal to "

#
ρ
l
U#

l
, which gives

a value M
c
¯ 35 when taking u!

g
¯ 0.17U

g
(Villermaux et al. 1994 and Rehab et al.

1997).
3.5. Primary drop formation

In his review of air-blast atomization, Lefebvre (1980) gives a large number of
references which are related to the instability and disruption of gas–liquid interfaces.
Most theoretical studies have concentrated on the instability of liquid sheets subjected
to a high-velocity gas stream. The resulting drop size in this case is related to the sheet
thickness. According to Levebvre, the air–liquid interaction produces unstable waves
which break into fragments ; these fragments contract into ligaments which in turn
break into drops through a Rayleigh-type instability. The problem then is to estimate
the size of the ligaments and its dependence on initial conditions. In the coaxial jet
configuration, as the water is accelerated by the coflowing air, a large fraction of the
liquid mass flux may end up in annular sheets inclined at a angle to the flow which then
break in the way described by Levebvre (1980) and Dombrowski & Jones (1963).

When conditions are turbulent–turbulent, the interface velocity has a simple relation
with U

g
, and from the liquid shedding frequency measurements presented in §3.3, one

can evaluate the wavelength of the primary instability, which is just λ
#D

¯U
i
}f. This

wavelength is two orders of magnitude larger than the wavelength dominated by
surface tension (see Chandrasekhar 1961). The air mixing layer draws out sheets at a
certain preferential angle (of the order of 45°) to the jet axis which break into ligaments
(see figure 6), possibly in a way similar to the streamwise vortices in a mixing layer or
due to an intrinsic instability of the sheet. An order of magnitude estimation of the
thickness can be obtained by conservation of mass arguments. The mass flux into a
sheet of thickness ξ is (ξD

l
πU

i
), and on average there are x

b
}λ sheets per liquid intact

length. A fraction of the total liquid mass is pinched off at the centre (the sheet could
also have a helical structure). However, if one assumes that the total mass flow rate of
the liquid "

%
πD#

l
U
l
goes into the sheets, we get

ξ¯
1

4

D
l

M "/#

λ

x
b

. (14)

Combining (13) and (14) gives ξ¯λ}24. Note that as the sheet is drawn out to larger
diameters, D«, its thickness decreases (by mass conservation), and it breaks into
ligaments. The minimum length of the filaments is U

i
}f¯λ, so that D«ED

l
λ cos 45°.

The thickness ξ «, and thus the size of the drops formed by Rayleigh instability are then

ξ «E ξ
D

l

D«
E

D
l

24(0.7D
l
}λ)

. (15)

It should be pointed out that, as it will be shown later, these estimated values are far
greater than the drop sizes measured at the jet’s centreline, thus indicating that in the
interior region of the jet, an additional break-up mechanism must take place.
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4. Secondary liquid break-up

The thickness of the viscous liquid layer accelerated by the high-speed annular gas
increases with the downstream distance from the nozzle. In addition, the large-scale
eddies formed by the merging shear layers developing at the gas}liquid and gas}gas
interfaces (see figure 6) entrain lumps of liquid whose size grows as they move
downstream. At high liquid}air mass and momentum ratios, these eddies entrain large
lumps of liquid, eventually cutting off the central liquid cone (see figures 2 f, 2g, and
2h). These liquid lumps are subsequently broken up by the pressure and viscous forces
from the mean and turbulent motion of the surrounding turbulent air (secondary
atomization). Since the size of the lumps is of the order of the jets’ integral length scale,
L, they could account for a considerable fraction of the total liquid flow rate, and
consequently their secondary atomization could determine the final droplet size
distribution in the spray.

After the lumps are pinched off from the liquid cone, the momentum transfer
between the air and the liquid results in a complex process involving not only their
acceleration, but also their simultaneous break-up and coalescence. To help describe
this complex dynamic interaction between the two phases, let us use a single parameter,
d (i.e. the diameter of an equivalent spherical liquid droplet of equal volume), to specify
the size of each liquid particle present in the jet at a given location x, at a given time
t. A statistical description of the liquid may then be given by a distribution function (or
density function), f(d,x, �, t), defined as the probable number of droplets per unit
volume with diameters in the range about d, located in the spatial range about the
vector position x, with a velocity in the range about �, at a time t. An equation
describing the time evolution of the distribution function, f(d,x, �, t), may be derived
by using arguments similar to those used in the kinetic theory of gases. Following the
notation in Williams (1985),

¥f
¥t

¯¡
x
[(�f )®¡

v
[(F f )

¥
¥d

(Rf )Q!
b
Q!

c
Γ, (16)

where F(d,x, �, t) is the force per unit mass on a liquid particle, and R(d,x, �, t) is the
time rate of change of its size due to evaporation (which in general also depends on the
local temperature and vapour concentration of the surrounding air). The first term on
the right-hand side accounts for the changes in f due to the motion of liquid particles
in and out of a spatial element dx by virtue of their velocity �, and the second
represents the rate of change of the number of particles in the velocity element d�

because of the acceleration f. The third term represents the changes in f resulting from
liquid evaporation, while Q!

b
is the time rate of increase of f due to particle break-up,

Q!
c
is the rate of change of f due to droplet coalescence, and Γ is the rate of change of

f due to collisions (i.e. the changes in f resulting from the variation in the velocity of
the particle caused by interparticle collisions which did not result in coalescence).
Furthermore, for nearly all vaporization mechanisms, the dependency of R on the
droplet size may be expressed approximately by the equation

R¯®
χ

dk
, (17)

where 0!k! 1 is independent of d but dependent on the temperature and local
vapour concentration of the air surrounding the particle, Williams (1985). In our
application, we estimate that the contribution of R to the changes in n becomes
vanishingly small at the jet’s centreline, since after a short transient length needed to



Break-up and atomization of a round water jet 365

reach saturation conditions at room temperature, χ becomes very small. (This
assumption, and the effect of droplet evaporation will be discussed later in §5.) Thus,
neglecting evaporation, the steady-state form of equation (17) becomes

¡
x
[(�f )®¡

v
[(Ff )Q!

b
Q!

c
¯ 0. (18)

Eliminating the velocity dependency by integrating over the whole velocity space, we
get

¡
x
[(�a n)&Q!

b
d�&Q!

c
d�¯ 0, (19)

where n(d,x)¯ ! fd� is the mean number density of droplets of size d at a location
x, and �a (d,x)¯ (! �fd�)}! fd� is the mean velocity of the liquid droplet of size d at
location x. Both of these quantities will be measured experimentally in the present
study.

Expanding the first term in equation (19) yields

�a [¡
x
n¯®n¡

x
[�a Q

b
Q

c
, (20)

where Q
b
¯ !Q!

b
d� and Q

c
¯ !Q!

c
d�. Thus, the spatial changes in the mean number

density of droplets are due to three mechanisms, namely a convective effect resulting
from the motion of particles in and out of a special location x by virtue of their velocity
�a , droplet break-up, and droplet coalescence. To close the problem, the mean velocity
of the liquid particles �a (d,x) must be calculated from the conservation of mass and
linear momentum between the phases, which requires information on F. Or as in our
case, �a (d,x) will be measured experimentally.

In the following we will analyse, in the context of our specific application, the
contributions of each of the three terms in equation (20) to the spatial changes of the
mean droplet size distribution, n.

4.1. Secondary break-up mechanisms

Following the classical decomposition of the turbulent motion into a mean plus a
fluctuating component, we can then classify the forces acting on the liquid particles, τ,
as the sum of a force resulting from the relative velocity between the particle and the
mean motion of the gas (slip velocity), and a force due to the turbulence of the carrier
fluid. To differentiate between the break-up processes resulting from these two effects,
we will refer to them as ‘shear break-up’ and ‘turbulent break-up’ respectively.

Shear break-up

When a water drop of size d is suddenly exposed to an airflow of relative constant
speed (u

l
®u

g
) break-up will occur if the shear Weber number exceeds a critical value

(Hanson et al. 1963)

We
s
¯

ρ
l
(u

l
®u

g
)# d

σ
" (We

s
)
c
. (21)

In our application (We
s
)
c
does not depend on the viscosity number, N, and approaches

a constant value of the order 10 as the droplet diameter decreases. Furthermore, in our
high-speed coaxial jets, the droplets are quickly accelerated to velocities equal to,
or larger than, that of the carrier fluid (due to the large inertia of the liquid since
ρ
l
}ρ

g
( 1). Thus, as will be shown from our measurements of u

l
and u

g
, this Weber

number quickly decreases, and this break-up mechanism, although very effective in the
near region (x}D

l
% 7), becomes inefficient shortly beyond the liquid cone length.
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Turbulent break-up

As the liquid becomes accelerated by the high-speed air, the particles remain exposed
to the turbulent motion of the surrounding gas, and this may result in further droplet
break-up. When the Reynolds number of the air flow is very large, as it is in our
application (i.e. of the order of 10% to 10&), Kolmogorov found that if the droplet size
compared to the Kolmogorov microscale, η, satisfies

d( η(ν
l
}ν

g
)$/%, (22)

the effect of the viscosity inside the drop is unimportant, and the determining factor in
the turbulent break-up is only the dynamic pressure caused by the velocity changes
over distances of the order of the droplet diameter. The dynamic pressure force from
the turbulent motion per unit surface is ρ

g
u(d )#, where u(d )# is the mean square of the

relative velocity fluctuations between two points diametrically opposite on the surface
of the droplet. The surface tension force per unit area is σ}d. The turbulent Weber
number is then defined as

We
t
¯

ρ
g
u(d )# d

σ
. (23)

Thus, when We
t
is greater than a critical value, (We

t
)
c
, of order 1, atomization of the

liquid occurs because the dynamic pressure forces from the turbulent motion are
sufficiently large to overcome the confinement of the surface tension. To calculate the
lower critical Weber number, Taylor (1934) pointed out that the drops are vibrating
systems and thus their break-up occurs as the dynamic response to time-dependent
pressure fluctuations at a given frequency. Following Taylor’s model, Sevik & Park
(1973) obtained a general expression for the critical Weber number by setting the
characteristic frequency of the turbulent flow equal to the natural frequency of the n-
order mode of a spherical droplet undergoing small-amplitude oscillations. They
predicted that for (ρ

l
}ρ

g
& 1) the lowest critical Weber number (for n¯ 2) is always

less than 0.59, decreasing below this value as ρ
l
}ρ

g
increases. These results are in good

agreement with the turbulent critical Weber number of 0.59 quoted by Hinze for Clay’s
experiments. Note that these critical turbulent Weber numbers, (We

t
)
c
, are considerably

smaller than the critical shear Weber number, (We
s
)
c
E 10 introduced above.

Furthermore, since the air jet is at a very high Reynolds number, at its centreline, an
inertial subrange exists in which the energy spectrum of the turbulence conforms to
Kolmogorov’s hypothesis of local isotropy. In other words, the spectrum of the
turbulent velocity fluctuations includes a range of high wavenumbers (the universal
equilibrium range) which is uniquely determined by the turbulent dissipation rate in the
air. For this local isotropy to exist, the linear scale of the energy-containing eddies must
be large compared to the scale of the small energy dissipating eddies. For very small
values of d(d" η), the form of the universal function can be obtained by dimensional
analysis :

u(d )#¯C(εd )#/$. (24)

Assuming that the residence time of the liquid in the turbulent region is longer than the
break-up time, the maximum stable droplet size, d

max
, can then be obtained from the

relation

d
max

¯ 9σ(we
t
)
c

ρ
g

:$/& ε−#/&. (25)

At large mean velocities, as is the case in our experiments, the time the drops stay in
the fluid, for given constant local turbulent characteristics, may be insufficient for the
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breakage process to be terminated and for the liquid to reach a state of equilibrium.
Thus, equation (25) is a necessary but not a sufficient condition. We will return to this
point below.

Since (u(d )#)"/# is only a statistical value of the velocity difference at a distance d, it
is possible however rare, that much greater velocity differences could appear at the
same distance d. Furthermore, this classical, inertial subrange theory could be modified
by including the effect of intermittency in the turbulent field, Baldyga & Bourne (1993).

The time evolution of the distribution function can then be calculated by
incorporating breakage relationships (Konno et al. 1980)

Q
b
¯&¢

d

m(d «)γ(d «, d )K
b
(d «) n(d «) d(d «)®K

b
(d ) n(d ), (26)

where K
b

is the break-up frequency of drops of size d, m(d «) is the mean number of
daughter drops formed through the break-up, and γ(d, d «) is the distribution of
daughter drops formed through the break-up of a parent drop of size d «.

4.2. Droplet coalescence

The local turbulent velocity fluctuations also result in collisions between droplets, and
thereby the chance of coalescence. However, it is well known that only a fraction of
those collisions will result in coalescence. When two droplets collide, a thin film of air
forms between the two colliding droplets and acts as a cushion which may cause them
to rebound. If the time involved in a collisions is sufficiently large for the air film
separating the droplets to gradually thin to below a certain threshold, the boundary
between the two droplets will adhere and their coalescence will occur. Inversely, if the
agitation of the medium is sufficiently high (large ε) the time involved in the collision
will be shorter than that needed for the film’s drainage, and the droplets will rebound
without undergoing coalescence. The collision residence time which leads to an
adhesion will obviously depend on the size of the droplets, on the properties of the
dispersed and continuous media, and on the intensity of the turbulence in both media.
The frequency of coalescence can then be calculated as a product of the collision
frequency and a coalescence efficiency which depends on the ratio between the droplet’s
contact time, tb, and a critical drainage time, T{ . The latter can be readily estimated
by computing the time needed to bring together two droplets of size d. The force
needed to bring together two circular plates of diameter d (an approximation to the
pancake shape of two droplets at the point of impact) separated by a distance h

!
is

F¯ 3πµ
g
u(d}2)#}2h$

!
(see e.g. Landau & Lifshitz 1989). Since the relative inertia is

ρ
l
(εd )#/$ d # the drainage time is T{ E (µ

g
}ρ

l
) ε−#/$ d−#/$ (see also Tsouris & Tavlarides

1988, and Jeffreys & Davies 1971). The contact time can be estimated as the reciprocal
of the fluid velocity fluctuations between two points separated by a distance equal to
the droplet’s diameter, or turnover time tb E ε−"/$ d #/$. The coalescence efficiency is then

0E exp (®T{ }tb). (27)

The maximum drop diameter for which separation is possible (coagulation will be
prevented) is given by the cut-off condition tb ¯T{ which gives

d
max

E
µ
g

ρ
l

ε−"/%. (28)

The above argument is equivalent to postulating that the adhesion of two droplets
of size d will take place if the kinetic energy E

k
of the two droplets relative to each other
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is less than a critical energy of adhesion E
a

(Shinnar 1961). If the two droplets are of
equal diameter and the thickness of the air film h

!
separating them is much greater than

d, the energy of adhesion is E
a
¯A(h

!
) d, and the kinetic energy of their relative motion

is E
k
¯ ρ

l
u(d )# d $, where A and h

!
are independent of d. Thus, the maximum drop

diameter for which separation is possible (coagulation will be prevented) is given by

ρ
l
d)/$
max

ε#/$

A(h
!
)

¯ const., (29)

resulting in

d
max

E 9A(h
!
)

ρ
l

:$/) ε−"/%, (30)

which gives the same dependency on ε as shown in equation (28).
The time evolution of the droplet distribution function due to coalescence can then

be calculated as the product of a collision frequency and a coalescence efficiency, Π (see
for example Bapat 1982; Ramakrishna 1985; Tsouris & Tavlarides 1994).

5. Experimental evidence on the far-field droplet size

Measurements of the radial variation of the mean droplet diameter show that the
mean size of the droplets is minimum at the jet’s centreline, and it increases as one
moves toward the outer edges of the jet (figure 7). This behaviour was consistently
observed for all the measurements performed at downstream distances greater than 10
jet diameters. Since the primary breakup mechanism described in §3 is much more
efficient at the edge of the jet (since the shear is maximum at the gas–liquid interface)
these measurements indicate that after the liquid is broken by the primary shear
instability, further break-up (of the type described in §4) must take place downstream
of the liquid cone and is more effective at the jet’s centre than at its edges.

5.1. Dependence of the droplet diameters on the water and air flow rates

To investigate the effect of the water flow rate on the atomization process, we
conducted a series of measurements at constant gas velocity U

g
while varying the water

velocity U
l
. In figure 8 the variation of the mean droplet size, D

$#
, with the downstream

distance along the jet’s centreline is plotted for various water velocities ranging from
0.13 to 0.55 m s−". The important points to be noted from these measurements are the
following. (a) The droplet diameter does not decrease to an asymptotic value at large
downstream distances from the nozzle, but rather it shows a non-monotonic
dependence on x}D

g
. The mean diameter was always found first to decrease, reaching

a minimum, and then to increase monotonically with the downstream distance. (b) The
value of the minimum mean droplet diameter increases with the water flow rate
(increasing U

t
). (c) The downstream location, x}D

g
, of this minimum increases with U

l
.

(d ) After reaching a minimum, the mean droplet size follows a nearly linear
dependence on the downstream distance with a slope independent of U

l
.

The effect of the air flow rate on the liquid atomization was also investigated by
fixing the water velocity, U

l
, while varying the air velocity, U

g
. Figure 9 shows the

variation of the mean diameter D
$#

, with a downstream distance for four different
representative air flow rates. Similarly to figure 8, the evolution of the mean droplet
diameter always shows a non-monotonic dependence on x}D

g
, first decreasing and

then increasing. It should be noted that the value of the minimum droplet diameter
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Coalescence Break-up

d

åcrit

å

å–2/5

å–1/4

F 10. Equilibrium maximum droplet diameter d as a function of the dissipation rate of
turbulent kinetic energy of the air. Note that for ε! ε

crit
the maximum diameter is determined by

coalescence while in regions where ε" ε
crit

it is determined by breakup.

decreases with the air flow rate (increasing U
g
), while the location of the minimum

decreases with U
g
. After the minimum, the mean drop size also increases linearly with

x}D
g
.

The existence of two regions of the spray in which the mean droplet diameter exhibits
well-differentiated behaviour is evidence of the competing contributions of the different
terms in equation (20) to the changes in the steady-state value of the droplet
distribution function n(d,x).

To illustrate the nature of these two regions, let us for the moment ignore the
possible contributions of n¡

x
[�a to the changes in n, and assume that the evolution of

the size distribution of droplets depends only on the simultaneous occurrence of break-
up and coalescence, Q

b
and Q

c
(we will discuss the effect of the acceleration term later).

Then,
�a [¡

x
n¯Q

b
Q

c
. (31)

Owing to the large Re of our experiments, the jet’s turbulence closely satisfies the
conditions of local isotropy at its centreline. Thus, to a first approximation, assuming
that the droplets stay long enough in a region of sufficiently large turbulent kinetic
energy, the maximum droplet size that will withstand break-up is d

max
E ε−#/&

(equation (25)). Similarly, the droplet size above which coalescence will be unlikely to
occur is d

max
E ε−"/% (equation (30)). Since both the break-up and coalescence processes

are determined only by the dissipation rate of the turbulent kinetic energy, ε, through
different power exponents, it easily follows that depending on the local value of ε, one
process will dominate the other. As the energy dissipation decreases downstream, in the
region of high values of ε (near field, small x}D) break-up is dominant and the droplet
size is determined by equation (25), while in regions of small dissipation (far field, large
x}D

g
) it will be controlled by the coalescence process, and the size is given by equation

(30) (Shinnar 1961) (see figure 10). In the following we will refer to each of these regions
as the break-up region (descending portion in figures 8 and 9), and the coalescence
region (ascending portion in figures 8 and 9).

The droplet break-up region

As discussed above in relation to the radial measurements shown in figure 7, the
lumps of liquid pinched off from the central liquid cone must undergo secondary
break-up by the turbulent fluctuations of the continuous phase. As shown above, if the
residence time of the liquid in the highly dissipative region of the turbulent jet is long
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enough for the break-up to be completed, a local equilibrium will always be reached.
Thus, one will conclude that, since ε is maximum near the end of the potential core, the
minimum in figures 8 and 9 should always be at a location x}D

g
E 5–8 (increasing

as the air}water momentum ratio decreases). However, as is apparent from the above
experimental results, this is never the case ; and the minimum always occurs at distances
x}D

g
E 15–20, much further downstream from the nozzle. From this fact alone, it is

obvious that although the dissipation rate is higher near the nozzle’s exit, the liquid
residence time is shorter than that needed for break-up. Equilibrium will then be
reached at a critical distance downstream from the nozzle, x

crit
, where the break-up

time of the droplet equals its residence time. Assuming that the droplet break-up time
is of the order of the eddy turnover time t

b
¯ d

max
}(u(d )#)"/#, introducing equation (24),

we get
t
b
E ε−"/$ d #/$

max
. (32)

On the other hand, the liquid residence time can be estimated as

t
r
¯&x dξ

U(ξ )
, (33)

where U(ξ ) is the mean velocity of the liquid drops along the jet’s centreline. Since U(ξ )
is of the order of the mean velocity of the jet along its centreline, it is reasonable to
assume that U(ξ )EU

g
}xβ with β being a constant of order 1 which depends on the

water to air mass flow rate (β¯ 1 if m¯ 0). Integrating equation (33), we get

t
r
E

x(β+")

(β1)U
g

. (34)

Combining (32) and (33), the critical equilibrium length can then be estimated as

x
crit

EU−(β+")
γ ε−"/$(β+") d#/$(

β+")
max

, (35)

and introducing equation (25), we get

x
crit

EU"/(
β+")

g
ε−$/&(β+") (σ}ρ

g
)#/&(β+"). (36)

What remains now is to estimate the turbulent dissipation rate along the jet’s
centreline. It is well known that in a single-phase jet, the dissipation rate is proportional
to the initial kinetic energy of the jet per unit mass per unit time, U$

!
}D

g
, where U

!
is

the initial jet velocity and D
g

is the diameter of the nozzle. It is then reasonable to
postulate that in our two-phase flow case, the dissipation rate in the gas should now
be proportional to the total initial flux of kinetic energy (contained mainly in the gas)
per unit total mass (gas plus liquid). Thus,

εE
U$

g

(1ρ
l
U
l
}(ρ

g
U
g
))ω D

g

, (37)

where ω depends on the liquid to air mass flow rate, m, and will be determined
experimentally. Combining equations (36) and (37), and taking β¯ 0†, we get

x
crit

¯U−%/&
g 9 1

(1ρ
l
U
l
}(ρ

g
U
g
)ω D

g

:−$/& 0σρ
g

1#/&. (38)

† In our two-phase flow jet, the mean centreline velocity is approximately constant for the
first five to eight diameters, at which point our measurements show a decrease U(x)EU

g
}x β, with

0.2%β% 0.6, and the value of β increasing with M. Thus, as a conservative estimate, we take
β¯ 0.
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F 11. (a) Comparison of the measured downstream location of the droplet break-up
equilibrium point x

crit
in figure 8 with the prediction given by equation (38) (solid line). (b)

Comparison of the measured downstream location of the droplet break-up equilibrium point x
crit

in
figure 9 with the prediction given by equation (38) (solid line).

Equation (38) shows a dependence of x
crit

on U
l
and U

g
consistent with that observed

experimentally, i.e. the downstream location of the minimum (i.e. the location at which
equilibrium is reached, x¯x

crit
) increases with U

l
while it decreases with U

g
. Figure

11(a, b) shows the measured values of x
crit

for all the U
l
and U

g
corresponding to figures

8 and 9. Observe that the dependence predicted by equation (38) is consistent with the
experimental results. Furthermore, using (38) as a correlation of the experimental data,
we can estimate ω to be approximately equal to 1.

The value of the mean diameter at the equilibrium (minimum in figures 8 and 9) is
then calculated by combining equations (25) and (37) to give

d
max

E 9 σ

(We
t
)
c

:$/& 9 U$
g

(1ρ
l
U
l
(ρ

g
U
g
)ω D

g

:−#/&. (39)

Since the drop size predicted by the secondary atomization argument is the maximum
drop size, we have selected the D

*!
(the diameter for which 90% of the total liquid

volume is in droplets of smaller diameters) as the relevant parameter to measure. The
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F 13. Dependence of the measured maximum droplet diameter at the equilibrium point (D
*!

)
on the flux of total kinetic energy of the air jet per unit total mass of the system. U

l
¯ 0.13 m s−", and

U
g
¯ 119, 126, 133 and 140 m s−".

dependence of D
*!

measured at the minimum on U
l
and U

g
is shown in figures 12 and

13. Note that, consistent with the predicted dependence given above, in both cases D
*!

is found to correlate well with [U$
g
}(1ρ

l
U
l
}(ρ

g
U
g
))]−#/& where ω in equation (38) is

also found to be 1.

The droplet coalescence region

Downstream of x
crit

the turbulent kinetic energy of the air can no longer provide
sufficient pressure deformation forces to overcome the confinement by the surface
tension. From this location onward, droplet coalescence, acceleration, and evaporation
(although, as discussed before, negligible in our case) will determine the mean drop
size.

In the coalescence region, located downstream of the minimum in figures 8 and 9,
the most probable drop size above which coalescence will be prevented by the
turbulence is given by equation (30). Introducing the value of the estimated turbulent
dissipation rate, and assuming that in the far field of the jet decays as (x}D

g
)−% similarly
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F 14. Mean slip velocity between the droplets and the surrounding air measured at the jet’s
centreline. The droplet sizes have been classified in six size bins : D

"
for sizes between 5 and 18 µm;

D
#
for sizes between 18 and 36 µm, D

$
for sizes between 36 and 75 µm, D

%
for sizes between 75 and

110 µm, and D
&
for droplets greater than 110 µm. The gas has been measured by the droplets in the

size bin with droplets smaller than 5 µm. (a) U
g
¯ 140 m s−" and U

l
¯ 0.2 m s−", (b) U

g
¯ 140 m s−" and

U
l
¯ 0.31 m s−", (c) U

g
¯ 140 m s−" and U

l
¯ 0.41 m s−", (d ) U

g
¯ 140 m s−" and U

l
¯ 0.53 m s−".

to the decay observed in one-phase jets, Friehe, Van Atta & Gibson (1977) (an
assumption which will lose validity for very large M ) we get

(d
max

)
coalescence

E 9 U$
g

(1ρ
l
U
l
}(ρ

g
U
g
))α D

g

:−"/%0 x

D
g

1 , (40)

which shows that in the coalescence region the droplet diameter grows linearly with the
downstream distance, in agreement with the measured evolution given in figures 8 and
9. Note also that the local coalescence equilibrium assumption made above gives a
dependence of the slope on U

l
and U

g
. However, this dependence is not apparent in the

experimentally observed evolution (figures 8 and 9), where it appears that the slopes are
independent of U

l
and U

g
.

5.2. Effect of the droplet acceleration

Let us now turn our attention to the analysis of the possible contribution of ®n¡
x
[�a

to the downstream variation of n. To estimate the acceleration of the droplets ¡
x
[�a let

us consider one droplet in isolation. To a first approximation, the droplet inertia is
balanced by the viscous drag

�a
d�a
dx

E
µ
#
(�a ®U

g
)

ρ
"
d #

, (41)
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F 15. Region I – liquid acceleration; Region II – acceleration of large size droplets
coexisting with deceleration of small ones ; Region II – droplet deceleration.

where, for simplicity, we have assumed Stokes’ drag law, and neglected unsteady terms
such as added mass, Basset, and effects. The droplet acceleration is inversely
proportional to the square of its diameter, and the relaxation length for the droplet to
be accelerated to the gas velocity, U

g
, is then

x
accel

E
ρ
l
U
g
d #

µ
g

. (42)

Figure 14 shows the measured values of �a for four representative cases. These
measurements were obtained by discretizing the droplet distribution function into six
droplet sizes bins, with the one corresponding to d! 3 µm used to measure the gas
velocity. Note that as one would expect, the downstream evolution of the mean droplet
velocities is made up of three regions (see figure 15).

Region I. In the near field, all the droplets regardless of their size are moving at
velocities lower than that of the gas, and are being accelerated (positive acceleration)
by the viscous and pressure forces F. Since for each drop, its relaxation length is
proportional to d #, the smaller droplets will begin to move faster than the larger ones.
Therefore, since assuming the absence of break-up or coalescence �a [¡

x
n¯®n¡

x
[�a , it

follows that the effect of the initial acceleration in the near field is to increase the mean
droplet size (observe that the smaller droplets move faster than the larger ones, and the
mean size increases). Since this result is in direct opposition to the experimentally
observed decay in the size, it can be considered as a corroboration of the assumption
made above that the size decay in the first region in figures 8 and 9 is determined by
break-up and not by acceleration effects.

Region II. After the droplets are accelerated to the gas velocity, their inertia leads
to a velocity overshooting region whereby the larger droplets pass the gas while the
smaller ones quickly begin to relax again to reach the gas velocity. Thus, in this second
region, the term ¡

x
[�a will lead to a decrease in the mean droplet size. The extent of this

second region can be estimated by introducing equations (25) and (37) into (42) to give
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a result again consistent with the experimentally observed dependencies of the air and
water velocities.

Region III. After the maximum drop size has reached a maximum velocity, all
droplets regardless of their size will decelerate leading to an increase in the mean
droplet size. (Note that ¡

x
[�a is always negative and larger for the smaller droplets.)

Thus, the effect of the droplet acceleration leads to the same dependence of the mean
size as did the coalescence effects. However, since the magnitude of ¡

x
[�a is very small,

this contribution is most likely small compared to the coalescence effects.

5.3. Effect of the turbulent dispersion and droplet e�aporation

Implicit in our discussion of equation (20), and in particular in the analysis of the terms
�a [¡

x
n and n¡

x
[�a in the preceding section, was that the spray behaves as a quasi-one-

dimensional flow, i.e. we accounted only for the transport effects resulting from the
axial motion of the spray. However, as was shown in figures 2, 3 and 6, the lateral
spreading of the jet is dominated by the presence of a large-scale coherent eddy
structure. These eddies are known to dominate the turbulent diffusion of the droplet
across the spray, whereby the droplets are dispersed laterally, according to their size
(Lazaro & Lasheras 1992a, b ; Longmire & Eaton 1992, and Kiger & Lasheras 1995).

This large-scale lateral transport results in two main effects. The first one is to
produce a downstream increase in the mean droplet size. Recall from figure 7 that, near
the nozzle, the mean droplet size is considerably larger at the edges of the spray than
on its centreline. As one moves downstream, these large coherent eddies, with scales
comparable to the radial thickness of the spray, will ultimately tend to homogenize the
mean size of the droplets across the spray. This is an effect consistent with our
measurements of the salter mean diameter, which shows that as one moves downstream
distances larger than 80 to 100 nozzle diameters, the mean size of the droplets becomes
uniform across the spray.

The second effect of the large-scale eddies is to entrain ambient air into the spray
across distances comparable to the spray’s radius. Since the entrained air is not
saturated with water vapour, this will contribute to some evaporation of the water
droplets. Thus, at some distance downstream from the nozzle, our assumption of
negligible evaporation effects will break down, and the term involving R in equation
(16) should be retained in the analysis. However, notice that the evaporation effects will
contribute in the opposite way to the measured increase of the mean diameter with
downstream distance (figures 8 and 9), indicating that the assumption of negligible
evaporation is most likely a reasonable one.

6. Conclusions

The atomization of a liquid jet by a high-momentum turbulent annular jet has been
shown to be the result of a dual process. In the near field, the break-up process is
dominated by the shedding of liquid sheets or ligaments. In the far field, a secondary
breakup process may also take place whereby liquid lumps pinched off from the jet are
split by the turbulent stresses of the air jets. The measurements of the shedding
frequency in the near field are shown to be qualitatively described by the simple
phenomenological model. For initially laminar water jets, it was found that this
frequency increases proportionally to the square of the gas velocity. However, in the
case of an initially turbulent water jet, it was found to exhibit a linear increase with the
air velocity. An entrainment model was developed to predict qualitatively the liquid
intact length. It was shown that in the case of large initial aerodynamic Weber numbers
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and high gas Reynolds numbers, the liquid intact length depends mainly on the air to
water momentum ratio. This result underscores the relevance of the momentum ratio
to the breakup process in this type of air blast atomizer.

The far field of the spray jet was found to be characterized by two well-defined
regions: an initial region where the mean droplet size measured at the jet’s centreline
monotonically decreases with the downstream distance, followed by a second region
where the droplet’s diameter increases with the downstream distance. The role of the
secondary droplet break-up in the size distribution measured in these regions was also
investigated, and an attempt was made to use the classical concepts of local isotropy,
first proposed by Kolmogorov, to qualitatively explain the observed downstream
variation of the droplet’s size and its dependence on the water and air velocities.

Simplified models of the effect of the turbulent energy dissipation in the gas on the
break-up and coalescence of the droplets were developed and compared to the
experimental evidence resulting in good, qualitative agreement. The first region was
shown to be dominated by the secondary break-up process. Both the values of the
minimum droplet size (reached at the equilibrium point), and the downstream location
of this equilibrium point were found to be well predicted by the model. The location
of the minimum droplet size was found to decrease with the gas’s velocity, while it
increased with the liquid’s velocity. Correlations of the droplet size measurements
made based on the local isotropy model indicate that the dissipation rate of the
turbulence in the air jet is approximately proportional to the total kinetic energy flux
(primarily contained in the air jet) per unit total mass (airwater). The increase in the
droplet size observed in the second region was found to be the result of droplet
coalescence and droplet deceleration, with the latter playing a minor role. A simple
coalescence efficiency model based on the dissipation rate appears to be in good
qualitative agreement with the observed increase of the mean droplet diameter with
downstream distance, and the dependence of the mean droplet diameter on water and
liquid velocity.
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